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Abstract: In this paper, a novel mathematical—physical model of the generalized elasto-thermodiffusion
(hole/electron interaction) waves in semiconductor materials is studied when the hyperbolic two-
temperature theory in the two-dimensional (2D) deformation is taken into account. Shear (purely
transverse) waves are dissociated from the remainder of the motion and remain unaffected by external
fields. The coupled system of partial differential equations of the main interacting fields has been
solved. Using the Laplace transform method, the governing equations of motion and heat conduction
can be formulated in 2D. The hole charge carrier, displacement, thermal, and plasma boundary
conditions are applied on the interface adjacent to the vacuum to obtain the basic physical quantities
in the Laplace domain. The inversion of the Laplace transform with the numerical method is applied
to obtain the complete solutions in the time domain for the main physical fields under investigation.
The effects of thermoelastic, the phase-lag of the temperature gradient and the phase-lag of the heat
flux, the hyperbolic two-temperature parameter, and comparing between silicon and germanium
materials on the displacement component, carrier density, hole charge carrier, and temperature
distribution have been discussed and obtained graphically.

Keywords: electrons and holes; hyperbolic two-temperature; elasto-thermodiffusion; Laplace
transform; semiconductors

1. Introduction

Semiconductors are electrically insulating materials under normal conditions; for
example, glass. However, when materials are exposed to laser beams and light or sunlight,
they cause an internal excitation of electrons, which leads to their spread on the surface
to become electrically conductive materials; for example, copper. That is, semiconductors
deform their physical properties when exposed to external variables such as a gradual
increase in temperature. From this standpoint, semiconductors are important in all modern
industries such as the manufacture of electronics, solar cells, and sensors. Where semicon-
ductors are exposed to direct radiation, electrons move towards the surface, leaving gaps
behind in a process called electronic deformation (ED). As a direct result of the movement
of excited electrons towards the surface, an elastic thermal deformation (ETD) occurs.
Therefore, when studying semiconductors, the theory of photo-thermoelasticity should be
used to examine the governing equations of the system.

Lord Rayleigh [1] predicted the existence of Rayleigh waves concerning the earthquake
spectrum analysis. Rayleigh waves travel at about 10 times the speed of sound in the air
along the earth’s surface. Surface waves are well understood to be acoustic or elastic and
they can also be coupled with other physical fields such as piezoelectric, magnetic, electric,
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diffusion, and so on. In the context of coupled thermoelasticity, Lockett and colleagues [2]
investigated the propagation of thermoelastic Rayleigh waves. Chandrasekharaiah [3]
modified the Fourier law of heat conduction and constitutive relations to obtain a hyperbolic
equation for heat conduction. These models account for the time required to accelerate heat
flow and temperature-strain field coupling.

Maruszewski [4] investigated the interaction of elastic, thermal, and diffusion fields of
charge carriers in semiconductors after mathematically formulating the problem. Maruszewski [4]
also investigated the propagation of thermodiffusion surface waves in semiconductor
materials using his phenomenological model, which includes relaxation times of heat
and charge carriers as well as carrier lifetimes. He also presented numerical solutions to
his model’s problems in these situations. However, his investigations were eventually
limited to some special and specific situations; they remained departed from the gen-
eral solution of the said model, ignoring the presence of some of the interacting fields
included in the basic governing equations at the same time. Sharma and Thakur [5] in-
vestigated the propagation of plane harmonic elasto-thermodiffusive (ETNP) waves in
semiconductor materials by simplifying the Maruszewski model of governing equations
by introducing non-dimensional quantities. In an infinite semiconductor, four coupled lon-
gitudinal waves, namely the quasi-thermoelastic (QTE), quasi-elastodiffusive (QEN/QEP),
quasi-thermodiffusive (QTN/QTP), and quasi-thermal (T-mode), as well as decoupled
shear waves, are discovered to exit. Sharma et al. [6] studied the propagation of elasto-
thermodiffusive (ETN) surface waves in a semiconductor material half-space. Lotfy et al. [7]
proposed an elastic-thermodiffusion (ETD) model for the semiconductor material that is
coupled between holes and electrons. This model is described by photothermal excitation
in generalized thermoelasticity theory. Aldwoah et al. [8] investigated the coupling of
electrons and holes in a theoretical mathematical—physical model of a semiconductor
medium. During photothermal transport processes, the elasto-thermodiffusion (ETD) the-
ory is taken into account. Hobiny and Abbas [9] studied an elastic semiconductor medium
according to the generalized thermo-diffusion theory, when the physical constant of the
medium depends on the change in temperature. On the other hand, Abouelregal et al. [10]
investigated the impact of an excess carrier on semiconductor material in the context of
the Green and Naghdi theory. Awwad et al. [11] took into consideration the functionally
graded influence on the excited semiconductor medium by laser pulses.

According to the formulations of the deformable body theory, the conductive tem-
perature and the thermodynamic temperature are two distinct temperatures that affect
how much heat may be transferred [12,13]. The difference between the two temperatures,
which coincide when the heat source is absent, is discussed by Chen et al. [14]. The ex-
istence of two-temperature thermoelasticity theory, structural stability, convergence, and
spatial behavior of elastic media was demonstrated by Quintanilla and Tien [15]. A novel
model of the two-temperature theory for generalized thermoelasticity was developed by
Youssef [16,17], yet this theory contains a paradox. The paradox relates to the infinitely fast
thermal wave propagation that is predicted by this theory. The contradiction was resolved
by Youssef and El-Bary [18] when they devised two types of separate temperatures that
are dependent on the acceleration of thermal and conductive temperature. Lotfy et al. [19]
studied a novel model which describes the photothermal excitation under the impact of
the theory of magneto-hyperbolic two-temperature during thermo-diffusion processes
of the semiconducting medium. On the other hand, Lotfy et al. [20] studied the semi-
conductor medium when the piezo-photo-thermoelasticity theory during the hyperbolic
two-temperature theory is taken into account.

The generalized elasto-thermo-diffusion (ETD) waves in semiconductor materials for
two-dimensional (2D) deformation are discussed and studied when the electrons/holes
interaction is taken into account. The governing equations of motion and heat conduction
are solved using the Laplace transform method with the hyperbolic two-temperature
theory. To obtain the main physical quantities in the Laplace domain, the hole charge
carrier, displacement, thermal, and plasma boundary conditions are applied as boundary



Crystals 2022, 12, 1458 3 of 19

conditions to the interface adjacent to the vacuum. The inverting process is then carried out
numerically using an efficient programming language. Finally, normal displacement, carrier
density, hole charge carrier, and temperature distribution were computed numerically and
graphically represented.

2. Basic Equations

The unbounded, homogeneous, isotropic, thermoelastic semiconductor at a uniform
temperature T0 in an undisturbed state is taken into consideration. The following quantities
u(x, z, t), T(x, z, t), N(x, z, t), H(x, z, t) and φ(x, z, t), are the displacement vector, tempera-
ture (thermodynamic) change of the medium at any time t, carrier density (intensity), the
hole charge carrier, and the conductive temperature, respectively. The basic governing
equations of motion, plasma, holes, and heat conduction according to the hyperbolic two-
temperature theory in the absence of body forces and heat sources for such materials in 2D
are [8]:

K(1 + τθ
∂
∂t )
(

∂2 ϕ

∂x2 + ∂2 ϕ

∂z2

)
+ mnq

(
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∂x2 + ∂2 N

∂z2
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∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
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∂t
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. (5)

The relation between the conduction of heat and thermodynamic heat according to
the hyperbolic two-temperature theory takes the form [17]:

..
φ−

..
T = β∇2φ. (6)

where β is a positive constant, it is called the hyperbolic two-temperature parameter. The
constitutive equation in 2D takes the following form [21]:

σxx = (2µ + λ)
∂u
∂x

+ λ
∂w
∂z
− (γ(1 + τθ

∂

∂t
)T + δnN)− δhH, (7)

σzz = (2µ + λ)
∂w
∂z

+ λ
∂u
∂x
− (γ(1 + τθ

∂

∂t
)T + δnN)− δh H, (8)

σxz = µ(
∂u
∂z

+
∂w
∂x

)− δh H. (9)

where µ, λ is Lame’s elastic constants, ρ is the density of the semiconductor, δh and δn are
the elasto-diffusive constants of electrons and holes, αt is the linear thermal expansion
coefficient, Ce is the solid plate specific heat co-efficient at constant strain, and dn is the
difference between conductive deformation potential and valence band. k is the thermal
conductivity and T0 is the rest temperature. The quantities mnq, mqn, mhq, mqh are the Peltier-
Dufour-Seebeck-Soret-like constants. Dn, Dh are the diffusion coefficients of electrons and
holes. The quantities tn and th are the relaxation times of heat and electron. αh and αn
are thermo-diffusive constants of holes and electrons, respectively. tθ and tq are the two
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thermal memories. On the other hand, the quantities aQn, aQh, aQ, an, ah represent the
flux-like constants. The other notations can be rewritten as: γ = (3λ + 2µ)αt, an

1 =
aQn
aQ

,

ah
1 =

aQh
aQ

, an
2 =

aQn
an

and ah
2 =

aQh
ah

.
In the non-dimensional form, two scalar potential functions can be inserted, which

take the form: u = ∂Π
∂x + ∂Ψ

∂z and w = ∂Π
∂z −

∂Ψ
∂x .

For simplicity, the following non-dimensional variables are used:
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CT
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,
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g.

(10)

The dashes are dropped for convenience in Equations (1)–(9) by using Equation (10), yield:
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The parameter ε1 can be called the thermoelastic coupling parameter. To solve the prob-
lem analytically, it is possible to consider the following initial conditions with homogeneity
properties so that they can be written as:
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Π(x, z, t)|t=0 = ∂Π(x,z,t)
∂t

∣∣∣
t=0

= 0, Ψ(x, z, t)|t=0 = ∂Ψ(x,z,t)
∂t

∣∣∣
t=0

= 0 T(x, z, t)|t=0 = ∂ T(x,z,t)|
∂t

∣∣∣
t=0

= 0,

σxx(x, z, t)|t=0 = ∂ σxx(x,z,t)|
∂t

∣∣∣
t=0

= 0, σzz(x, z, t)|t=0 = ∂ σzz(x,z,t)|
∂t

∣∣∣
t=0

= 0,

σxz(x, z, t)|t=0 = ∂ σxz(x,z,t)|
∂t

∣∣∣
t=0

= 0, H(x, z, t)|t=0 = ∂H(x,z,t)
∂t

∣∣∣
t=0
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N(x, z, t)|t=0 = ∂N(x,z,t)
∂t

∣∣∣
t=0

= 0, φ(x, z, t)|t=0 = ∂ φ(x,z,t)|
∂t

∣∣∣
t=0

= 0.

(20)

3. The Solution of the Problem

The Laplace and Fourier transformations can be used to convert the time—space
domain to the Laplace and Fourier domain by using the following definition for any
function χ(x, z, t)| as [22,23]:

L(χ(x, z, t) ) = χ̃(x, z, s) =

∞∫
0

χ(x, z, t) exp(−st) d t, (21)

F(χ̃(x, z, s) ) = χ(x, ζ, s) =
1√
2π

∞∫
−∞

χ̃(x, z, s) exp(−iζz) d t. (22)

Using the above definition of Equations (21) and (22) with applied them of all the main
Equations (11)–(19), yield:
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)
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where D = d
dx , a1 = (1 + τθs), a2 = (1 + τqs) s, a3 =

(
β1ξ2 + β2a2 + β3s + β4

)
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β5ξ2 + β6a2 + β7
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β18s, a13 = β19s, a14 = ξ2 + s2, a15 = ξ2 + α, a16 = β21
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Eliminating T, N, φ, Π and H between Equations (23)–(27), yields:

(D10 − ∆1D8 + ∆2D6 − ∆3D4 + ∆4D2 − ∆5)
{

Π, N, T, H, φ
}
(x, ζ, s) = 0. (32)

where

∆1 =
−1

(a16β1β15 + a16β5β9)


−ξ2a16β1β15 − ξ2a16β5β9 − a1a5a16β9β15 − a1a9a16β1β15 − a1a13a16β5β9
−a2a16β9β15 − a5a16β9β20 − a6a16β1β15 − a9a16β1β20 − a10a16β5β9 + a13a16β1β20
−a14a16β1β15 − a14a16β5β9 − a1β9 β15 − a3a16β15 − a4a16β9 − a15a16β15a7a16β5 − a8a16β1
+a9a16β5 − a11a16β1 − a12a16β5 − a13a16β5 − β1β15 − β5β9
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∆2 =
1

(a16β1β15 + a16β5β9)



2ξ2a1a5a16β9β15 + 2ξ2a1a9a16β1β15 + 2ξ2a1a13a16β5β9 + ξ2a2a16β9β15+
2ξ2a5a16β9β20 + ξ2a6a16β1β15 + 2ξ2a9a16β1b[20] + ξ2a10a16β5β9−
2ξ2a13a16β1β20 + ξ2a14a16β1β15 + ξ2a14a16β5β9 + ξ2a1β9β15 + ξ2a3a16β15+
ξ2a4a16β9 + 2ξ2a5a16β15 + ξ2a7a16β5 + ξ2a8a16β1 − 2ξ2a9a16β5 + ξ2a11a16β1
+ξ2a12a16β5 + 2ξ2a13a16β5 + a1a3a9a16β15 + a1a4a13a16β9 + a1a5a7a16β15+
a1 a5a11a16β9 + a1a7a13a16β5 + a1a8a13 a16β1 + a1a9a11a16β1 + a1a9a12a16β5−
a2a13a16β9β20 + a2a14a16β9β15 + a5a10a16β9β20 − a6a13a16β1β20 + a6a14a16β1β15+
a9a10a16β1β20 + a10a14a16β5β9 + a1a5β9β15 + a1a9β1β15 + a1a13β5β9 − a1a13β9β20
+a1a14β9β15 + a2a7a16β15 − a2a9a16β15 + a2a11a16β9 + a3a6a16β15 + a3a9a16β20−
a3a13a16β20 + a3a14a16β15 + a4a10a16β9 + a4a14a16β9 + a5a6a16β15 + a5a7a16β20+
a5a12a16β20 + a6a11a16β1 + a6a12a16β5 + a6a13a16β5 + a7a10a16β5 + a7a14a16β5 + a8a10a16β1+
a8a14a16β1 − a9a10a16β5 + a11a14a16β1 + a12a14a16β5 + a1a7β15 − a1a9β15 + a1a11β9 + a2β9β15+
a3a8a16 + a3a11a16 + a4a7a16a4a9a16 + a4a12a16 + a4a13a16 + a5a8a16 + a5a11a16 + a5β9β20+
aa6β1β15 + a9β1β20 + a10β9β9 − a13β1β20 + a14β1β15 + a14β5β9 + a3β15 + a4β9 + a5β15 + a7β5
+a8β1 − a9β5 + a11β1 + a12β5a13β5



∆3 =
−1

(a16β1β15 + a16β5β9)



−a1a5a7a11a16 + a1a5a8a12a16 − a3a8a10a16 − a3a8a14a16 − a4a12a14a16 − a5a6a11a16
−a5a8a10a16 − a1a7a11 + a1a8a12 + a1a8a13 + a1a9a11 − a3a8 − a3a11 − a4a7 + a4a9 − a4a12−
a4a13 − a5a8(−a2a11 + (−2a1a4a13a16 − 2a1a5a11a16 − a2a11a16 − a4a10a16−
a4a14a16 − a1a11)ξ

2 − a4a10a14a16 − a2a11a14a16 − a1a5a11 − a1a4a13 − a4a14
−a4a10 − a1a11a14)β9 + (−a3a8a16 − a3a11a16 − a4a7a16 + 2a4a9a16 − a4a12a16
−2a4a13a16 − 2a5a8a16 − 2a5a11a16)ξ

2 + (−a1a8a13 − a1a9a11 − a8a10a4a16
−a6a11a14a16 + (−2a1a8a13a16 − 2a1a9a11a16 − a6a11a16 − a8a10a16 − a8a14a16
−a11a14a16)ξ

2 + ((−a9a16 + a13a16)ξ
4 + (2a6a13a16 − 2a9a10a16 − a9 + a13)ξ

2

−a9a10 + a6a13)β20 − a8a10 − a6a11 − a11a14 − a8a14)β1 + (−a5a16ξ4 − a1a7a14
+(−a1a5a16ξ4 + (−a2a14a16 − a1a5 − a1a14)ξ

2 − a2a14)β9 − a3a6 − a3a6a14a16
−a2a7a14a16 − a1a5a7 − a5a6 − a3a14 + (−2a1a3a9a16 − 2a1a5a7a16 − a2a7a16
+2a2a9a16 − a3a6a16 − a3a14a16 − 2a5a6a16 − a1a7 + 2a1a9 − a5)ξ

2 + (−a1a9a16ξ4

+(−a6a14a16 − a1a9)ξ
2 − a6a14)β1 − a2a7 + a2a9 − a1a3a9)β15 − a5a11+

(−a7a10a14a16 − a6a12a14a16 + (a9a16 − a13a16)ξ
4 + (−2a1a7a13a16 − 2a1a9a12a16

−a6a12a16 − 2a6a13a16 − a7a10a16 − a7a14a16 + 2a9a10a16 − a12a14a16 + a9 − a13)ξ
2

+(−a1a13a16ξ4 + (−a10a14a16 − a1a13)ξ
2 − a10a14)β9 − a7a14 − a7a10 − a6a12

−a6a13 − a1a7a13 − a12a14 + a9a10 − a1a9a12)β15 − a2a7a11a16 + a2a8a12a16+
a2a8a13a16 + a2a9a11a16 − a3a6a11a16 − a4a7a14a16 + a4a9a10a16 − a4a6a13a16
−a4a7a10a16 − a3a11a14a16 − a4a6a12a16 − a1a4a9a12a16 + (a3a13 − a3a9−
a5a7a10a16 − a5a6a12a16 − a3a9a10a16 + a3a6a13a16 + a2a9a12a16 + a2a7a13a16+
(−2a3a9a16 + 2a3a13a16 − 2a5a7a16 − 2a5a12a16)ξ

2 + (−a5a16ξ4 + (2a2a13a16
−2a5a10a16 + 2a1a13 − a5)ξ

2 − a5a10 + a2a13β9 − a5a12 + a1a7a13
−a5a7 + a1a9a12)β20 − a1a3a8a13a16 − a1a3a9a11a16 + a1a4a7a13a16



∆4 =
1

(a16β1β15 + a16β5β9)



a5a6a11 + a1a3a8a13 + a1a3a9a11 + a1a4a7a13 + a1a4a9a12 + a7a10a14β5 + a6a12a14β5 + a6a11a14β1
+a4a7a14 + a4a6a13 + a4a7a10 + a3a8a14 + a8a10a14β1 + a4a10a14β9 + a3a9a10β20 − a3a6a13β20+
a3a6a14β15 + a3a8a10 + a3a11a14 + a4a6a12 + a5a7a10β20 + a5a6a12β20 + a1a7a11a14 − a1a8a12a14+
a1a5a7a11 − a1a5a8a12 + a4a12a14 − a2a9a12β20 + a2a7a14β15 − a2a7a13β20 + a2a11a14β9 − a4a9a10−
a2a9a11 + a3a611 + a2a7a11 − a2a8a13 + a5a8a10 − a2a8a12 + a4a6a12a14a16 + a3a8a10a14a16+
a3a6a11a14a16 + a4a7a10a14a16 − a2a8a12a14a16 + a2a7a11a14a16 + (a1a3a9a16β15 + a1a4a16a16β9
+a1a5a7a16β15 + a1a5a11a16β9 + a1a7a13a16β5 + a1a8a13a16β1 + a1a9a11a16β1 + a1a9a12a16β5
−a2a13a16β9β20 + a5a10a16β9β20 − a6a13a16β1β20 + a9a10a16β1β20 − a1a13β9β20 − a2a9a16β15+
a3a9a16β20 − a3a13a16β20 + a5a6a16β15 + a5a7a16β20
+a5a12a16β20 + a6a13β5 − a9a10a16β5 − a1a9β15 − a4a9a16 + a4a13a16 + a5a8a16+
a5a11a16)ξ

4+(2 a1a3a8a13a16+2a1a3a9a11a16+2a1a4a7a13a16+2a1a4a9a12a16+2a1a5a7a11a16
−2a1a5a8a12a16−2 a2a7a13a16β20 + a2a7a14a16β15−2a2a9a12a16β20 + a2a11a14a16β9−2a3a6a13a16β20
+a3a6a14a16β15+2a3a9a10a16β20 + a4a10a14a16β9+2a5a6a12a16β20+2 a5a7a10a16β20 + a6a11a14a16β1+
a6a12a14a16β5 + a7a10a14a16β5 + a8a10a14a16β1 + a1a3a9β15 + a1a14a13β9 + a1a5a7β15 + a1a5a11β9+
a1a7a13β5−2a1a7a13β20 + a1a7a14β15 + a1a8a13β1 + a1a9a11β1 + a1a9a12β5−2a1a9a12β20 + a1a11a14β9+
a2a7a11a16 − a2a8a12a16−2a2a8a13a16−2a2a9a11a16 − a2a13β9β20 + a3a6 a11a16 + a3a8a10a16 + a3a8a14a16+
a3a11a14a16 + a4a6a12a16+2a4a6a13a16 + a4a7a10a16 + a4a7a14a16−2a4a9a10a16 + a4a12a14a16+2a5a6a11a16
+2a5a8a10a16 + a5a10β9β20 − a6a13β1β20 + a9a10β1 β20 + a1a7a11 − a1a8a12−2a1a8a13−2a1a9a11 − a2a9β15
+a3a9β20 − a3a13β20 + a5a6β15 + a5a7β20 + a5a12β20 + a6 a13β5 − a9a10β5 − a4a9 + a4a13 + a5a8 + a5a11)ξ

2
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∆5 =
−1

(a16β1β15 + a16β5β9)



((a2a7a13a16 + a2a9a12a16 + a3a6a13a16 − a3a9a10a16 − a5a6a12a16 − a5a7a10a16+
a1a7a13 + a1a9a12)ξ

4 + (a2a7a13 + a2a9a12 + a3a6a13 − a3a9a10 − a5a6a12 − a5a7a10)ξ
2)β20+

(−a1a3a8a13a16 − a1a3a9a11a16 − a1a4a7a13a16 − a1a4a9a12a16 − a1a5a7a11a16 + a1a5a8a12a16+
a2a8a13a16 + a2a9a11a16 − a4a6a13a16 + a4a9a10a16 − a5a6a11a16 − a5a8a10a16 + a1a8a13 + a1a9a11)ξ

4

+(−a2a7a11a14a16 + a2a8a12a14a16 − a3a6a11a14a16 − a3a8a10a14a16 − a4a6a12a14a16 − a4a7a10a14a16
−a1a3a8a13 − a1a3a9a11 − a1a4a7a13 − a1a4a9a12 − a1a5a7a11 + a1a5a8a12 − a1a7a11a14 + a1a8a12a14+
a2a8a13 + a2a9a11 − a4a6a13 + a4a9a10 − a5a6a11 − a5a8a10)ξ

2 − a2a7a11a14 + a2a8a12a14 − a3a6a11a14
−a3a8a10a14 − a4a6a12a14 − a4a7a10a14


Technical factors were used to solve the main ordinary differential Equation (ODE) (32),

as follows:(
D2 −m2

1

)(
D2 −m2

2

) (
D2 −m2

3

)(
D2 −m2

4

)(
D2 −m2

5

){
Π, N, T, H, φ

}
(x, ζ, s) = 0. (33)

where m2
i (i = 1, 2, 3, 4, 5) represent the roots which they may be taken in the positive real

part when x → ∞ . The solution of Equation (ODE) (33) takes the following form (according
to the linearity of the problem):

T(x, ξ, s) =
5

∑
i=1

Bi(ξ, s) e−mix. (34)

In the same way, the solutions of the other quantities can be expressed as:

N(x, ξ, s) =
5

∑
i=1

B′ i(ξ, s) e−mix =
5

∑
i=1

h1iBi(ξ, s) e−mix, (35)

Π(x, ξ, s) =
5

∑
i=1

Bi
′′ (ξ, s) exp(−mix) =

5

∑
i=1

h2i Bi(ξ, s) exp(−mix), (36)

H (x, ξ, s) =
5

∑
i=1

B′′′ i(ξ, s) exp(−mix) =
5

∑
i=1

h3i Bi(ξ, s) exp(−mix), (37)

φ (x, ξ, s) =
5

∑
i=1

B(4)
i(ξ, s) exp(−mix) =

5

∑
i=1

h4i Bi(ξ, s) exp(−mix), (38)

σxx (x, ξ, s) =
5

∑
i=1

B(5)
i(ξ, s) exp(−mix) =

5

∑
i=1

h5i Bi(ξ, s) exp(−mix), (39)

σzz (x, ξ, s) =
5

∑
i=1

B(6)
i(ξ, s) exp(−mix) =

5

∑
i=1

h6i Bi(ξ, s) exp(−mix), (40)

σxz (x, ξ, s) =
5

∑
i=1

B(7)
i(ξ, s) exp(−mix) =

5

∑
i=1

h7i Bi(ξ, s) exp(−mix), (41)

ψ(x) = ψ0(ξ, s) exp(−m6x) , m6 =
√

a15. (42)

where Bi, B′ i, B′′ i , Bi
(3) , Bi

(4) , Bi
(5) , Bi

(6) and Bi
(7) , i = 1, 2, 3, 4, 5 are unknown parameters

depending on the parameter (ξ, s). The relationship between the unknown parameters
Bi, B′ i, B′′ i , Bi

(3), Bi
(4), Bi

(5) , Bi
(6), and Bi

(7) , i = 1, 2, 3, 4, 5 can be obtained when using the
main Equations (23)–(31), which take the following relationship:

h1i =
(m6

i β15+m4
i c1+m2

i c2+c3)

(m6
i β9β15+m4

i c4+m2
i c5+c6)

, h2i =
(m4

i c10+m2
i c11+c12)

(m6
i β9β15+m4

i c4+m2
i c5+c6)

, h3i =
(m6

i β9+m4
i c7+m2

i c8+c9)

(m6
i β9β15+m4

i c4+m2
i c5+c6)

,

h4i =
−1

(−ξ2a16+m2
i a16−1)

, h5i = (−ξ2β23 + m2
i β22)h2i + 2Iξmiψ0 − β22(a1 + h1i)− β20h3i,

h6i = (m2
i β23 − ξ2β22)h2i − 2Iξmiψ0 − β22(a1 + h1i)− β20h3i, h7i = 2Iξmih2i − (m2

i + ξ2)ψ0.

where
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c1= −a1a9β15 − a6β15 − a9β20 + a13β20 − a14β15 − a8 − a11,

c2 =

{
ξ2a1a9β15 + ξ2a9β20 − ξ2a13β20 + a1a8a13 + a1a9a11 − a6a13β20 + a6a14β15
+a9a10β20 + a6a11 + a8a10 + a8a14 + a11a14

}
,

c3 = −ξ2a1a8a13 − ξ2a9a11 + ξ2a6a13β20 − ξ2a9a10β20 − a6a11a14 − a8a10a14,
c4 = a13β9β20 − a14β9β15 − a7β9 + a9β15 − a11β9,
c5 = −ξ2a13β9β20 − ξ2a9β15 − a7a13β20 + a7a14β15 − a9a12β20 + a11a14β9 + a7a11 − a8a12 − a8a13 − a9a11,
c6 = ξ2a7a13β20 + ξ2a9a12β20 + ξ2a8a13 + ξ2a9a11 − a7a11a14 + a8a12a14,
c7 = −a1a13β9 − a10β9 − a14β9 − a7 + a9 − a12 − a13,

c8 = ξ2a1a13β9 − ξ2a9 + ξ2a13 + a1a7a13 + a1a9a12 + a10a14β9 + a6a12 + a6a13 + a7a10 + a7a14 − a9a10 + a12a14,
c9 = −ξ2a1a7a13 − ξ2a1a9a12 − ξ2a6a13 + ξ2a9a10 − a6a12a14 − a7a10a14,
c10 = a1β9β15 + β9β20 + β15,
c11 = −a1a7β15 − a1a11β9 − a10β9β20 − a6β15 − a7β20 − a12β20 − a8 − a11,
c12 = a1a7a11 − a1a8a12 + a6a12β20 + a7a10β20 + a6a11 + a8a10.

The above quantities give the solution of Laplace’s main variables transforming
domain in terms of unknown parameters Bi(s) they can obtain those parameters from the
following boundary conditions.

4. Boundary Conditions

Consider applying particular mechanical, plasma, and thermal loads to an elastic semi-
conductor material to derive the unknown parameters in terms of the material’s physical
constants. The free surface, or the materials outside the surface, is initially subjected to
these loads. Laplace transformations are then applied in all circumstances [24].

(I) The isothermal boundary condition (thermally insulated system) subjected to thermal
shock is taken at the free surface when x = 0 as:

T(0, ξ, s) = T0. (43)

Therefore
5

∑
n=1

Bi(s) = T0. (44)

(II) The hole charge carrier at the free surface x = 0 condition, with Laplace transformation
application, yields:

H(0, ξ, s) = H0. (45)

From Equation (30), using the values of the quantities u, T, H and N (Equations (38)–(43)),
yields:

5

∑
i=1

h3i Bi(s) = H0. (46)

(III) The plasma boundary condition at the free surface x = 0 when the carrier density
diffusion is transported and photo-generated during the recombination processes by
applying Laplace transform. In this case, the plasma condition can be rewritten in the
following form:

N(0, ξ, s) =
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Furthermore, the following relation was obtained:

5

∑
i=1

h4i Bi(s) = 0. (50)

(V) The other mechanical conditions can be chosen when the traction component of the
stress is free at x = 0 when using the Fourier and Laplace transform as:

σxz(0, ξ , s) = 0. (51)

Furthermore, the following relation was obtained:

5

∑
i=1

h5i Bi(s) = 0. (52)

In the above equations, the symbols h(t), Z(s) and R(s) represent the Heaviside unit
step function where the symbol is a chosen constant. By solving the above equations in
terms of the parameters Bi(s), the unknown parameters Bi(s) can be obtained.

5. Inversion of the Fourier—Laplace Transforms

The dimensionless physical fields in 1D can be acquired using the Laplace transform
inversion in the time domain. The Riemann-sum approximation method can be used
numerically for the Laplace transform [22] in this case. In the Laplace domain, the inverse
of any function ζ̃(x, s) can be obtained as:

ζ(x, t′) = L−1{ζ̃(x, s)} = 1
2πi

∫ n+i∞

n−i∞
exp(st′)ζ̃(x, s)ds. (53)

In the case of s = n + iM(n, M ∈ R), the inverted Equation (53) can be rewritten as:

ς(x, ζ, t′) =
exp(nt′)

2π

∫ ∞

∞
exp(iβt)ς̃(x, n + iβ)dβ. (54)

Using the Fourier series, expand for the function ζ(x, t′) in the closed interval [0, 2t′]
to get the next relationship:

ς(x, ζ, t′) =
ent′

t′

[
1
2

ς̃(x, ζ, n) + Re
N

∑
k=1

ς̃(x, ζ, n +
ikπ

t′
)(−1)n

]
. (55)

On the other hand, the inverse of the Fourier transform can be given as:

F−1{Ω(x, ζ, s)
}
=

1√
2π

∫ ∞

−∞
exp(iζz)Ω(x, ζ, s)dζ = Ω̃(x, z, s). (56)

where i and Re represent the imaginary unit and the real part, respectively, in this case;
the sufficient N can be chosen free as a large integer but can be selected in the notation
nt′ ≈ 4.7 [25].

6. Numerical Results and Discussions

The numerical values of the physical quantity (temperature, displacement, carrier
density, and hole charge carrier) are carried out for a short period. The numerical simulation
is conducted using materials. In the SI unit, the constants have been used with the MATLAB
software to plot the physical quantities of Silicon (Si). The physical constants of Si and Ge
for the lower medium are given in Table 1 as follows [26–29]:
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Table 1. Physical constants of Si and Ge materials.

Name (Unit) Symbol Si Ge

Lamé’s constants ( N/m2)
λ,
µ

6.4× 1010, 6.5× 1010 0.48× 1011

0.53× 1011

Density (kg/m3) ρ 2330 5300

Absolute temperature (K) T0 800 723

The photogenerated Carrier
lifetime (s) τ 5× 10−5 1.4× 10−6

The carrier diffusion
coefficient (m2/s) DE 2.5× 10−3 10−2

the coefficient of electronic
deformation (m3) dn −9× 10−31 −6 x 10−31

The energy gap (eV) Eg 1.11 0.72

The coefficient of linear
thermal expansion (K−1) αt 4.14× 10−6 3.4× 10−3

The thermal conductivity of
the sample (Wm−1K−1) k 150 60

Specific heat at constant
strain (J/(kg K)) Ce 695 310

The recombination velocities
( m/s) s 2 2

The pulse rise time (ps) t0 9 9

the radius of the beam (µm) r 100 100

the absorption depth of
heating energy (m−1) γ′ 10−3 10−3

The absorbed energy (J) I0 105 105

the Peltier- Dufour- Seebeck
Soret-like constants (vk−1)

mqn 1.4× 10−5 1.4× 10−5

mnq 1.4× 10−5 1.4× 10−5

mqh −0.004× 10−6 −0.004× 10−6

mhq −0.004× 10−6 −0.004× 10−6

the diffusion constants of
electrons (m2s−1) Dn 0.35× 10−2 10−2

the diffusion constants of
holes (ε1) Dh 0.125× 10−2 0.5× 10−2

(m2/s) thermodiffusive
constants of electrons

αn 1× 10−2 3.4× 10−3

(m2/s) thermodiffusive
constants of holes

αh 5× 10−3 1.3× 10−3

6.1. Results Validation

By comparing the formulation method and the solutions found in [19,20] with the
photo thermal elastic behavior of the semiconductor media, extended photo-thermoelastic
theories were used to validate the numerical results. When comparing the outcomes of the
current work with those that are mentioned in the literature, it is shown that the conduct of
thermo-mechanical waves of various magnitudes is fairly similar [19,20]. Thus, the model
described in this article is compatible with the outcomes of earlier models, but it differs from
them in that it offers more realistic depictions of the present-day environment. It is evident
that the propagation of the elastic-thermal-mechanical waves within the semiconductor
medium is reduced by the addition of the electron/hole effect to the governing equation.
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6.2. The Effect of Thermoelastic Coupling Parameters

Figure 1 (which represents the first category) shows the main physical fields against
the horizontal distance x with electrons and hole constants. All calculations are carried
out under heat and electron relaxation time when τθ = 0.2, τq = 1 in the context of the
hyperbolic two-temperature process for Silicon (Si) material. All subfigures discuss three
cases of the thermoelastic coupling parameter. The solid lines ( ) with a blue
color curve represent the case when ε1 = 0.001 the dashed lines ( ) with red
color curve express the case at ε1 = 0.002, and the dotted lines ( ) with a green
color curve show the case at ε1 = 0.001. The first subfigure represents the temperature (T)
distribution against the horizontal distance x [30]. The temperature distribution starts from
the maximum positive value for all three cases. In the case of ε1 = 0.001 the distribution
takes on the exponential behavior with a smooth decrease. On the other hand, when
ε1 = 0.002 and ε1 = 0.003 the distribution of displacement decreases sharply in the first
range; it takes on exponential propagation behavior until it reaches a minimum value near
the zero line for the rough surface. The second subfigure displays the conduction heat (φ)
distribution with the distance x, which takes on the same behavior as the first subfigure in
the first category. The third subfigure displays the carrier density distribution against the
distance in variation values of the thermoelastic parameter. However, a small change in
thermoelastic coupling parameters has no significant effect on the carrier density, which has
a similar quality behavior. The fourth subfigure describes the hole charge density with the
distance. This subfigure shows that the amplitude values of the heat conduction distribution
increase with the decrease in the values of the thermoelastic coupling parameters due to
acceleration of thermal waves and photothermal excitation. The fifth subfigure displays
the increases of stress force σ amplitude, due to the mechanical loads, tends to increase the
value of thermoelastic coupling parameters. The sixth subfigure displays the displacement
u distributions against the distance x which show that the curves are carried out from
the negative value approach to zero at all cases. On the other hand, all the physical
quantities under study are affected by changes in the thermoelastic coupling parameter.
This is because the absolute value of the main fields is very sensitive to the changes of the
thermoelastic coupling parameter.

Figure 1. Cont.
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Figure 1. The variation of physical field distributions with distance at different values of the thermoe-
lastic coupling parameter (ε1) when τθ = 0.02, τq = 1 and β = 1.

6.3. The Effect of the Phase-Lag of the Temperature Gradient

Figure 2 (which represents the second category) shows the main physical fields against
the horizontal distance x with electron and hole constants. All calculations are carried out
when ε1 = 0.001 and τq = 1 in the context of a hyperbolic two-temperature process for
Silicon (Si) material. All subfigures discuss three cases of the phase-lag of the temperature
gradient. The solid lines ( ) with a blue color curve represent the case when
τθ = 0.6,the dashed lines ( ) with red color curve express the case at τθ = 0.4
and the dotted lines ( ) with a green color curve show the case at τθ = 0.2.The
first subfigure displays the temperature (T) distribution with the distance x. It takes on the
same behavior of the temperature distribution in the above subfigure for the thermoelastic
coupling parameters φ and x that has the same behavior of temperature distribution. The
third describes the carrier density distribution N against the distance x in variation values
of the phase-lags of the temperature gradients that have the same behavior of temperature
distribution and heat conduction. The fourth subfigure displays the hole charge carrier to
increase the value of thermoelastic coupling parameters. The fifth subfigure displays that
the increase of σ amplitude, due to the mechanical loads, tends to increase the value of the
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phase-lag of the temperature gradients. The sixth subfigure represents the u distribution
against the horizontal distance x τθ = 0.2 the distribution takes on the exponential behavior
with a smooth increase. When τθ = 0.4 and τθ = 0.6 the distribution of displacement
increases sharply in the first range; it takes on exponential propagation behavior until it
reaches a minimum value near the zero line. The values of the examined fields grow as
the phase-lags of the temperature gradients‘ value decreases; this can be seen from the
curves’ behavior.

Figure 2. The variation of physical field distributions with distance at different values; the phase-lag
of the temperature gradient τθ when ε1 = 0.001 and τq = 1.
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6.4. The Effect of the Phase-Lag of the Heat Flux

Figure 3 (which represents the third category) shows the main physical fields against
the horizontal distance x with electron and hole constants. All calculations are carried out
under the effect of the external magnetic field when ε1 = 0.001 in the context of a hyperbolic
two-temperature process for silicon (Si) material. All subfigures discuss three cases of the
phase-lag of the heat flux parameter. The solid lines ( ) with a blue color curve
represent the case when τq = 3 the dashed lines ( ) with red color curve express
the case at τq = 2 and the dotted lines ( ) with a green color curve show the case
at τq = 1. The first, second, and third subfigures are the temperature (T) distribution,
heat conduction, and the carrier density distribution with the distance x, which takes on
the same behavior as the first category. The fourth subfigure describes the hole charge
carrier with the distance. This subfigure shows that the amplitude values of the hole charge
carrier distribution increase with the decrease in the values of the thermoelastic. The fifth
subfigure shows that the increase of stress force σ amplitude, due to the mechanical loads,
tends to increase the value of the phase-lag of the heat fluxes. The sixth subfigure represents
the wave propagation of displacement u distribution against the horizontal distance x.
The displacement distribution starts from the maximum positive value for all three cases.
In the case of τq = 2 the distribution takes on the exponential behavior with a smooth
decrease. On the other hand, when ε1 = 0.001 the distribution of displacement decreases
sharply in the first range, and it takes on exponential propagation behavior until it reaches
a minimum value near the zero line [31]. The numerical results show that each field of
physical quantities is significantly influenced by the phase-lag of the heat flux [32].

6.5. The Effect of the Hyperbolic Two-Temperature

Figure 4 (which represents the third category) shows the main physical fields against
the horizontal distance x with electron and hole constants. All calculations are carried
out under the effect of the external magnetic field when ε1 = 0.001 in the context of a
hyperbolic two-temperature process for silicon (Si) material. All subfigures discuss three
cases of the hyperbolic two-temperature parameter. The solid lines ( ) with a
blue color curve represent the case when τq = 3 the dashed lines ( ) with red
color curve express the case at τq = 2 and the dotted lines ( ) with a green color
curve show the case at τq = 1. The first subfigure shows temperature (T) distribution.
The second subfigure displays the heat conduction, and the third subfigure displays the
carrier density distribution against the distance x in variation values of the hyperbolic
two-temperature parameters, which take the same behavior in the first category. The
fourth subfigure describes the hole charge carrier with the distance. The fifth subfigure
displays the increase of stress force σ amplitude, due to the mechanical loads, that tend
to increase the value of the phase-lag of the heat fluxes. The sixth subfigure represents
the wave propagation of displacement u distribution against the horizontal distance x.
The displacement distribution starts from the minimum negative value for all three cases.
It takes on exponential propagation behavior until it reaches a maximum value near the
zero line [33,34]. It is evident that the propagation of the photo-thermal waves within
the semiconductor media is reduced by the increase in the hyperbolic two-temperature
parameter. Additionally, the significance of the suggested version is demonstrated by
contrasting the outcomes of the current framework with those in the case of the hyperbolic
two-temperature theory. This is because the issue of heat waves traveling at infinite speeds
has been resolved.
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Figure 3. The variation of physical field distributions with distances at different values; the phase-lag
of the heat flux τq when ε1 = 0.001 and τθ = 0.2.
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Figure 4. The variation of hyperbolic two-temperature of physical field distributions with distance
when ε1 = 0.001, τθ = 0.02 and τq = 1.
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6.6. The Comparison between Si and Ge Materials

Figure 5 (the fifth category) illustrates the comparison between the elastic semicon-
ductor materials Silicon (Si) and germanium (Ge) in the context of the hyperbolic two-
temperature process. In this category, the values of the physical fields under study are
evaluated numerically when ε1 = 0.001 τq = 1, β = 1 and τθ = 0.2 under the influence of
the hole charge carrier. From this figure, there is a clear difference in the physical constant
values of Ge and Si materials; they have a great effect on all the wave propagation of the
dimensionless distributions for T, u, H, σ, φ and N [31].

Figure 5. The comparison between Si and Ge materials of physical field distributions with distance
when ε1 = 0.001, τθ = 0.02 and τq = 1.
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7. Conclusions

In the context of photo-thermoelasticity theory, the primary goal of this work is to in-
vestigate the dynamics of a two-dimensional elastic media semiconductor during processes
involving holes/electrons under the influence of the hyperbolic two-temperature theory.
The fundamental issue is resolved using the Laplace transform and Fourier transform tech-
niques. In order to carry out the numerical estimations for significant physical quantities,
these equations’ solutions are seen under the inversion of numerical integral transfor-
mations according to specified boundary loads. The thermoelastic coupling parameters,
electronic and thermal relaxation times, the hyperbolic two-temperature, and physical con-
stants of the medium play a significant role in all the physical distributions. The problem
is helpful for scientists and engineers who work in renewable energy. Many applications
in electronics manufacturing, such as geophysics, airplane, and solar cells would benefit
from understanding this problem. The investigation in this paper has wide application in
material science, engineering problems, thermodynamics, and thermoelasticity. In addition,
it is beneficial for researchers.
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