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Abstract: As for metal matrix composites (MMCs), the selection and application of reinforcements
play a vital role in their comprehensive properties. In this work, the CrCoNi medium entropy alloy
(MEA) was selected as reinforcement for Al matrix composites, and the effects of the content of
the CrCoNi MEA on the mechanical properties and friction resistance were systematically inves-
tigated. It was found that the CrCoNi MEA can effectively improve the mechanical properties of
the Al matrix composites, especially the 5 wt.% CrCoNi/Al composite can achieve a high strength
without the sacrifice of ductility, due to the strengthened interfacial bonding between the Al matrix
and the CrCoNi reinforcements caused by the element interdiffusion and the high mechanical perfor-
mance of the CrCoNi MEA itself. In addition, the wear resistance of the composites can be enhanced
by the inclusion of the CrCoNi MEA reinforcement, because the CrCoNi MEA can substantially
improve the hardness of the composites and promote the formation of the oxidative protection film
during the friction process. This work paves a new route for preparing Al matrix composites with
high mechanical properties and friction resistance.

Keywords: Al matrix composites; medium entropy alloy; mechanical properties; tribological properties

1. Introduction

With the rapid development of science and technology, the application of metal matrix
composites in industrial production has gradually increased, such as the Ti-based com-
posites [1–6], the Cu-based composites [7–9], the Al-based composites [10], etc. Especially,
aluminum matrix composites (AMCs) have been widely utilized as structural materials
in aerospace, automotive, electronics and other industrial fields, due to their low density,
high specific strength and specific modulus, good fatigue resistance and low coefficient
of thermal expansion (CTE) [11–13]. Ceramic particles, such as SiC [14], A12O3 [15] and
B4C [16] have a strong strengthening potential for the Al matrix, due to their intrinsi-
cally high strength, stiffness and wear resistance. However, they cannot form strong a
metallurgy bonding interface with the Al matrix, owing to their chemical stability, these
weak interfaces generally result in a low load transfer efficiency from the Al matrix to
the reinforcements [17]. Moreover, hard ceramic particles are not easy to process, and
prefer to be broken during the deformation, the broken ceramic particles can act as the
crack sources [18]. The plastic deformation capacity and CTE of the ceramic particles is
quite different from the Al matrix, the stress concentration and micro-crack nucleation
tend to occur at the interface, thereby reducing the plasticity and fracture toughness of
the prepared composites [19]. Therefore, it can be expected that selecting the appropri-
ate reinforcements and improving the interface bonding between the reinforcements and
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the matrix are effective attempts to improve the strength and deformation ability of the
Al matrix composite [20–23].

In order to overcome the shortcomings of the ceramic particles for reinforcing the
Al matrix composites, researchers have turned their attention to metal particle reinforce-
ments, and attempted to achieve a good bonding interface with the help of the nature of
the metal-metal bonding. Metallic glass can form a proper interfacial bonding with the
metal matrix, but can also cause cracks in the nucleation and thus reduce the plasticity
of the composite materials, due to its intrinsically low ductility [24]. In 2004, Ye et al.
first proposed a new alloy design concept, i.e., a qui-molar or near-equimolar ratio of the
multi-principal elements of high entropy alloys (HEAs) [25], which highly broaden the com-
position range of elements for designing alloys. HEAs contain at least five main elements,
and the concentration of each element is 5–35%. In the concept of “high entropy” [26–28],
the choice of a high mixing entropy and alloy composition makes the alloy system obtain a
higher ∆Smix when the multi-elements are mixed in equimolar fractions, which enable the
alloy to produce a more stable solid solution instead of the intermetallic compounds, which
facilitate achieving a strong metallurgical bonding with other metal matrices. Furthermore,
it has been fully demonstrated that HEAs have an ultra-high strength and ductility, a good
thermal stability, an excellent wear and corrosion resistance. Hence, the HEA has been
regarded as a promising reinforcement for metal matrix composites, especially for Al matrix
composites. For example, Liu et al. [29], fabricated 5 vol.% AlCoCrFeNi high-entropy alloy
particle reinforced Al matrix composites by spark plasma sintering. A transition layer with
the FCC structure is formed between the Al matrix and the reinforcement, which signifi-
cantly improves the yield strength and the ductility of the composites. The compressive
strength and the compressive strain were 137 MPa and 50%, respectively. Following the
loading, there was no macroscopic fracture observed in the failed aluminum matrix compos-
ites. Li et al. [30], fabricated Al0.8CoCrFeNi HEA particle-reinforced Al matrix composites
through a multi-channel friction stir process. The yield strength and the ultimate tensile
strength of the composites were increased by 42% and 22%, respectively, compared with
the unreinforced Al matrix, without any sacrifice of the ductility. The interface diffusion
that occurs in the interface region between the reinforcement and the Al matrix, forms the
Al3CoCrFeNi high entropy alloy instead of the intermetallic compounds.

Compared with high-entropy alloys, medium-entropy alloys with a lower configu-
ration entropy have fewer elements, a lower stacking fault energy and a faster atomic
diffusion rate, thus exhibiting different mechanical property features. Based on previ-
ous works [31–36], it has been further proved that only a small part of the multi-element
equiatomic alloys can also reach a single-phase solid solution with high configuration en-
tropies and increasing the types of elements cannot enhance the configuration entropy [37].
For example, the equal atomic ratios of only Cr, Co and Ni can form a single-phase solid
solution with the FCC structure. In addition, it is demonstrated that the yield strength and
the ultimate strength of the CrCoNi medium entropy alloy (MEA) increase rapidly with
the decrease of temperature, and their physical and chemical properties are comparable
to that of HEAs. Furthermore, Gludovatz et al. [38], used arc smelting to prepare the
CrCoNi MEA alloy, and tested its mechanical properties at room temperature and at a low
temperature, respectively. The results showed that the room temperature tensile strength
was 1 GPa, the fracture strain was 70%, the fracture toughness was above 200 MPam1/2,
exhibiting a higher strength and fracture toughness at low temperatures, compared to
HEAs. Moravcik et al. [39], utilized advanced powder metallurgy and spark plasma sinter-
ing technology to prepare the MEA, which fully demonstrated that the MEA can be used to
fabricate composites and present similar properties to HEAs, while the cost is lower and
the preparation is simpler. However, until now, there are few studies using the MEA as the
reinforcement for preparing the Al matrix composites.

In this article, the Al matrix composites were prepared using powder metallurgy and
the CrCoNi MEA as reinforcements, the fundamental relationship between the CrCoNi
content and the mechanical properties and the tribological properties of the composites
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was systematically investigated. The findings benefit the reinforcement selection and the
microstructure regulation for developing the Al matrix composites with high mechanical
properties and friction resistance.

2. Experimental
2.1. Fabrication of the Composites

The raw spherical Al powder (2 µm in average particle size) and the raw spherical
CrCoNi powder (15 µm in average particle size, atomic ratio of 1:1:1) were used as the
matrix and the reinforcement materials, respectively. First, the spherical Al powder was
pre-milled into Al flakes via mechanical ball-milling for 3 h. The ball-milling speed was
300 rpm, and the ball to powder weight ratio was 8:1. During the milling process, Ar was
employed as the protection gas. The flaky CrCoNi powder was obtained by ball-milling
with the rotation speed of 400 rpm and the ball-to-powder weight ratio of 20:1, respectively.
To ameliorate the cold welding during the ball-milling, 0.75 wt.% zinc stearate was added
for pre-milling the Al and CrCoNi powders. Then the Al and CrCoNi flaky powders were
mixed through a 3 h wet ball-milling process with absolute alcohol as the ball-milling
medium. The milling speed was 300 rpm and the ball-to-powder weight ratio was 5:1.
Following the wet-milling, the vacuum filtration and drying were utilized to completely
remove the absolute alcohol. The dried composite powders were then transferred into the
FHP-828 quick hot pressing sintering furnace and the sintering was carried out at 600 ◦C
for 0.5 h in an argon atmosphere with a heating and cooling rate of 100 ◦C/min. During
the whole sintering process, a mechanical pressure of 40 MPa was exerted on the sample to
accelerate the densification of the specimens. In order to realize the full densification of
the composites, these sintered samples (Φ 40 × 8 mm) were further hot rolled at 450 ◦C,
and the thickness was reduced by 50%, through five passes. Four batches of the composite
samples, reinforced with 5, 10, 15 and 20 wt.% CrCoNi particles were fabricated using the
same process. The detailed preparation process of the composites is shown in Figure 1.
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2.2. Microstructural and Mechanical Properties’ Characterization

A scanning electron microscope (SEM, FEI Nova Nano230, Sydney, Australia) was
used to characterize the morphology of the original powders and the dispersion state of the
CrCoNi particles in the fabricated composites. The Cu-Kα radiation source (λ = 0.15406 nm,
working voltage of 40 kV, current of 40 mA) of the X-ray diffraction (XRD, Ultima IV,
Austin, TX, USA) was employed to identify the phase composition of the composites.
The microstructure of the composite was further characterized by a transmission electron
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microscope (TEM, TEOL-2100F, Singapore). Prior to the TEM characterization, the sample
sheets were firstly ground to 50~60 µm with sandpaper, and were further ion-thinned using
the Gatan precision ion polishing system.

The hardness of the composites was characterized using a HDX-1000 TMC micro-
hardness tester. A wire cut electrical discharge machine was used to prepare the compres-
sion samples with a size of 3 × 3 × 5 mm3, and the compression tests at room temperature
were performed with an initial compression speed of 1.0 mm/min on the Instron3369 uni-
versal testing machine. The averaged compressive yield strength of each type of composite
was obtained by three independent tests. The reduced Young’s modulus was measured by
the TI950 TRIBO nanoindentation with a Berkovich indenter. During the nanoindentation
measurement, 20 load-unload circles were used until they reached the max load of 80 mN,
and the exerted force was subsequently unloaded without a holding time. The recorded
Young’s modulus is obtained based on the Oliver–Pharr model [40] and averaged from the
measured values of 15 independent tests.

In order to explore the effect of the CrCoNi content on the friction and wear behavior
of the composites, a multi-function friction tester (MFT-5000, Rtec-Instruments Inc. San
Jose, CA, USA) was used to carry out the reciprocating friction experiments (5 N, 5 Hz,
30 min) with the friction pair of Al2O3 balls. The 3D topographies of the wear scar were
photographed after testing, and the wear rate was calculated with the Gwyddion software.
The SEM was used to observe the surface morphologies of the wear scar and the wear
debris, and the wear mechanism were deeply analyzed by the XPS results of the wear
scar surface.

3. Results
3.1. Microstructure Observations of the Powders and the Fabricated Composites

Figure 2 shows the SEM images of the original Al powder, CrCoNi powder and the
mixed powders. From Figure 2a,b, it can be seen that the Al powder and the original
CrCoNi powder both have a spherical shape and a broad size range. Following the ball-
milling, the particle size of the Al powder was slightly refined, and the CrCoNi powder
successfully changed from a spherical shape to a flake shape.
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Figure 2. SEM images that reveal the powder morphologies and sizes. (a) the raw Al powder; (b) the
raw CrCoNi powder; (c) the mixed Al and CrCoNi powders.

Figure 3 shows the XRD results of the fabricated composites. Four samples with
a different CrCoNi content were characterized. It can be seen that the four types of
composites have similar diffraction peaks. In addition to Al and CrCoNi, the diffraction
peaks belonging to the intermetallic compounds (such as Al0.983Cr0.017, Al13Cr2, Co2Al9,
etc.), can also be detected in the diffraction patterns, and the peak intensity increases
with the increasing the CrCoNi content. Such a phenomenon indicates that during the
bulk composites preparation process, intermetallics have been formed through the limited
elemental interdiffusion between the Al matrix and the CrCoNi reinforcement, to some
extent, which can provide a good metallurgical bond.
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Figure 3. XRD pattern of the CrCoNi MEA reinforced Al matrix composites.

Figure 4 shows the SEM images of the bulk samples, along with the rolling direction.
The CrCoNi phase and Al matrix present a white and gray contrast, in these SEM images.
As can be seen, there are no residual pores in these bulk composites, indicating that the
full densification was achieved after the hot pressing sintering and hot-rolling. Moreover,
the dispersion state of the CrCoNi phase varies along with the increasing CrCoNi content.
In the composites containing 5 wt.% and 10 wt.% CrCoNi (Figure 4a,b), the CrCoNi
particles are singly dispersed in the whole Al matrix, exhibiting a uniform dispersion. By
increasing the CrCoNi content to 15 vol.% and 20 wt.% (Figure 4c,d), the CrCoNi particles
agglomeration can be observed in the Al matrix. The formation of the CrCoNi clusters
would largely deteriorate the mechanical properties of the fabricated composites.
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Figure 5 shows the element mapping distribution and the line scanning results ac-
quired from the 5 wt.% CrCoNi reinforced Al matrix composite. As can be seen from
Figure 5b, the interdiffusion of Al and Cr, Co and Ni occurred during the composite fab-
rication processes, according to the line scanning results (Figure 5c). The red dashed line
in Figure 5a can further justify the phenomenon of the elements interdiffusion. It can be
seen from the line scanning result (Figure 5c) that the Al content gradually decreases from
~90% to ~40% from the Al matrix side to the CrCoNi side, while the content of Cr, Co, and
Ni increases from ~3% to ~20%, further demonstrating that the elements of interdiffusion
between the Al matrix and CrCoNi particles occurred during the composite fabrication pro-
cesses. Such an element interdiffusion proved the formation of the metallurgical bonding
interface, which can help improve the load transfer efficiency across the interface.
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(a) SEM image of the selected region, (b) elemental mapping images, (c) line scanning results (the
line scanning track was shown by the red dashed arrow in (a)).

Figure 6 shows the TEM image of the interfacial region in the Al-10 wt.% CrCoNi
composite. It can be seen from the bright field TEM image (Figure 6a) that the discontinuous
particles embedded in the Al matrix, can be attributed to the element diffusion. Figure 6b
shows the element mapping results of the red dashed rectangle region in Figure 6a, indicat-
ing that the Al element exists in the whole region, the Co and Ni elements have the same
distribution position, while the position of the Cr element is not consistent with them. The
element distribution was further analyzed by point analyzation, as shown in Figure 6c.
According to the element analyzation results, it can be determined that two different types
of particles were formed in the interfacial region, one consisting of the Al and Cr elements,
and another one containing the Al, Co and Ni elements. Based on the observations, it can
be speculated that in the interfacial region of the Cr element in the original CrCoNi particles
diffused into the Al matrix caused the original CrCoNi particles to be transformed into the
CoNi-rich phase, at the same time, the diffused Cr and CoNi-rich phase reacted with the Al
element, resulting in the formation of the Cr-rich and CoNi-rich phases. Figure 6d,e are
the high-resolution TEM (HRTEM) images of the two phases, respectively. The interplanar
spacing of the Cr-rich phase is 0.341 nm, and the interplanar spacing of the CoNi-rich phase
is 0.462 nm. Although the precise crystal structure needs to be further investigated, the
crystal structures of the two newly formed phases can be identified as the hcp and fcc
structures, respectively, as shown in Figure 6f,g.
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Figure 6. TEM observation of the 10 wt.% CrCoNi/Al composite. (a) the bright field TEM image;
(b) elemental mapping results recorded from the rectangular region in (a); (c) the EDS results recorded
from point 1 and point 2 marked in (a); (d) HRTEM image of the interface area between the Cr-rich
phase and the Al matrix; (e) HRTEM image of the interface area between the CoNi-rich phase and
the Al matrix; (f) SAED pattern acquired from the white rectangular region in (d); (g) SAED pattern
acquired from the white rectangular region in (e).

3.2. Mechanical Properties of the Prepared Composites

Figure 7 shows the mechanical properties of the composites with the different CrCoNi
content. Figure 7a shows the compressive stress-strain curves of the four types of compos-
ites, at room temperature. It can be seen that as the content of the CrCoNi reinforcement
increases, the yield strength of the composite increases, but the plasticity of the material
decreases at the same time especially, when the CrCoNi content increases to 15 wt.% and
20 wt.%. It is worth noting that the composites with a better plasticity often do not show
the characteristics of a brittle failure (cracks occurred in the direction of about 45◦–55◦ to the
axis on the surface of the sample) in the compression experiment. With the test proceeding,
the cross-sectional area continues to increase at the same time as the flattening of the com-
posites, the pressure-bearing capacity continues to increase, showing a continuously rising
compression curve, as shown in the compression stress-strain curve of the 5 wt.% CrCoNi
composite (Figure 7a). The composites with 5 wt.% CrCoNi and 10 wt.% CrCoNi have a
better plasticity, and the yield strength is as high as 239.27 MPa and 292.24 MPa. Figure 7b
shows the comparison of the hardness, yield strength and the compressive strength of the
composite. Obviously, as the content of CrCoNi increases, the hardness, the yield strength
and the compressive strength all monotonically increase. Figure 7c is the result of the elastic
modulus of the composites acquired through the nanoindentation tests. As the content of
CrCoNi increases, the modulus of the composite increases from 60.15 GPa to 118.04 GPa,
which means the stiffness of the material gradually increases and the plasticity decreases.
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Figure 7. Mechanical properties of the fabricated composites, (a) compression stress-strain curves
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3.3. Tribological Properties of the Composites

Figure 8 shows the friction coefficient curves and the wear rate of the fabricated
composites. The same friction condition and parameters were used for each sample (load:
5 N, frequency: 5 Hz, friction time: 30 min, the friction pair: Al2O3 grinding balls), and three
independent tests were conducted. It can be seen from Figure 8a, that the friction coefficient
of the composites with the different CrCoNi content is between 0.4 and 0.5, and shows a
downward trend as the content of CrCoNi increases. The wear rate is calculated according
to the formula w = ∆V/(P·L), where ∆V is the wear volume which can be obtained through
processing the three-dimensional morphology of the wear scar by the available software,
P is the exerted load, and L is the total distance of the friction. As a result, the calculated
wear rates of the four types of composites were presented in Figure 8b. It can be clearly
seen that the wear rate decreases as the content of CrCoNi increases, indicating CrCoNi is
effective in improving the wear resistance of the composites, especially when the content
of CrCoNi increases from 10 wt.% to 20 wt.%.
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Figure 8. The friction properties of the composites with the different CrCoNi content. (a) The
coefficient of friction curves of the composites; (b) the average wear rate of the composites.

Figure 9 shows the 3D topographies of the wear scar on the surface of the composites
after the friction test, the depth profile of the wear scar and the roughness fitting graph
of the wear scar in the vertical friction direction. In the 3D topographies of the wear
scar (Figure 9a,d,g,j), the deeper color represents a greater depth. It can be found that, as
the content of CrCoNi increases, the wear scar becomes shallower, which can be directly
evidenced in the depth profile figure (Figure 9b,e,h,k). By increasing the CrCoNi content
from 5 wt.% to 10 wt.%, the wear scar depth of the composite is greatly reduced from 75 µm
to 55 µm, and the width of the wear scar is also slightly reduced. The 3D topographies of
the wear scar and the reduced size of the wear scar profile demonstrate the decrease in the
amount of wear, which is consistent with the result of the wear rate. Figure 9c,f,i,l presents
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the roughness of the surface of the four composites. Because the roughness at different
positions is different, the measured value of the roughness has a certain randomness and
is related to the selected position. However, the averaged roughness shows a downward
trend. The decrease in the roughness is also in line with the variation trend of the friction
coefficient. The fundamental wear mechanism will be further analyzed in the following
discussion section.
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CrCoNi composite (d–f), Al-15 wt.% CrCoNi composite (g–i) and Al-20 wt.% CrCoNi composite (j–l).

4. Discussion

From the results of the XRD, SEM and TEM, it can be found that the diffusion of
elements occurred between the Al matrix and the CrCoNi reinforcements, and the inter-
metallics even be formed when the CrCoNi content was continuously increased in the
composites. Such a phenomenon is consistent with that in the high-entropy alloy particle-
reinforced Al matrix composites reported by Liu et al. [29], in which an obvious diffusion
transition layer can be detected between the Al matrix and the reinforcement particles. The
distinct elements diffusion can be explained in the view of the atomic diffusion behaviors
under the present high temperature processing. Owing to the application of pulsing the
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current to accelerate the densification processes of the powders during sintering [41,42], a
large temperature gradient will be formed from the surface to the core of the particles, after
the pulsing current passes through the different particles. Based on the established sintering
model by Tan et al. [43], the local high temperature generated around the high-entropy
alloy particles enhanced the diffusion reaction. Similar to the high-entropy alloys, there
is a large amount of lattice distortion in the CrCoNi MEA, which leads to an increase in
the electrical resistivity and a certain difference in the thermal conductivity from the Al
matrix. As a result, it can be speculated that the temperature rises sharply at the contact
surface of the Al particles and the CrCoNi particles during the quick hot pressing sintering
process, with the help of pulsing current. Therefore, the high temperature intensifies the
element diffusion at the interface between the Al matrix and the CrCoNi particles, resulting
in the formation of the metallurgical bonding interface (as shown in Figure 5), although a
relatively low temperature was used in the present study. By increasing the CrCoNi content,
many more Al atoms can diffuse into the CrCoNi particles, because the large amount of
lattice distortion in the CrCoNi particles provides the “fast channel” for the movement of
the Al atoms. At the same time, more Cr atoms can diffuse into the Al matrix, due to its
higher diffusion coefficient (6.75 × 10−1 m2/s), than that of the Co (1.93 × 10−2 m2/s) and
Ni (4.10 × 10−4 m2/s) atoms in the Al matrix [44]. These diffused Al atoms and Cr atoms
can react with the residual Co and Ni atoms in the CrCoNi particles and the Al matrix,
respectively, leading to the formation of intermetallics in the interfacial region between the
Al matrix and the CrCoNi reinforcements, as demonstrated by the TEM observation on the
10 wt.% CrCoNi/Al composite (Figure 6). Therefore, it can be concluded that the CrCoNi
content play a decisive role in the interfacial structure in the prepared CrCoNi/Al compos-
ites, when the CrCoNi with a high content was employed as the starting reinforcements,
the intermetallics rather than the diffusion of the solid solution would be formed in the
interfacial area.

As shown in Figure 5, increasing the CrCoNi content can help achieve a higher strength,
hardness, and Young’s modulus of the prepared composites, while substantially lowering
their ductility at the same time when the CrCoNi content reaches 15 wt.%, which can be
mainly attributed to the intensified interfacial reaction. Although the in-situ formation
of the intermetallics can strengthen the interfacial bonding between the Al matrix and
the CrCoNi particles, thus improving the strength, hardness and Young’s modulus of
composites, the intrinsic brittleness of the intermetallics frequently decrease the plastic
deformation ability of the interfacial region, leading to the deteriorated ductility. As for
the 5 wt.% CrCoNi/Al composite, its high combination of strength and ductility can be
explained by the limited interfacial interdiffusion between the Al matrix and the CrCoNi
composites. The moderate element interdiffusion can improve the interface bonding and
avoid the premature failure of the interface during deformation, hence the Al matrix and
CrCoNi particles can experience enough hardening work, contributing to a high strength
and ductility.

As mentioned earlier, the wear rate and the friction coefficient of the composites
decrease with the increasing CrCoNi content, which can be explained by the fundamental
wear mechanisms. According to the topography images of the wear scar surface (Figure 10),
the distinct plowing grooves and the partial splat pull-out can be seen on the surface of the
sample, indicating that the wear process contains an adhesive wear and an abrasive wear.
Moreover, it is obvious that with the increase of the CrCoNi content, the splat pull-out
and pits of the wear surface on the tested samples gradually decrease, and the wear scar
surface becomes smoother. In general, there is a certain correlation between the abrasive
wear and the adhesive wear. The abrasive wear is caused by the hard protrusions on the
surface of the friction pair, the two surfaces with a certain roughness will adhere to the
micro protrusions under the action of the contact pressure at the initial stage of wear. The
adhesion points will be sheared under the relative sliding, and then the cracks are formed
on the subsurface of the material. Once the cracks propagate, the adhesion points are
sheared to form the splat pull-out, pits, delamination and other phenomena [45]. These
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flakes form abrasive debris. Some of the softer abrasive debris will be repeatedly crushed
by the grinding ball and adhere to the surface of the material. The other hard abrasive
debris will form a three-body abrasive wear in the subsequent grinding process, which will
cause the plowing groove. Due to the better plasticity of the Al matrix, the greater plastic
deformation occurs during the friction process, which increases the actual contact area of
the friction pair surface and the wear amount, generating more wear debris and increasing
the surface roughness and the friction coefficient. Moreover, the high-hardness CrCoNi
reinforcement deforms less compared to the Al matrix and plays a role in supporting
and protecting the matrix during the friction process. Therefore, the higher the CrCoNi
content, the smaller the deformation that occurs, which means the composite can provide a
more effective contacting area and decrease the pressure, and cause the smaller frictional
resistance, contributing to the reduction of the amount of wear debris produced and the
reduction of the friction coefficient under the same contact pressure [46,47]. Figure 10e is
the SEM image of the wear debris of the 5 wt.% CrCoNi/Al sample. Through the EDS point
analysis, the wear debris of CrCoNi and the Al matrix can be confirmed and the presence
of the oxygen elements was observed, indicating the oxide was formed on the friction
surface. Figure 11 shows the XPS results of the wear debris of the 5 wt.% CrCoNi/Al
sample. It can be seen that the four elements Al, Cr, Co and Ni all have corresponding
oxides, indicating that the present friction is accompanied by the oxidative wear. Among
the four elements of Al, Cr, Co and Ni, Al is the most active element, so its oxide occupies
the most. The initial oxide film can cover the friction surface and play a certain role of
protective effect [48]. When some oxide films with a poor adhesion force fall off, they will
also exist in the form of wear debris. The pits formed after falling off increase the surface
roughness and aggravate the wear. Therefore, the measured friction coefficient has a slight
upward trend and prolongs the friction time.
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In short, it can be concluded that the CrCoNi MEA can substantially strengthen the Al
matrix as well as improve its friction resistance, due to the excellent mechanical properties
of CrCoNi itself and the proper interfacial bonding with the Al matrix caused by the limited
element interdiffusion. Meanwhile, the CrCoNi with a high content (>10 wt.%) promotes
the formation of intermetallics, resulting in the substantial decrease of the ductility of the
prepared composites.

5. Conclusions

In this study, the novel Al matrix composites reinforced with the CrCoNi MEA particles
were prepared thorough the powder metallurgy route, in which the interdiffusion between
the Al matrix CrCoNi MEA particles can result in the formation of the metallurgical bonding
interface between them, hence contributing to the enhanced mechanical properties and
wear resistance. Based on the revealed effects of the CrCoNi content on the microstructures,
the mechanical properties and the friction properties of the fabricated composites, the
following conclusions can be drawn.

(1) With the usage of the CrCoNi MEA as the starting reinforcement, the mechanical
properties of the composites can be highly improved, especially the 5 wt.% CrCoNi/Al
composite achieved a high strength without the sacrifice of ductility.

(2) The enhanced strength, hardness, and Young’s modulus of the composites can be
attributed to the strengthened interfacial bonding between the Al matrix and the
CrCoNi reinforcements and the high mechanical performance of the CrCoNi MEA.
The ductility of the composites substantially decreases when the content of the CrCoNi
MEA exceeds 10 wt.%, due to the formation of the large amounts of intermetallics at
the interfacial region.

(3) The wear resistance of the Al matrix composites can be enhanced by the inclusion of
the CrCoNi MEA reinforcement, because the CrCoNi MEA can substantially improve
the hardness of the composites and promote the formation of the oxidative protection
film during the friction process.
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