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Abstract: The reduction mechanisms of Yb(III) on W electrodes in molten LiCl-KCl-YbCl3 were ex-
plored at 773 K, and the diffusion coefficient of Yb(III) was determined. Then, various electrochemical
techniques were employed to investigate the electroreduction of Yb(III) in molten LiCl-KCl on a
liquid Pb film and Pb electrode. Electrochemical signals were associated with forming Pb3Yb, PbYb,
Pb3Yb5, and PbYb2. The deposition potentials and equilibrium potentials of four Pb-Yb intermetallics
were obtained through open-circuit chronopotentiometry. Metallic Yb was extracted by potentiostatic
electrolysis (PE) on a liquid Pb electrode, and XRD analyzed the Pb-Yb alloy obtained at different
extraction times. The recovered Yb was found in the form of Pb3Yb and PbYb intermetallics. The
extraction efficiency of Yb was calculated according to ICP analysis results, and extraction effectivity
could attain 94.5% via PE at −1.86 V for 14 h.

Keywords: electrochemical extraction; ytterbium; liquid Pb electrode; Pb-Yb alloy; electrochemical behavior

1. Introduction

The increasing demand of human beings for energy and the promotion of global
low-carbon energy has increased the number of nuclear power stations in the world [1,2].
However, the management, storage, and disposal of used nuclear fuel (UNF) discharged
from nuclear power plants has become a worldwide issue [3,4]. A 1000 MWe nuclear
reactor generates about 25–30 tons of UNF annually [5,6]. Based on the International
Atomic Energy Agency (IAEA) estimate, around 450 operating nuclear power plants have
generated a global inventory of some 270,000 metric tons of UNF [7,8]. Pyroprocessing is
one of the most promising technologies for treating UNF, and electrorefining is an essential
unit operation in the pyroprocessing technique [9–12].

In electrorefining of UNF in molten LiCl-KCl, the standard potentials of lanthanide
elements (Lns) are more negative than those of actinide elements (Ans) [13–15]. U and
transuranic elements (TRUs) are deposited onto the cathode, and various lanthanide fission
products contained in UNF dissolve in the molten salt. During the electrolysis process,
Lns accumulate, which makes difficult the separation of Ans and Lns [16–23]. Therefore,
proper electrode materials have a good effect on the separation process of Ans and Lns.
Compared with the solid cathode, the liquid metal cathode has been widely studied because
of its constant surface area and easy diffusion of deposits to liquid metal. Jiao et al. [24]
summarized liquid metals from the aspects of properties, depolarization effects, alloy
preparation, etc., such as liquid Bi [25–28], Pb [29–32], Sn [33–36], and Ga [37–40], which
provided a reference for molten salt electrorefining.

In addition, lead has a low melting point (327 ◦C), and through evaluating the vapor
pressures of various liquid metals, we discovered that the order of separating Ans and Lns
from the liquid metal cathode via distillation is: Cd > Zn > Pb > Bi > Al > Ga > Sn. Liquid
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Pb appears to be a proper candidate for electrode material in separating and extracting Ans
and Lns from molten salt by electrowinning. After electrowinning, a Pb-Ans/Lns alloy can
be formed on the liquid Pb electrode. Finally, the cathode deposits can be separated from
the liquid Pb cathode by Pb distillation. Therefore, lead was employed as the cathode for
ytterbium extraction in this work. In our previous work, liquid lead was used as a cathode
due to the underpotential deposition of Dy(III) on the liquid Pb electrode. The reduction
potential of Dy on the liquid Pb electrode is −1.35 V (vs. Ag/AgCl), which is more positive
than that on the W electrode. Dysprosium was extracted from molten LiCl-KCl-DyCl3,
and the extraction efficiency of dysprosium reached 97.2% [41,42]. Ytterbium is a variable
valence element, one of the typical rare earth fission elements. Ji et al. [43] studied the
electrochemical properties of ytterbium on liquid Zn electrodes in LiCl-KCl melts. Li
et al. [44] studied the electrochemical behavior of Yb(III) on Cu electrodes in LiCl-KCl melts.
Yan et al. [45] researched ytterbium and zinc co-deposition in LiCl-KCl-ZnCl2-YbCl3 melts
on a W electrode. However, there is little information about the extraction of ytterbium
from molten chlorides on liquid lead cathodes.

In the present study, different electrochemical techniques were used to explore the re-
duction mechanisms of Yb(III) on W, liquid Pb film, and liquid Pb electrodes. Moreover, the
recovery of Yb from molten salt was executed by PE, and the products were characterized
by SEM-EDS and XRD.

2. Experimental

All electrochemical measurements were carried out in an alumina crucible with LiCl-
KCl (55.8 wt%) melts in an electric furnace. Yb was introduced into the LiCl-KCl melts as
dehydrated YbCl3 powder (analytical grade). The reference electrode consisted of a sil-
ver wire (1 mm in diameter) immersed in a 1.5 wt% AgCl solution. A spectral pure
graphite rod (6 mm in diameter) was used as a counter electrode. A tungsten wire
(1 mm in diameter, 99.95%), a Pb film electrode (Pb coated on a W wire), and liquid
lead (99%) were used for the working electrodes. PE and electrochemical measurements
were performed (Metrohm, Ltd., Autolab PGSTAT 302N with Nova 1.10 software). The
resistance between the reference electrode and the working electrode in molten salt was
calculated by electrochemical impedance spectroscopy(EIS). The EIS was performed under
the open circuit potential of the LiCl-KCl molten salt system under the condition of 10 mV
amplitude over a 0.01-10000 Hz frequency range, as shown in Figure 1. According to
Figure 1, the solution resistance(Rs) of the molten LiCl-KCl was 0.62 Ω de-termined at
773 K. After the ohmic potential(IR) compensation, cyclic voltammograms (CVs) were
obtained. The phase composition of extraction products was characterized using XRD
(Philips, Amsterdam, The Netherlands). The metal ion concentration in the melts was
analyzed by ICP-AES (USA Thermo Elemental, IRIS Intrepid II XSP). Figure 2 shows the
schematic setup of three-electrode electrochemical cells inside the furnace.
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Figure 2. The schematic setup of three-electrode electrochemical cells inside the furnace.

3. Results and Discussion
3.1. Electrode Reaction of Yb(III) on the W Electrode

Figure 3 shows the CVs attained in LiCl-KCl and LiCl-KCl-YbCl3 melts on the W
electrode. The redox couples RA/OA (−2.39/−2.28 V) are considered as the redox of
Li(I)/Li(0) on the W electrode. When YbCl3 is added, the newly added electrochemical
signal RB/OB (−0.47/−0.32 V) corresponds to Yb(III)/Yb(II). No electrochemical signal of
Yb(II) reduction to Yb was found, which indicates that the reduction potential of Yb(II) is
more negative than that of Li (I) [43,44]. In this system, Yb(III) first becomes a low valence
ion and is then oxidized to a high valence state. No metal Yb was obtained on the W
electrode. They are thought to correspond to the following reaction.

Yb(III) + e− → Yb(II) (1)
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Typical CVs of molten LiCl-KCl-YbCl3 recorded on the W electrodes at various scan
rates are shown in Figure 4a. What can be observed is that with an increase in scan
rate, the peak potential for RB was constant (Figure 4b). Therefore, it can be decided
that the electrode reduction reaction RB is a reversible process on scan rate in a range of
0.08–0.28 V s−1. Figure 4b illustrates the linear relationship of Ip and v−1/2 of Yb(III) in
molten LiCl-KCl-YbCl3, indicating that the redox reaction is controlled by diffusion. In a
soluble/soluble system, for the chemical reaction controlled by the mass transfer rate step,
there is a relationship between the cathode peak current and the square root of the sweep
rate, which can be described by Randles–Sevcik equation as follows [43]:

IP= 0.4463(nF)3/2(RT)−1/2SCD1/2v1/2 (2)

where S represents the surface area of the working electrode, C0 represents the bulk
concentration of the Yb(III) ion, D corresponds to the diffusion coefficient, I corresponds to
the applied current, n corresponds to the number of exchanged electrons, F corresponds to
the Faraday constant, and v represents the potential scan rate.
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The calculated diffusion coefficient of Yb(III) at 773 K was 1.86 × 10−5 cm2 s−1. The
diffusion coefficient of the Yb(III) ion in LiCl KCl molten salt calculated by Smolenski et al.
at 848 K is 2.7 × 10−5 cm2 s−1, which is consistent with our research results [46].

Square wave voltammetry (SWV) was carried out to measure the number of electrons
transferred during the reduction process of Yb(III) on the W electrode.

Figure 5a depicts the SWV curves gained in LiCl-KCl-YbCl3 molten salt at different
frequencies. One reduction signal, RB (−0.47 V), correlated with the reduction process of
Yb(III) to Yb(II). Furthermore, the shape of RB was flat and symmetrical, which indicates that
the electrode reactions were reversible in a soluble/soluble system. The linear relationship
between Ipc and f 1/2 suggests that the reduction of Yb(III) on the W electrode was controlled
by diffusion. Therefore, the number of electrons transferred was calculated from W1/2
using Equation (3) [42]:

W1/2 = 3.52
RT
nF

(3)

where W1/2 is the half-peak width of the SWV curve, and the calculated number of electrons
transferred from the reduction of Yb(III) to Yb(II) is close to 1 (Table 1).
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Figure 5. (a) SWV curves for the reduction of Yb(III) on the W electrode at 773 K; pulse height:
100 mV; step potential: 5 mV; frequency: 5–40 Hz. (b) The linear relationship of Ip versus f 1/2.

Table 1. Half-peak width and transfer electron number of Yb(III) calculated on a liquid Pb electrode
in molten LiCl-KCl-YbCl3 under different frequencies.

f /Hz W1/2/V n

5 0.259 0.907
10 0.251 0.934
15 0.251 0.934
20 0.243 0.963
30 0.243 0.963
40 0.243 0.963

3.2. Electrochemical Properties of YbCl3 on a Pb Film Electrode

The Pb film was prepared on the surface of the W electrode through PE at −1.0 V
for 1 s. Figure 6 shows the CVs on the W electrode before and after adding YbCl3 and
PbCl2 to LiCl KCl molten salt. The peaks RB and RC in the inset of Figure 6 are related to
the reduction of Pb(II) to Pb and Yb(III) to Yb(II), respectively. Based on the binary phase
diagram of the Pb-Yb system [47] shown in Figure 7, there are four intermetallics (Pb3Yb,
PbYb, Pb3Yb5, and PbYb2) in the study temperature range. Therefore, four reduction
peaks (RI, RII, RIII, and RIV) in the inset of Figure 6 correspond to four different Pb-Yb
intermetallics. Pb(II) is first deposited on the W electrode to form a Pb film electrode. Then,
Yb(II) is reduced at the corrected potential on the Pb film electrode due to depolarization to
form Pb-Yb intermetallics. The reaction is as follows:

Yb(II) + 2e−+xPb = PbxYb (4)
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To confirm the attribution of the peaks, Figure 8 shows the SWV curves at different
frequencies on the W electrode in molten LiCl-KCl-YbCl3-PbCl2. Six reductive peaks were
observed clearly in Figure 8. Two reduction signals RB and RC pertain to the reduction of
Yb(III) to Yb(II) and Pb(II) to Pb, respectively. Four reduction peaks RI, RII, RIII, and RIV
are associated with four Pb-Yb intermetallics. The reduction peak potentials are listed in
Table 2.
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Table 2. Summary of the results obtained on a Pb film electrode through CV, SWV, and OCP in molten
LiCl-KCl-YbCl3.

Electrochemical Techniques
Reduction of Peak/Plateau Potentials

IV III II I

CV (V) −2.15 −2.10 −1.95 −1.79
SWV (V) −2.13 −2.09 −1.96 −1.80
OCP (V) −2.12 −2.09 −1.92 −1.77

To explore the electroextraction of Yb, open circuit chronopotentiometry (OCP) was
used in LiCl-KCl-YbCl3-PbCl2 melts at various temperatures. Figure 9 displays the OCP
curves measured on the Pb film electrode after deposition at −2.5 V for 100 s in molten
LiCl-KCl-YbCl3-PbCl2 at 773–833 K.
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Figure 9. OCP curves recorded on the W electrode in molten LiCl-KCl-YbCl3-PbCl2; deposition
potential: −2.5 V; time: 100 s.

Plateau RB and RC were observed at −0.43 V and −0.33 V and were assigned to
Yb(III)/Yb(II) and Pb(II)/Pb(0) redox couples, respectively. The four plateaus RI, RII, RIII,
and RIV were correlated to the equilibrium of Pb-Yb intermetallics. We speculated that the
potential plateaus should be related to the following equilibriums:

Plateau RA : Li(I) + e− 
 Li (5)

Plateau RI : 3Pb + 2e−+Yb(II) 
 Pb3Yb (6)

Plateau RII : Pb3Yb + 4e−+2Yb(II) 
 3PbYb (7)

Plateau RIII : 3PbYb + 4e−+2Yb(II) 
 Pb3Yb5 (8)

Plateau RIV : Pb3Yb5+2e−+Yb(II) 
 3PbYb2 (9)

Plateau RB : Yb(III)+e− 
 Yb(II) (10)

Plateau RC : Pb(III)+2e− 
 Pb Pb(II) + 2e− 
 Pb (11)

3.3. Electrochemical Property of Yb(III) Ions on the Liquid Pb Electrode

Figure 10 is the cyclic voltammogram of LiCl-KCl-YbCl3 molten salt on a liquid Pb
electrode. Signal C relates to the reduction of Pb(II) to Pb, and signal RB relates to the
reduction of Yb(III) to Yb(II). The conclusion is consistent with that discussed above. This
indicates that Yb(III) is first reduced to Yb(II) on the liquid Pb electrode, and then Yb(II) is
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reduced to Yb. One signal that appears at −1.71 V corresponds to the formation of a solid
Yb(Pb) solution.
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Figure 10. CVs obtained in LiCl-KCl-YbCl3 (1.55 × 10−4 mol cm−3) melt on liquid Pb cathodes
(S = 0.949 cm2) at 773 K.

According to the CV results above, Yb was extracted by PE at −1.86 V on a liquid
Pb electrode. Figure 11 shows the alloy’s XRD pattern obtained by electrolysis at constant
potential−1.86 V for 6, 10, and 14 h, respectively, on the liquid Pb electrode in molten LiCl-
KCl-YbCl3 at 773 K. The alloy electrolyzed for 6 h was the Pb3Yb phase, the alloy electrolyzed
for 10 h was the Pb3Yb phase, and the alloys electrolyzed for 14 h were Pb3Yb and PbYb
phases. This shows that with the increase of electrolysis time, the content of Yb in liquid lead
gradually increased, and part of Pb3Yb began to transform into the PbYb phase.
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After electrolysis for 14 h, the alloy was analyzed by SEM-EDS, and the SEM pho-
tograph and element distribution surface scan of the alloy were obtained, as shown in
Figure 12. Two zones, dark and bright grey, were on the deposit’s surface. From the results
of the EDS mapping of the sample (Figure 12b), the element Yb mainly distributed in
the dark grey zone. The upper salt was detected by inductively coupled plasma atomic
emission spectrometry (ICP-AES). It was calculated that after electrolytic extraction for
14 h, the extraction rate of Yb was 94.5%.
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4. Conclusions

In this work, the electroreduction of Yb(III) ions on the W cathode was explored
through CV and SWV. The electroreduction of Yb(III) to Yb(II) was found to be a diffusion-
controlled process with one electron exchanged, and the reduction of Yb(III)/Yb(II) was
a reversible process. The diffusion coefficient of Yb(III) was 1.86 × 10−5 cm2 s−1. The
electrochemical behavior of Yb(III) on a liquid Pb film cathode was explored by CV, SWV,
and OCP. Then, equilibrium potentials and the deposition potentials of four Pb-Yb inter-
metallics (Pb3Yb, PbYb, Pb3Yb5, and PbYb2) were determined. The reduction of Yb(III) on
liquid Pb and liquid Pb film electrodes was proven to be a two-step mechanism.

At last, the electrochemical extraction of Yb(III) on a liquid Pb electrode was studied
by CV. Meanwhile, ytterbium was extracted on a liquid Pb electrode from a LiCl-KCl
melt by PE at −1.86 V. The extraction product was detected by SEM-EDS and XRD. XRD
analysis of the extracted products obtained at different electrolysis times shows that the
extracted products gradually changed from a Pb-rich alloy (Pb3Yb) to a Yb-rich alloy
(Pb3Yb and PbYb) with the increase in electrolysis extraction time. The extraction efficiency
of Yb reached up to 94.5% by PE at −1.86 V for 14 h, which indicates that it is feasible to
electrolytically extract Yb from LiCl-KCl melts on a liquid Pb electrode.
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