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Abstract: Recently, ice with stacking disorder structure, consisting of random sequences of cubic ice
(Ic) and hexagonal ice (Ih) layers, was reported to be more stable than pure Ih/Ic. Due to a much
lower free energy barrier of heterogeneous nucleation, in practice, the freezing process of water is
controlled by heterogeneous nucleation triggered by an external medium. Therefore, we carry out
molecular dynamic simulations to explore how ice polymorphism depends on the lattice structure of
the crystalline substrates on which the ice is grown, focusing on the primary source of atmospheric
aerosols, carbon materials. It turns out that, during the nucleation stage, the polymorph of ice
nuclei is strongly affected by graphene substrates. For ice nucleation on graphene, we find Ih is the
dominant polymorph. This can be attributed to structural similarities between graphene and basal
face of Ih. Our results also suggest that the substrate only affects the polymorph of ice close to the
graphene surface, with the preference for Ih diminishing as the ice layer grows.

Keywords: heterogeneous nucleation; ice polymorph; stacking disorder; phase selectivity

1. Introduction

Ice nucleation is important in the physical environment and biological systems [1–3]. Thus,
it is important to accurately estimate the nucleation rate of ice, which is highly related to
polymorph of ice crystalline [4,5]. For a long time, hexagonal ice (Ih) was assumed to be the
most stable ice phase at atmospheric pressure or below. However, this understanding has been
questioned by a large number of reports by computer simulation [5–8] and experiment [9–13]
in recent years. In the report of Lupi et al. [5] the stacking-disordered [14] critical ice crystallites
are about 14 kJ/mol of crystallite more stable than hexagonal ice crystallites (at 230 K). In these
simulations, homogeneous ice nucleation was considered, but in practice, it is almost impossible
to eliminate the influence of impurities or external boundaries on ice nucleation [15,16]. Due
to a much lower free energy barrier of heterogeneous nucleation, in practice, the freezing
process of water is usually controlled by heterogeneous nucleation. This raises the question
to what extent heterogeneous ice nucleation influences the recently discovered preference for
stacking-disordered ice.

As the main component of atmospheric aerosols, carbon surfaces can greatly promote
heterogeneous ice nucleation [17–19]. The crystallization temperature of ice on the graphite
surface has been found to be about 12 K higher than the temperature for homogeneous
ice nucleation [20,21]. This stimulated both experimental and molecular dynamics (MD)

Crystals 2021, 11, 1134. https://doi.org/10.3390/cryst11091134 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-0866-9839
https://orcid.org/0000-0001-9637-6210
https://orcid.org/0000-0001-8664-3135
https://orcid.org/0000-0001-5773-8506
https://orcid.org/0000-0002-8638-0993
https://doi.org/10.3390/cryst11091134
https://doi.org/10.3390/cryst11091134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11091134
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst11091134?type=check_update&version=1


Crystals 2021, 11, 1134 2 of 8

simulations investigation of heterogeneous ice nucleation on graphene/graphite and other
carbon surfaces [20,22–24].

However, the issue of how nucleation on carbon surfaces influences the preference
for stacking-disordered ice has so far not been addressed. To do so, we conducted MD
simulations for a series of heterogeneous ice nucleation/growth processes on different
carbon surfaces and found that the carbon surfaces have a strong influence on the local
ice polymorphs.

2. Methods

Modeling. As shown in Figure 1, ice nucleation was studied on four types of atomic
flat carbon surfaces with different lattice structures: Graphene (composed by six ring carbon
atom), Oblique-Haeckelite (O-Haeckelite, composed by 5-6-7 ring carbon atom), Rectangular-
Haeckelite (R-Haeckelite, composed by 5–7 ring carbon atom), and Random (all carbon atoms
distributed randomly, refer to Figure S1) [25]. The reason behind these specific surfaces is
that we aimed to clarify the effect of the hexagonal structure of graphene on the polymorph
of ice, compared to the two non-hexagonal Haeckelite structures and an amorphous 2D
carbon substrate. Analogous homogeneous ice nucleation (Homo) simulations without any
substrate were also carried out as control. The size of the 3D periodic simulation boxes
(which contain 15,029 water molecules) are 15.0 × 14.8 × 15.0 nm3 for the Graphene system,
16.3 × 15.3 × 15.0 nm3 for the O-Haeckelite system, 17.0 × 15.5 × 15.0 nm3 for the R-Haeckelite
system, 15.0 × 14.9 × 15.0 nm3 for the Random system, and 15.0 ×15.0 × 15.0 nm3 for the
Homo system, respectively.
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Simulation Details. All MD simulations were performed using large-scale 
atomic/molecular massively parallel simulator (LAMMPS, Version 5Jun19) package [26]. 
The coarse-grained mono-atomic mW water model was applied in all simulations [27]. 
The interactions between mW water molecules consist of a sum of pairwise interactions, 
while the hydrogen bonding between water molecules is represented by three-body con-
tributions, which can nucleate liquid water to ice homogeneously and heterogeneously at 
a certain supercooling without any advanced sampling method. The mW model correctly 

Figure 1. (a) Example of a simulation box. (b–d) show top view (part) of substrates Graphene, O-
Haeckelite, and R-Haeckelite, respectively. The top view (part) of substrates Random is shown in Figure S1.
Carbon atoms in substrate are portrayed as gray spheres. The water molecules are showed in red dots.

Simulation Details. All MD simulations were performed using large-scale atomic
/molecular massively parallel simulator (LAMMPS, Version 5Jun19) package [26]. The
coarse-grained mono-atomic mW water model was applied in all simulations [27]. The
interactions between mW water molecules consist of a sum of pairwise interactions, while
the hydrogen bonding between water molecules is represented by three-body contributions,
which can nucleate liquid water to ice homogeneously and heterogeneously at a certain
supercooling without any advanced sampling method. The mW model correctly displays
the anomalies and structures of liquid water, ices, and amorphous solid water and the
transitions between them [28]. The equations of water motion were integrated with the
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velocity Verlet algorithm with a time step of 5 fs. All the simulations were conducted
in the NVT ensemble. The temperature in the simulation systems was controlled by
a Nosé-Hoover thermostat. The same as in previous reports [20], ice nucleation was
studied through a cooling ramp of cooling rates of 1 K/ns, which was chosen after a
systematic test of the cooling rates by the authors. To calculate the freezing efficiency [20],
∆Tf = Tf − Thomo

f , 40 independent trajectories were performed for each system. The
interactions between water molecules and carbon atoms are taken from the previous report
by Lupi’ et al. [20], in which water–carbon interaction parameters are: σWC = 0.32 nm and
εWC = 0.13 kcal/mol, to reproduce the experimental water contact angle of water on a
graphene surface (namely 86◦) [29,30]. All the carbon atoms in the substrates were fixed
in all the MD simulations. Water molecules with Ih/Ic structure were identified using
the Chill + algorithm proposed by Nguyen et al. [31], which is available in the OVITO
package [32].

3. Results and Discussion

To investigate the effect of the substrate lattice structure on the polymorph of ice,
MD simulations were employed to study the ice formation process on different sub-
strates: Graphene, Oblique-Haeckelite (O-Haeckelite), Rectangular-Haeckelite (R-Haeckelite),
and a Random carbonaceous substrate. As shown in Figure 2, consistent with previous
reports [20,22,33,34], after an induction period (during which, the small water clusters
with ice structure formed and then disappeared quickly, due to the thermal fluctuation of
system), stable ice nuclei (larger than critical size Rc of ice) formed at the water-substrate
interface for the systems of Graphene, O-Haeckelite, R-Haeckelite, and Random, which should
be due to the much lower heterogeneous nucleation barrier. For these heterogeneous nucle-
ation systems, especially for the nucleation stage, the ice crystals exhibit a single-crystal-like
structure with barely any grain boundary, which is due to the 1-dimensional structure
match (in the direction perpendicular to the substrate surface) between a flat substrate
and a flat crystalline face of ice. While for the Homo system, the new-formed ice exhibits a
polycrystalline structure.
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Figure 2. Lateral view of the ice formation procedure from top to bottom: (i) ice nucleation; (ii) ice growth; (iii) water
freezing completely. Liquid water is represented by red dots. Water molecules in ice crystallites are represented by colored
ball-stick model (Ih: yellow; Ic, cyan). Carbon atoms in substrate are colored gray.
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Intriguingly, for the system of Graphene, the Ih structure occupies an absolute majority
in the ice nuclei during the stage of nucleation. With the growth of ice (after about 5–6 layers
of Ih formed), the Ic turns up, which is consistent with the previous report that the Ic grows
on Ih embryos to form a more stable stacking disorder structure [5]. When almost all
the liquid water freezes to ice, the percentage of Ic is not much different from that of Ih.
While for the systems of O-Haeckelite, R-Haeckelite, Random, and Homo, in all stages of ice
formation, the number of water molecules in Ic is always comparable with the number of
water molecules in Ih.

To reveal the phase change process of ice during heterogeneous nucleation processes,
the molecular numbers of Ic and Ih as a function of system temperature (namely simulation
time) were extracted from the ice formation MD trajectories (shown Figure 3). The snapshots
in Figure 2 share the same trajectories with the results of Figure 3 for each system. As shown
in Figure 3a (Graphene system), with the decrease in temperature, the nucleation process was
observed in the Ih ice before the steady growth of Ic. In the growth stage, the Ic exhibited a
lager growth rate than Ih, leading to an equivalent molecular number of Ih and Ic at the stage
of water freezing completely. While for each of the systems in Figure 3b–e, the Ic and Ih grow
simultaneously as the system temperature decreases, indicating that these systems have no
selectivity to ice polymorph.
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Figure 3. Molecular numbers of water molecules in Ic and Ih during a cooling ramp for the systems
of (a) Graphene, (b) O-Haeckelite, (c) R-Haeckelite, (d) Random, and (e) Homo. The dashed vertical lines
indicate position of snapshots of the ice nucleation, ice growth, and water freezing completely in
Figure 2. The blue borders are for panel (e).

To quantitatively reveal the polymorph of ice formed on different substrates, the
cubicity [6] (i.e., the proportion of Ic) of the new-formed ices was calculated from the
40 independent MD trajectories for each system (refer to Table 1 and Table S1). As shown in
Table 1, the cubicity of ice in the Homo system is 52.5 ± 1.3%, 53.9 ± 1.6%, and 58.2 ± 0.7%
for the stage of ice nucleation, ice growth, and water freezing completely, respectively,
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which is consistent with previous reports (about 55%) [5–7,35]. For ice formed on Graphene,
the cubicity is only 28.4 ± 2.5% at the nucleation stage, which is significantly lower than
that of the Homo system. The results suggest that the graphene substrate has a preferential
selectivity to Ih over Ic, which we attribute to the fact that Ih (basal face) and graphene
share the same hexagonal structure and have a similar lattice structure. The distance
between the center of two hexagon rings on graphene surface is 2.46 Å [24,36], and the
distance of water molecules in the basal face of Ih is 2.76 Å [37,38]. According to previous
reports [24,39,40], in the water–graphene system, the center of a hexagon formed by carbon
atoms corresponds to the adsorption energy minima positions of water molecules. Due
to the similarity of lattice structure between the basal plane of Ih and graphene, slight
adjustment of the position of interfacial water molecules can match the lattice structure
of basal plane of Ih. The calculated mismatch [41] between the substrate and the ice is
10.9%. The ice-nucleating protein, with a mismatch of 10% to ice, was found to be able
to dramatically promote the nucleation of ice [42]. In the report of Bi et al. [24], it was
found that the first ice layer on graphene substrate was mainly composed of Ih, while the
first ice layer on an amorphous graphene substrate (similar to the O-Haeckelite substrate in
this paper) was somewhat messy. The study of Bi et al. also suggests that the similarity
between the graphene and the basal face of Ih results in the selective promotion of the
formation of Ih over Ic. Moreover, in the study of ice formation on AgI [43,44], it is also
found that the substrate lattice structure can alter the polymorph of ice: Ih mainly observed
on the hexagonal β-AgI, while the Ic mainly found on cubic γ-AgI. These reports are in
good agreement to our MD simulation results, confirming that the formation of Ih can be
selectively promoted by graphene surface.

Table 1. Average cubicity of each simulation system. From top to bottom are the stages of ice
nucleation, ice growth, and water freezing completely, respectively.

Substrate Graphene O-Haeckelite R-Haeckelite Random Homo

Cubicity/%
28.4 ± 2.5 41.2 ± 1.9 42.9 ± 2.3 42.6 ± 2.8 52.5 ± 1.3
34.2 ± 2.9 45.2 ± 4.5 44.0 ± 3.7 45.5 ± 3.9 53.9 ± 1.6
53.4 ± 1.8 55.3 ± 1.5 56.5 ± 1.5 55.0 ± 1.7 58.2 ± 0.7

To further investigate the effect of substrate lattice structure on heterogeneous ice
nucleation, freezing efficiency of the substrates, based on the method of Lupi et al. [20],
were calculated (shown in Figure 4). It follows that the calculated freezing efficiencies for
Graphene, O-Haeckelite, R-Haeckelite, and Random substrates are 12.7 ± 0.6 K, 11.5 ± 1.2 K,
12.5 ± 1.0 K, and 11.1 ± 1.3 K, respectively, which are consistent with the previous reports
that the crystallization temperature of ice on the graphite surface is 12 ± 3 K higher than
the temperature of homogeneous ice nucleation [20,21]. The freezing efficiency of these
different substrates has no significant difference, indicating that, although the substrates
exhibit different polymorph selectivity of ice, the heterogeneous nucleation promotion
effects of the substrates on ice are similar. Moreover, it should be pointed out that the
heterogeneous nucleation promotion effect changes with the system temperature [24]. To
calculate the freezing efficiency, the system temperature is steadily decreased. The freezing
processes are driven by a very high supercooling, which can reduce the heterogeneous
nucleation promotion effect. For instance, the heterogeneous ice nucleation rates on
different substrates exhibit significant differences only when the system temperature
increased to as high as 235 K [24]. Thus, for a systematic study, e.g., heterogeneous
nucleation barrier and heterogeneous nucleation rate, it is necessary to gain more accurate
results by taking into account the influence of temperature. Another thing that needs to
be specified is that, in our results, the calculated homogeneous nucleation temperature
of ice is 1.6 K higher than that in the previous report [20], which can be attributed to the
difference in the number of water molecules between this work and the previous report
(refer to Figure S2). According to classic nucleation theory (CNT), the greater the number
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of water molecules in the system, the greater the nucleation probability of ice formation is,
which could lead to this 1.6 K discrepancy.
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4. Conclusions

MD simulations of heterogeneous ice formation on a series of carbon surfaces show
the significant impact of the substrate lattice structure on the polymorph of ice that is
formed, but only during the nucleation stage. Specifically, graphene substrates have a
preferential selectivity toward the formation of Ih over Ic during the nucleation stage, due
to the similarity between the lattice structure of graphene and Ih. After the nucleation
stage the cubicity of new-formed ice increases up to about 53%, due to the higher stability
of stacking disordered ice. When subsequently the water freezes completely, the cubicity
of ice ranges from 53% to 58%, in good agreement with homogeneous ice formation
and previously reported results. This study enhances our understanding of the surface
selectivity mechanism on certain ice polymorphs and provides a unique perspective in the
field of crystal growth.
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