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Abstract: In this work, laser powder bed fusion (LPBF) was explored to fabricate TA15 (Ti-6Al-2Zr-
1Mo-1V) titanium alloy based on the experimental design obtained by using the Taguchi method.
The impact of processing parameters (including laser power, scanning speed, and scanning interval)
on the density and microhardness of the as-LPBFed TA15 titanium alloy was analyzed using the
Taguchi method and analysis of variance (ANOVA). The interaction among parameters on the density
of the as-LPBFed TA15 titanium alloy was indicated by a response surface graph (RSR). When the
laser energy density was adjusted to 100 J/mm3, the highest relative density could reach 99.7%. The
further increase in the energy input led to the reduction in relative density, due to the formation of
tiny holes caused by the vaporization of material at a high absorption of heat. Furthermore, in order
to better reveal the correlation between relative density and processing parameters, the regression
analysis was carried out for relative density. The results showed that the experimental and predicted
values obtained by the regression equation were nearly the same.

Keywords: laser-based powder bed fusion; titanium alloy; Taguchi; process optimization; density

1. Introduction

TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy is a high-aluminum-equivalent α titanium
alloy, which has good specific strength, high-temperature creep resistance, thermal stability,
and corrosion resistance. This alloy has also been widely used in the key load-bearing
components and engine structure parts of aerospace applications [1–3]. However, titanium
alloy has high activity, low thermal conductivity, and high deformation resistance [4–7],
which makes it very difficult to manufacture by traditional manufacturing methods, such
as casting [8,9], forging [10,11], and welding [12–14]. In addition, aerospace parts tend to
be functional, lightweight, and have a structural integrated design [15–23]. Meanwhile, it is
increasingly difficult for traditional manufacturing technology to meet the manufacturing
needs of aerospace titanium alloy parts with complex structures. Hence, new types of
manufacturing techniques should be explored to fabricate the complex structures.

Metal additive manufacturing (AM) techniques, including laser powder bed fusion
(LPBF) [24–26] and laser powder deposition (LPD) [27–29], have been confirmed to success-
fully fabricate complex structures of titanium alloy parts. Compared with others, research
has mainly concentrated on the directed-energy-deposition-fabricated TA15 titanium al-
loy [30,31], which can directly fabricate the large-scale complex structural components.
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However, in order to obtain the TA15 structural parts with higher precision, some studies
have conducted research on LPBF-processed TA15 titanium alloy. Laser powder bed fu-
sion is a promising metal AM technique that utilizes a focused laser beam to selectively
melt metal powder layer by layer under the guidance of a computer-aided-design (CAD)
model [3,6]. It has the advantages of high material utilization rate, high precision, and
directly manufacturing near-full-density complex-shaped metal parts [32], which indicates
that the application of LPBF to manufacture TA15 titanium alloy parts has the potential to
extend its application in aerospace [33]. However, the characteristics of high-temperature
melting and rapid solidification in the LPBF process may result in some issues [34,35]. For
example, the evaporation of elements in the heating process and the volume shrinkage in
the cooling process both easily lead to pore generation [36]. There is even a lack of fusion
defects existing due to improper adjustment of process parameters [37]. These pores and
lack of fusion will reduce the relative density of LPBF-fabricated metal parts, resulting in
seriously degrading the mechanical properties [38]. Therefore, achieving a high density of
LPBF-fabricated metal parts has become a target for researchers.

As for LPBF Ti-Al-Zr-Mo-V titanium alloy, Li et al. [3] investigated the effect of
LPBF process parameters on the relative density of the TA15 titanium alloy sample, and
found that the volume energy density (Ev) range of 125–167 J/mm3 is the optimal LPBF
process window for manufacturing high-density TA15 titanium alloy. At the same time,
Li et al. [39] also reported that the effect of the different levels of scanning strategies on
the relative density of LPBF-fabricated TA15 titanium alloy caused a significant difference.
Thijs et al. [40] systematically investigated the correlation between the density of Ti6Al4V
and various parameters via experiments and simulation, but did not consider the effect of
parameter–parameter interactions on the density.

The Taguchi method has been proven to be a powerful means to optimize multiple
parameters with the consideration of the interaction among process parameters [41–43].
Kumar et al. [44] investigated the effect of wire electrical discharge machining (WEDM)
process parameters on the rate of material removal (MRR), surface roughness (SR), and
corrosion rate (CR) of ZE41A magnesium alloy using the Taguchi method, and determined
the optimized parameter combinations of each of them based on considering the interaction
among process parameters. Pandel et al. [45] reported the influence of input parameters
(including cross-sectional area and TE leg length) on the output parameter (power output
of Mg2(Si–Sn) thermoelectric generators) using the Taguchi method, and the contributions
of each parameter were obtained by ANOVA analysis with the results of 35.22% and
27.62%, respectively. In our study, adopting the Taguchi method can minimize the number
of experiments required to achieve a fuller understanding of the effects of processing
parameters on the relative density of LPBF-fabricated TA15 titanium alloy. In addition,
according to the Taguchi experimental design, the optimized parameters can be obtained
by the approach that compares the mean of the signal-to-noise (S/N) ratio. The important
parameters and percentage contribution of the single process parameter on density were
obtained by ANOVA.

In this work, the Taguchi method was utilized to optimize LPBF process parameters
targeting high-density TA15 titanium alloy samples. The effect of laser energy density on
the relative density of the as-LPBFed TA15 titanium alloy was discussed. The optimized
parameter results were validated by confirmation analysis. This work aimed to provide the
database and guidance for LPBF fabrication of TA15 titanium alloy.

2. Materials and Methods
2.1. Materials

The gas-atomized TA15 titanium alloy powder used in this work was purchased from
Avimetal Powder Metallurgy Technology Co., Ltd., China. The chemical composition
of TA15 titanium alloy powder is listed in Table 1. The main alloying elements of TA15
titanium alloy are Al, V, Zr, Mo, and Ti, as indicated in Table 1. The morphology and
size distribution of TA15 titanium alloy powder are presented in Figure 1. The powder
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particles were spherically shaped with an equivalent spherical diameter of 15–53 µm
(D10 = 21.46 µm, D50 = 33.73 µm, and D90 = 48.50 µm).

Table 1. Chemical composition (Wt. %) of the TA15 titanium alloy powder.

Elements Al V Zr Mo Si Fe Ti

TA15 6.42 1.94 1.93 1.43 0.02 0.03 Balance
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2.2. Sample Fabrications and Optimization of Parameters Using Taguchi Method

The LPBF experiments were carried out by a DiMetal-100 3D printing machine
(Guangzhou Leijia Additive Technology Co., Ltd., Guangzhou, China) with an oxygen
concentration below 100 ppm. High density is the premise for the sample to have excellent
mechanical properties, and the density of the LPBF-fabricated TA15 titanium alloy was
largely affected via process parameters, such as laser power, laser scanning speed, scanning
interval, and powder-bed layer thickness.

In this investigation, the Taguchi method was utilized to optimize the parameters
for the density of the LPBF-fabricated TA15 titanium alloy. Based on a previous study
on the effect of laser energy density on the densification of titanium alloy [46] and the
fact that the low power was expected to obtain a satisfactory surface quality, the regions
of the process parameters were determined. The three controllable five-level process
parameters are listed in Table 2. Considering the interaction among parameters, the
experimental parameters combinations were determined by the orthogonal test method
using the Taguchi method. An L25 orthogonal array was obtained as shown in Table 3 using
MINITAB statistical software (MINITAB 16, Pennsylvania State University, Pennsylvania,
USA). The 25 parametric combinations listed in Table 3 were then applied to fabricate 10
× 10 × 10 mm3 cubes for the sake of parametric optimization. The experimental results
are displayed in the form of S/N ratio, which could be separated from the three types of
performance features: nominal-the-better, smaller-the-better, and larger-the-better. In this
study, the objective was to obtain maximum density in the LPBF-fabricated TA15 titanium
alloy. Thereafter, the larger-the-better feature was chosen. The larger-the-better S/N ratio
can be obtained based on the following equation:

S
N

= −10 log

(
1
n

n

∑
i=1

1
y2

i

)
(1)

where yi refers to the value of density for the ith experiment, and n represents the total
number of experiments.
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Table 2. The process parameters and their levels used in this study.

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

A: Laser power (W) 150 160 170 180 190
B: Scanning speed (mm/s) 800 900 1000 1100 1200
C: Scanning interval (mm) 0.06 0.07 0.08 0.09 0.10

Table 3. Experimental design as L25 orthogonal array and experimental results for relative density.

Runs Laser Power (W) Scanning
Speed (mm/s)

Scanning
Interval (mm)

Laser Energy
Density (J/mm3)

Microhardness
(HV0.1)

Relative Density (%)

Experimental
Value

Predicted
Value Error (%)

1 150 800 0.06 107.64 365.56 99.46 99.26 −0.2007
2 150 900 0.07 79.36 336.00 98.96 99.10 0.1437
3 150 1000 0.08 62.5 350.66 98.78 98.77 −0.0138
4 150 1100 0.09 50.51 321.18 98.32 98.25 −0.0681
5 150 1200 0.10 41.67 319.53 97.74 97.56 −0.1821
6 160 800 0.07 95.24 347.96 99.52 99.30 −0.2206
7 160 900 0.08 74.07 327.26 99.26 99.12 −0.1384
8 160 1000 0.09 59.26 353.04 98.79 98.75 −0.0376
9 160 1100 0.10 48.48 324.46 98.24 98.19 −0.0497

10 160 1200 0.06 74.07 328.90 99.18 99.01 −0.1746
11 170 800 0.08 88.54 327.84 99.43 99.32 −0.1068
12 170 900 0.09 69.96 331.06 99.08 99.11 0.0323
13 170 1000 0.10 56.67 327.00 99.02 98.69 −0.3292
14 170 1100 0.06 85.86 326.94 99.37 99.3 −0.0620
15 170 1200 0.07 67.46 328.96 99.36 98.99 −0.3688
16 180 800 0.09 84.51 322.14 99.62 99.33 −0.2907
17 180 900 0.10 66.67 322.50 99.43 99.07 −0.3617
18 180 1000 0.06 100 317.46 99.7 99.43 −0.2746
19 180 1100 0.07 77.92 329.76 99.19 99.28 0.0872
20 180 1200 0.08 62.5 317.50 99.14 98.91 −0.2359
21 190 800 0.10 79.17 318.70 99.2 99.32 0.1214
22 190 900 0.06 117.28 330.66 99.37 99.36 −0.0099
23 190 1000 0.07 90.48 324.74 99.64 99.39 −0.2509
24 190 1100 0.08 71.97 317.10 99.15 99.18 0.0351
25 190 1200 0.09 58.64 308.12 98.83 98.74 −0.0864

Finally, the percent contribution of each parameter and significant parameters for the
density were obtained by the method of analysis of variance (ANOVA).

2.3. Characterizations

Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed
to determine the chemical component of TA15 titanium alloy powder. Scanning electron
microscopy (Nova Nano SEM230) was performed for the morphology of TA15 titanium
alloy powder. The size distribution of TA15 titanium alloy powder was counted by a laser
particle size analyzer (Mastersizer 3000). The microstructure of the LPBF-fabricated TA15
titanium alloy samples was characterized by a scanning electron microscope (Nova Nano
SEM230) using back-scattered mode (SEM-BSE).

The Archimedes principle was used to measure the relative density of LPBF-fabricated
TA15 titanium alloy samples, and the results were indicated with a percentage of the TA15
titanium alloy density (4.45 g/cm3) [47]. To decrease the randomness of the tests, five
measurements were carried out for every sample, and the mean of the measurements was
represented as the experimental value of the relative density. The vertical section (X–Y
plane) of each sample was polished for Vickers microhardness tests and the tests were
conducted by a digital microhardness instrument at a load of 100 g and a dwell time of
10 s. The results obtained for each set of samples were the average values of at least three
measurements.

3. Results and Discussion
3.1. Effect of Processing Parameters on Density and Microhardness of as-LPBFed TA15
Titanium Alloy
3.1.1. Effects of Laser Power

Figure 2 shows the effect of laser power on the density and microhardness of the
as-LPBFed TA15 titanium alloy. Here, the value of each bar represents the average value of
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the experimental results obtained by five parameter combinations under a certain level of
laser power. It can be seen from Figure 2a that the relative density of the as-LPBFed TA15
titanium alloy was below 99% with an average value of 98.65% when the laser power was
150 W, but it was beyond 99% with the increase in laser power from 150 W to 170 W. The
reason was that the low energy input corresponded to the low depth, width, and height of
the molten pool, which was why some of the powders could not be fully melted in the LPBF
process, resulting in the decrease in relative density, and the higher levels of laser power
could melt more alloy powders in the molten pool to obtain higher relative density [48].
Subsequently, the laser power increased from 170 W to 180 W, further increasing the relative
density. It is worth noticing that the relative density could reach up to 99.5% when the
laser power was 180 W. However, the higher laser power of 190 W caused the decrease
in relative density, which was owing to the excessive energy input to the elements by
burning [41], resulting in a decreasing relative density of samples. Interestingly, as shown
in Figure 2b, the samples of the lowest relative density indicated the highest microhardness,
and the microhardness of these five levels of laser power from 150 W to 190 W represented a
decreasing trend from 338.5 HV0.1 to 319.8 HV0.1, from which it could be indicated that the
mechanical properties of samples were not only determined by relative density but also by
many factors. Meanwhile, the values of the relative density exhibited a significant change
when the laser power increased from 150 W to 190 W, which indicated the significant
contribution of laser power to the relative density of LPBF TA15 alloys.
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3.1.2. Effects of Scanning Speed

Figure 3 shows the influence of scanning speed on the density and microhardness
of the as-LPBFed TA15 titanium alloy. Here, the value of each bar represents the average
value of experimental results obtained by five parameter combinations under a certain level
of scanning speed. As the scanning speed increased from 800 mm/s to 1200 mm/s at an
interval of 100 mm/s, the relative density of the as-LPBFed TA15 titanium alloy decreased
from 99.44% to 98.85%, as shown in Figure 3a, which was due to the laser energy density
decreasing as the scanning speed increased. Consequently, the generated molten pool
caused by insufficient energy input could not fully catch the alloy powders, leading to
the decrease in relative density [49]. Meanwhile, Figure 3b indicates the effect of scanning
speed on the microhardness of the as-LPBFed TA15 titanium alloy, from which it could be
seen that the trend of microhardness of the as-LPBFed TA15 titanium alloy was decreasing
from 336.4 HV0.1 to 329.4 HV0.1 first upon the increase in scanning speed from 800 mm/s
900 mm/s. Then, the further increase in scanning speed from 900 mm/s to 1000 mm/s
simultaneously improved the microhardness, and the microhardness reached 334.5 HV0.1
when the scanning speed was 1000 mm/s. Then, the scanning speed increased from
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1000 mm/s to 1200 mm/s, giving rise to a steep descent in microhardness from 334.5 HV0.1
to 320.6 HV0.1.
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3.1.3. Effects of Scanning Interval

Figure 4 shows the relationships between scanning interval and density and micro-
hardness of the as-LPBFed TA15 titanium alloy. Here, the value of each bar represents
the average value of experimental results obtained by five parameter combinations under
a certain level of scanning interval. As the scanning interval increased from 0.06 mm to
0.10 mm with an interval of 0.01 mm, the density of the as-LPBFed TA15 titanium alloy
decreased correspondingly from 99.41% to 98.72% with a smooth trend. The descent trend
of density with increasing scanning interval was owing to the lower energy density per unit
volume, leading to the decreasing energy adopted by the TA15 powders [41]. Meanwhile,
the microhardness of the as-LPBFed TA15 titanium alloy also represented a reduction trend
from 333.9 HV0.1 to 322.4 HV0.1 with the increase in scanning interval from 0.06 mm to
0.10 mm.
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3.2. Optimization of Parameters for Density
3.2.1. Analysis of the Signal-to-Noise (S/N) Ratio

The output parameter (relative density) was utilized to measure the mean and signal-
to-noise ratios of every input parameter for the best quality of the as-LPBFed TA15 titanium
alloy specimens. The mean value and signal-to-noise ratio (S/N) were obtained to evaluate
the effect of every process parameter on the as-LPBFed TA15 titanium alloy specimens.
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In this investigation, the larger the criterion, the better the model used to select the mean
and S/N ratio to identify the response of the process parameters. Tables 4 and 5 show
the response tables for relative density of the mean value and the signal-to-noise ratio,
respectively. The larger the distinction between the S/N values, the more significant the
process parameters were. Thus, it can be indicated that the laser power had the greatest
effect on the relative density. In addition, the primary effect curves of the mean value and
S/N ratio on the densities are shown in Figures 5 and 6. It can be seen that the highest
relative density of the as-LPBFed TA15 titanium alloy specimens was obtained at the
process parameters of laser power of 180 W, scanning speed of 800 mm/s, and scanning
interval of 0.06 mm.

Table 4. Mean response table for relative density.

Level Laser Power Scanning Speed Scanning Interval

1 98.65 99.45 99.42
2 99.00 99.22 99.33
3 99.25 99.19 99.15
4 99.42 98.85 98.93
5 99.24 98.85 98.73

Delta 0.76 0.60 0.69
Rank 1 3 2

Table 5. S/N ratio response table for relative density.

Level Laser Power Scanning Speed Scanning Interval

1 39.88 39.95 39.95
2 39.91 39.93 39.94
3 39.93 39.93 39.93
4 39.95 39.90 39.91
5 39.93 39.90 39.89

Delta 0.07 0.05 0.06
Rank 1 3 2
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3.2.2. Analysis of Variance (ANOVA)

The percentage contribution of every parameter was calculated by ANOVA. ANOVA
facilitated the formal testing of the results of all the main factors and their relationships by
assessing the mean squared deviation of the experimental error approximation at a defined
confidence level. In this study, the percentage contribution of each process parameter to
obtain the best molding quality of the specimen was performed by MINITAB software. The
most significant process parameter obtained by calculating the percentage contribution
was the laser power of 33.86%, followed by the scanning interval of 31.33% and finally the
scanning speed of 25.35%. Table 6 indicates the results obtained by ANOVA of the densities.
The results show that the laser power was the most significant process parameter affecting
the relative density of the as-LPBFed TA15 titanium alloy.

Table 6. Results acquired from ANOVA—relative density.

Source DF Seq. SS Adj. SS Adj. MS F P Percentage of
Contribution (%)

Laser power 4 1.7624 1.7624 0.44061 10.72 0.001 33.86
Scanning speed 4 1.3195 1.3195 0.32988 8.03 0.002 25.35

Scanning interval 4 1.6307 1.6307 0.40769 9.92 0.001 31.33
Error 12 0.4930 0.4930 0.04108 — — 9.47
Total 24 5.2057 — — — — 100

DF, degree of freedom; Seq. SS, sequential sum of squares; Adj. SS, adjusted sum of squares; Adj. MS, adjusted
mean squares; F, statistical test; P, statistical value [46].

3.3. Effect of Laser Energy Density on Relative Density of as-LPBFed TA15 Titanium Alloy

In this section, the interaction influences of scanning speed and laser power on the
relative density of the alloy are discussed. Figure 7 shows the response surface graph and
contour plot for the influence of laser power and scanning speed on the relative density
obtained by using Design Expert software, from which it can be directly seen that the
relative density of samples first increased obviously and then slightly reduced with the
reduction in the scanning speed or the increase in the laser power. The effect of the scanning
speed on relative density appeared more remarkable at lower laser powers, and so did
laser power at high scanning speeds. As reported, volume energy density (Ev) is the critical
element that determines the relative density, and it can be represented as follows:

Ev = P/vht (2)
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speed on the relative density at scanning interval of 0.08 mm.

Here, P represents the laser power (W), v refers to the laser scanning speed (mm/s),
h is the laser scanning interval (mm), and t is the layer thickness (mm), which remains at
0.03 mm throughout the investigation. Based on Equation (2), the Ev of each sample is
listed in Table 3.

Figure 8 indicates the correlation between volume energy density and relative density
of the TA15 alloy fabricated via LPBF processes. It can be found from Figure 8 that a lower
relative density of 98.24% occurred at a lower energy density of 48.48 J/mm3, which was
due to the low level of laser energy input not being able to make the powder surface melt
completely, resulting in the lack of fusion, as shown in Figure 9a. Thus, a higher energy
density could be utilized to realize higher values of relative density. When the laser energy
density was adjusted to 100 J/mm3, the highest relative density could reach 99.7%, as
shown in Table 3. There are almost no defects such as pores, as indicated in (Figure 9b).
Notably, the further increase in the energy input would lead slightly to the reduction in the
relative density due to the vaporization of material caused by the high absorption of heat
from melt pool turbulence or the interaction zone [36], which would result in the formation
of tiny holes, as shown in Figure 9c.
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energy densities: (a) 48.48 J/mm3, (b) 100 J/mm3, and (c) 117.28 J/mm3.

3.4. Confirmation Analysis

In order to better reveal the correlation between relative density and laser power, and
scanning speed and scanning interval, the regression analysis was carried out for relative
density. With the regression expression given according to the response parameter (relative
density) and the three input process parameters (laser power (A), scanning speed (B), and
scanning interval (C)) with the expression via a second-order polynomial, the equation is
as follows [50]:

Relative density = a0 + a1(A) + a2(B) + a3(C) + a4(AB)+ a5(AC) + a6(BC) + a7(ABC) (3)

Table 7 shows the corresponding value of coefficients from a0 to a7 for the relative
density. By replacing each value of these three process parameters and corresponding
coefficients in the regression expression, the predicted value for relative density could be
obtained. Recall above Table 3 that the values of prediction and experiment for relative
density were clearly shown, and the values of prediction and experiment for relative
density were compared. The result indicates that the difference between their values was
not remarkable and their percentage of error was less than 0.5%. The confirmation analysis
had been finished to identify that the values of prediction and experiment obtained by
means of the regression equation were nearly the same. Directly, the high correlation
between experimental values and predicted values for relative density is directly shown in
Figure 10.

Table 7. The regression equation coefficients for relative density.

Coefficient The Corresponding Value

a0 111.61
a1 −1.06 × 10−1

a2 −1.64 × 10−2

a3 5.23
a4 1.35 × 10−4

a5 4.91 × 10−1

a6 1.89 × 10−2

a7 −7.18 × 10−4
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4. Conclusions

(1) With the increase in laser power, the relative density first increased and then decreased.
When the laser power was 180 W, the relative density could reach the peak value
of 99.5%. However, the higher laser power of 190 W caused the decrease in relative
density, which was owing to the excessive energy input to the elements by burning,
resulting in the decrease in relative density.

(2) As the scanning interval increased from 0.06 mm to 0.10 mm with an interval of
0.01 mm, the density of the as-LPBFed TA15 titanium alloy decreased correspondingly
from 99.41% to 98.72% with a smooth trend. The descent trend of density with
increasing scanning interval was owing to the lower energy density per unit volume,
causing the decreased energy absorbed by the TA15 powders.

(3) The correlation between relative density, laser power, scanning speed, and scanning
interval was analyzed by the regression expression (A: laser power, B: scanning speed,
and C: scanning interval) as follows:

Relative density = 111.61 − 1.06 × 10−1 (A) − 1.64 × 10−2 (B) + 5.23 (C) + 1.35 × 10−4

(AB) + 4.91 × 10−1 (AC) + 1.89 × 10−2 (BC) − 7.18 × 10−4 (ABC)
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