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Abstract: In this work, we train a hybrid deep-learning model (fDNN, Forest Deep Neural Network)
to predict the doping level measured from the Hall Effect measurement at room temperature and
to investigate the doping behavior of Si dopant in both (100) and (010) β-Ga2O3 thin film grown
by the metalorganic vapor phase epitaxy (MOVPE). The model reveals that a hidden parameter,
the Si supplied per nm (mol/nm), has a dominant influence on the doping process compared with
other process parameters. An empirical relation is concluded from this model to estimate the doping
level of the grown film with the Si supplied per nm (mol/nm) as the primary variable for both (100)
and (010) β-Ga2O3 thin film. The outcome of the work indicates the similarity between the doping
behavior of (100) and (010) β-Ga2O3 thin film via MOVPE and the generality of the results to different
deposition systems.

Keywords: β-Ga2O3; deep learning; doping; MOVPE

1. Introduction

Recently, β-Ga2O3 has attracted significant attention in academia and industry as
one of the potential candidates for power-electronics application due to its wide bandgap
of 4.9 eV and a high theoretical breakdown voltage of up to 8 MV/cm2 [1]. A critical
advantage of β-Ga2O3 is the availability of large, high-quality native substrates grown
from the melt using various techniques, such as the Czochralski method [2,3], the floating-
zone techniques [4,5], edge-defined film-fed growth (EFG) [6], and the vertical Bridgman
method [7], which allows for the economically practical manufacturing of β-Ga2O3 when
compared to other wide-bandgap semiconductors. Due to these properties, β-Ga2O3 is
considered a potential alternative to GaN and SiC for future power electronics [8]. As
for most semiconductor device applications, a well-controlled doping process is crucial,
including a precise doping level, doping uniformity, and doping profile. Group IV elements,
such as Ge [9,10], Sn [11], and Si [12], are the potential n-type dopants to the β-Ga2O3 thin
films. Si, due to a wide doping range (1 × 1017 to 8 × 1019 cm−3) and low “memory effect”
in the reactor chamber [12], has attracted great interest for the doping of β-Ga2O3 thin film
grown by MOVPE.

Doping is a kinetically controlled process that is strongly influenced by growth condi-
tions. However, the nonlinear correlation between the parameters in the MOVPE process
(i.e., the metal and oxidant precursor concentrations, temperature, dopant concentration,
etc.) creates a multidimensional parameter space such that optimization for a specific
application is challenging and time-consuming. Therefore, finding a predictive empirical
relation that results in the desired doping level has become a challenge in thin-film research.
In the field of MOVPE-grown β-Ga2O3, the observed doping level is usually limited to two
situations: (1) only the relation between the doping level and a single process parameter is
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revealed, e.g., the chamber pressure [13,14] and the concentration of the Si precursor [12,15],
and (2) the reported results are usually collected in different deposition systems, which are
difficult to be applied to other systems directly. To deal with the above limitations, data-
driven approaches such as machine learning and deep learning are seen as promising tools
that are applied to explore the ample process-parameter space and understand the non-
linear relationship between them [16], and have already demonstrated a wide application
in different research topics such as bulk crystal growth [17–20], thin-film growth [21–23],
molecular-property prediction [24–26], and chemical-reaction development [27]. Neverthe-
less, the available dataset in lab-level research is usually small due to the limited workforce
and faculty resources, which is a critical issue for a data-driven methodology such as deep
learning. Building a predictive model for the lab-level research is challenging since the
number of fabricated samples (n) is usually smaller than the number of process parameters
(p), which is commonly known as the “large p, small n” problem [28], and raises both the
risk of overfitting and the challenge of high-variance gradients while training the neural
network. In the recent progress of the field of bioinformatics, Kong et al. [29] proposed a
novel deep-learning framework to vastly enhance the prediction accuracy with a hybrid
structure of the random forest and neural network, named Forest Deep Neural Network
(fDNN). This framework has a relatively higher prediction accuracy than existing methods
for the “large p, small n” problem. Inspired by their work, we implemented the fDNN
model to investigate the doping behavior of β-Ga2O3 thin film. The parameter space of
our dataset was chosen to cover several orders of magnitude in order to generalize the
modeling results over the space and to identify the parameter windows for different doping
levels. The results of the fDNN were used to explain the experimental findings within
the multidimensional parameter space, and an empirical relation was provided based on
the insight of the fDNN. In the current work, we identified the critical growth parame-
ter describing the free-electron concentration of the MOVPE-grown Si-doped β-Ga2O3
thin film (both (100) and (010) orientations) with the help of the fDNN model and our
experimental dataset. The dataset used for the model training consisted of 104 samples
of (100)-oriented films with a low defect density [30,31], and all of the incorporated Si in
the films was expected to be electrically active. To further examine the robustness of the
developed model, another dataset consisted of 15 samples of (010)-oriented films from
our previous results [12], and results from the literature were extracted and fitted with
satisfying results [15].

2. Materials and Methods
2.1. Experimental

The MOVPE system used in this work consisted of a vertical showerhead low-pressure
reactor (Structured Materials Industries, Inc., Piscataway Township, NJ, USA) equipped
with a rotating susceptor that was utilized for the deposition of n-type β-Ga2O3 thin films.
Triethylgallium (TEGa) was used as the metalorganic precursor for Ga and Tetraethy-
lorthosilicate (TEOS) was used as the metalorganic precursor for the n-type doping by
Si, while O2 (5N) was used as the oxidant. High-purity Ar (5N) acted as the push gas.
High-quality, semi-insulating (Mg-doped, [Mg] = ~2 × 1018 cm−3) (100) β-Ga2O3 substrates
were grown by the Czochralski method [2] at Leibniz-Institut für Kristallzüchtung (IKZ)
and commercial, semi-insulating (Fe-doped, [Fe] is in the range of 1 to 4 × 1018 cm−3) (010)
β-Ga2O3 substrates were grown by the EFG method [6]. To reduce possible Si contami-
nants on the substrate surface, the substrates were immersed in hydrofluoric acid (5%) for
5 min and then rinsed with deionized water before being loaded into the chamber. The
experimental parameter space for the β-Ga2O3 thin film dataset in this work is summarized
in Table 1. The electrical data (doping level and mobility) were obtained by conductivity
and Hall Effect measurements at room temperature in a van-der-Pauw configuration using
small InGa eutectic contacts that exhibited ohmic behavior. The chemical concentration of
the incorporated Si dopant and the thickness of the grown films were determined by the
secondary ion mass spectrum (SIMS) performed by RTG Mikroanalyse GmbH Berlin. The
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thickness of the grown films was also determined by a LayTec in situ process monitoring
system (multi-wavelength reflectance, EpiTT and EpiNet 2017). Since the reflectance spec-
troscopy required a significant contrast in the refractive index between film and substrate,
we used reference films that were simultaneously grown in the same runs on sapphire
substrates. For several deposition runs of β-Ga2O3 on (100) and (010) β-Ga2O3 substrate,
we could verify the same or comparable thickness by transmission electron microscopy
(TEM) and SIMS to that of the films deposited on sapphire substrates.

Table 1. The process parameters and their range in this work.

Parameter Range

Growth temperature 700–825 ◦C
Chamber pressure 5–70 mbar
TEGa molar flow 3 × 10−6–3 × 10−5 mol/min
TEOS molar flow 1 × 10−11–3 × 10−8 mol/min

Oxygen molar flow 3 × 10−5–5 × 10−2 mol/min
Push gas 1800–4000 sccm

2.2. Machine-Learning Methodology

The fDNN model consists of two parts: A random-forest part and a neural-network
part, as shown in Figure 1. The random-forest part is a feature selector to learn sparse
feature representations from raw inputs under the supervision of training labels, and the
neural network part is to predict outcomes for the new feature representations selected by
the random-forest part. The detailed derivations of the random forest and the Forest Deep
Neural Network refer to Leo Breiman [32] and Kong et al. [29].
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The experimental data that were input into the machine-learning model can be cat-
egorized into two groups: growth parameters such as precursor concentration, chamber
pressure, growth temperature, etc., and measurement values such as film growth rate
and free-carrier concentration. The process parameters were controllable and set by the
operator, and the measurement values were collected by the methodologies described in
the experimental section. The following 6 inputs (growth parameters) were entered for
the initiation training: growth temperature (◦C), chamber pressure (mbar), TEGa molar
flow (mol/min), TEOS molar flow(mol/min), oxygen molar flow(mol/min), and push
gas (sccm). The target variable was the free-carrier concentration (doping level) that was
measured by the Hall Effect measurement. In general, the free-electron concentration mea-
sured by the Hall Effect measurement may deviate from the chemical-dopant concentration
due to structural defects such as incoherent twin boundaries [33], the point defects such
as gallium vacancies [1,34], or the residual impurities such as Mg [35] and Fe [36], which
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significantly lower the doping efficiency and deteriorate the electrical properties. For the
films investigated in this work, the structural defects were not observed under transmission
electron microscopy (TEM) [12] or eliminated by applying substrate miscut [30,37] for the
(010) and (100) cases, respectively, and the residual impurities in the selected samples of this
work were also far below the doping level. Therefore, the point defects became the primary
compensating acceptor in our consideration. The gallium vacancies and their complexes
might play a dominant role [38,39]. In some related works [12,40], the concentration of the
gallium vacancy was found with to be <1 × 1016 cm−3, which is far lower than the dopant
concentration range (1017–1019 cm−3) that we investigated in this work. As a result, the
measured free-electron concentration was expected to be close to the chemical concentration
of Si measured by SIMS.

Subsequently, our dataset was randomly subdivided into a training set and a testing
set, with 85% of the data being randomly selected into the training set and the remaining
15% sample being classified into the testing set by default. The performances of the model
were expressed by statistical regression metrics: coefficient of determination (R2) and root
mean square error (RMSE). This work applied a k-fold cross-validation method to evaluate
the trained model [41], where k was 10. The method partitioned the training dataset into k
non-overlapping sets, and a total of k models were fit and evaluated.

The training of the fDNN model consisted of two steps. First, the training data,
including labels, were used to fit the random-forest model, and second, the predictions that
were transformed by one-hot encoding from each decision tree for all sets of the process
parameters were fed into the neural network. In the current implementation, the input for
the neural network was an n × M × 2 tensor rather than an n × M matrix, where n is the
input number of process parameter sets, and M is the number of trees in the random forest.
In the present model, M was chosen as 65, which is in the suggested range from Ref. [41],
and there was no significant improvement by further increasing M during the model
training. For the second model training step, the number of layers and the neuron number
of a hidden layer were determined by 10-fold cross-validations in the range of 1–3 hidden
layers and 9–16 neurons per hidden layer. The results are given in Supplementary Materials
Table S1. The highest R2, 0.8, was reached for 2 hidden layers and 14 neurons per layer.
Therefore, a multi-layer structure was defined with two hidden layers, one input layer, and
one output layer (14 neurons per hidden layer). The input layer represented the selected
features by the random-forest part, and the output layer corresponded to the free-electron
concentration measured by the Hall measurement. Rectified Linear Unit (ReLU) was the
activation function implemented in this neural network, and the Adam optimizer [42] was
chosen since it is currently the most widely used gradient-descent algorithm.

The prediction performance of the fDNN model also depends on both hyper-parameters
of the random forest and the neural network. The hyperparameters of the random forest
include the number of trees in the forest and tree-related parameters such as the depth of
the decision tree, the maximum number of features considered for splitting in a node, etc.
The hyper-parameters of a neural network are framework-related parameters such as the
number of hidden layers and the number of neurons per hidden layer and training-related
parameters such as the learning rate and the batch size. The values of the above hyperpa-
rameters values were optimized by a combination of manual exploration and grid search,
and the finalized values can be found in the Supplementary Materials Table S2.

In the research of thin-film development, one may not simply be satisfied with a
predictive model for a specific system but may also be interested in finding the key descrip-
tor for further process improvement. After fitting the fDNN model, a newly developed
variable-ranking mechanism [29], which combines the variable-importance calculation
embedded in random forests and the Connection Weights (CW) method [43] used in neural
networks, was applied to calculate a score for each process parameter as the variable
importance in the fDNN.
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3. Results and Discussion

With the help of the variable-ranking mechanism, we first examined the influence of
the initial input parameters (6 input parameters) on the doping level. The Ga precursor
molar flow played a significant role in predicting, followed by the Ar push-gas flow,
chamber pressure, and oxygen flow, as shown in Figure 2a. Surprisingly, the TEOS molar
flow did not significantly influence the doping level according to the variable-ranking
mechanism, which conflicts with our domain knowledge but can be explained by the
multicollinearity of the TEOS molar flow values, as shown in Supplementary Materials
Figure S1. The multicollinearity does not influence the prediction accuracy of the random-
forest model but may deteriorate the interpretability of the variable-ranking result [44,45].
Therefore, the importance of the TEOS molar flow should still be highly evaluated for
further model training. As reported in the literature, the Ga precursor is the dominant
parameter in predicting the growth rate of the β-Ga2O3 film [46]. Following the observed
similarity, the growth rate (nm/min) was introduced into the dataset, and a new parameter
was found to be a decisive descriptor for the doping prediction, as shown in Figure 2b.
This newly found parameter, the Si supplied per nm (mol/nm), can be defined by dividing
the concentration of Si precursor (mol/min) with the thin-film growth rate (nm/min),
which can be considered as the amount of Si dopant supplied while growing 1 nm of
β-Ga2O3 film.
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Figure 2. The parameter importance based on the trained fDNN model. The importance is ranked by
the features containing the most information for the model to make a prediction of the free-carrier
concentration in the films: (a) individual process parameters and (b) added with a created parameter:
Si supplied per nm (mol/nm).
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With this new parameter, a predictive model for (100) β-Ga2O3 thin film was developed
by including the Si supplied per nm and the other process parameters (7 input parameters).
A comparison between the predicted level and the measured doping level is presented in
Figure 3. A robust linear relationship between the predicted values and measured values
from the training and testing sets indicates that the fDNN model generalized very well to
individual datasets, providing the training set/testing set R2 of 0.99/0.86 and the RMSE
of 1.4 × 1016/1 × 1018. The prediction region of the developed model covered the range
from 1017 to 1019 cm−3. The prediction deviation, especially at a heavily-doped regime
(>1 × 1018 cm−3), mainly resulted from the noise of the measurement data and a relatively
finite experimental resolution. By estimating the normalized root mean square error value
(NRMSE), the prediction deviation was low enough for the practical estimation (NRMSE
values are ≤0.1 for both training and testing set; NRMSE will be 0 in an ideal case), and it
satisfied the limited size of the available dataset.
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Figure 3. The plot of the predicted doping level versus the measured free-carrier concentration from
(100) β-Ga2O3 thin films using the trained fDNN: (a) Training set and (b) Testing set.

Ten experiments on (010) oriented substrates were also performed in order to examine
the model’s validity for the substrate of different facet orientations (as shown in Table 2). A
comparison between the predicted and measured doping levels is provided in Figure 4.
The prediction error is in an acceptable range, which implies that the developed model was
flexible enough to provide desirable prediction accuracy for both (100) and (010) substrates
considering the system fluctuation of the MOVPE system. The possible prediction deviation
of the doping level may be due to the lack of reliable in situ growth-rate-measurement
techniques, as is widely utilized for the homoepitaxial growth of III-V group semiconductor
materials [47], and the unknown incoming precursor molar flow on the substrate surface.
It puts doubts on the precision of the collected growth parameters and the quality of data.

A model trained with a (100)-based dataset providing the generality to predict the
doping level of (010)-β-Ga2O3-grown films suggests that the doping process in both sub-
strate orientations may have no fundamental difference and share the same descriptor for
the doping process. The R2 of the predicted values for the (010) samples was 0.93 while the
RMSE was around 4 × 1017, which were comparable with the results of the (100) samples.
To further validate the observation of the trained model, two samples, (100) and (010), were
grown in the same chamber with the SIMS measurement results shown in Figure 5a,b. It
can be seen that the measured Si concentrations were both around 4 × 1017 cm−3, which
matches the result of the model. Si peaks with a concentration close to mid-1018 cm−3 or
higher are visible at the substrate and film interface in both samples. Similar Si peaks at
the interface between the substrate and the film have already been reported in the liter-
ature [13,48,49]. Different reasons have been suggested, such as remaining SiOx on the
substrate surface [49] or Si impurities inside the chamber [48], but no commonly agreed con-
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clusion has been confirmed yet. A detailed study on this specific issue has been performed
but is beyond the scope of this work, and the results will be presented elsewhere.

Table 2. Experimental parameters for the model validation on (010) β-Ga2O3 thin films. The
corresponding process parameters are listed below. The experimental results and detailed mechanism
in Table 2 are referred to Refs. [12,46].

No. Test Growth
Temperature (◦C)

TEGa Molar Flow
(mol/min)

Chamber Pressure
(mbar)

TEOS Molar Flow
(mol/min)

Growth Rate
(nm/min)

1 800 1.5 × 10−5 20 9.8 × 10−10 5.1
2 800 1.5 × 10−5 20 9.8 × 10−11 4.8
3 800 1.5 × 10−5 20 3.9 × 10−10 4.8
4 800 1.5 × 10−5 20 1.2 × 10−9 4.6
5 800 1.5 × 10−5 20 1.6 × 10−9 4.6
6 850 6.1 × 10−6 5 1.5 × 10−10 1.2
7 850 9.2 × 10−6 5 1.3 × 10−10 1.7
8 850 9.2 × 10−6 5 5.3 × 10−10 1.4
9 825 9.2 × 10−6 5 7.6 × 10−10 1.8

10 825 9.2 × 10−6 5 1.9 × 10−9 2.0
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A doping engineering strategy was developed following the results of the model,
with the Si supplied per nm (mol/nm) as the main variable. To provide an estimation for
doping engineering, we defined a concentration contrast, Ci+1

Ci
, between different doping

levels (i + 1 and i) with Si supplied per nm, Ni, as a single parameter as the following form
Equation (1):

Ci+1

Ci
=

Ni+1

Ni
(1)

Figure 6a,b show the free-carrier concentration obtained by the Hall Effect measure-
ment and the Si concentration obtained by the SIMS measurement versus the Si supplied
per nm (mol/nm) with the data points of both the in-house-grown (100) substrates (black
squares, labeled as IKZ) and commercial (010) (red circles, labeled as IKZ-Tamura) sub-
strates from our dataset and the literature (blue triangles, referred to Ref. [15]) fitted by
Equation (1) [15]. These findings indicate that the Si-doping behavior for β-Ga2O3 is
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substrate-orientation-independent, precursor-type-independent (SiH4 is the Si precursor
used in the work of Bhattacharyya et al. [15]), and equipment-independent.
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Figure 6. Comparison of the results of (a) Hall Effect measurement and (b) SIMS measurement from
both (100) and (010) MOVPE-grown β-Ga2O3 thin films with the Si supplied per nm (mol/nm) as the
main variable.

Studies on the temperature-dependent states indicated a two-donor level, with a
shallower donor energy level (ED1 = ∼10 − 35 meV) and deeper second donor (ED2 = ∼80
− 100 meV) energy levels [49–51]. Si is a common n-type dopant in β-Ga2O3 [52], which
is predicted by the first principle of density functional theory (DFT) [53] to be a shallow
donor with its preference site as a tetrahedral site Ga(I) under oxygen-rich condition due to
a lower formation energy. As a result, Si generally incorporates more at (ED1), leading to
efficient activation at room temperature, and shows no significant probability to substitute
the oxygen site. Therefore, the free-electron concentration is expected to be proportional
to the density of Si atoms supplied during the film growth. Besides, Equation (1) also
indicates a kinetically controlled doping process and that the thin-film growth rate is faster
than the diffusion rate of Si adsorbed onto the surface; with a fixed TEOS molar flow but
varied growth rate, the amount of supplied Si atoms on the substrate surface is constant,
but the surrounding gallium-oxide matrix changes, therefore, the actually-incorporated Si
amount and free-electron concentration (when all incorporated Si are electrically active) is
limited by the thin-film growth rate instead of the supplied amount of Si precursor. It is
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a well-known fact that the thin-film growth rate is an implicit function of a set of process
parameters, such as precursor concentration, chamber pressure, and growth temperature.
Following the discussion above, the previously reported observation of the influence of a
single process parameter [12–15,37] on the doping level can be considered to influence the
thin film growth rate instead of doping behavior. With the current model, we demonstrated
that the doping behavior in MOVPE-grown β-Ga2O3 thin film can be concluded by a
single descriptor from a macroscopic view, i.e., Si supplied per nm (mol/nm), when the
point defect is the only compensating factor in the film. In some other works, hydrogen
was revealed to be a potential shallow donor [39,54]. However, it was not stable in a
temperature-elevated environment, according to our experience.

4. Conclusions

This work demonstrated that a hybrid deep-learning model can precisely predict the
doping level in MOVPE-grown Si-doped β-Ga2O3 thin film in the range of 1017 to 1019 cm−3.
With the help of the model, a key descriptor, i.e., the Si supplied per nm (mol/nm), was
identified to show a linear relationship with the doping level of both (100) and (010)
β-Ga2O3 thin films. Furthermore, an empirical relationship was extracted in order to
estimate the doping level with a good generality for different substrate orientations, dopant
precursor types, and deposition systems. This will save time in process development at
both the lab and industry levels.
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