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Remarkable Increase of Fluorescence Quantum Efficiency by
Cyano Substitution on an ESIPT Molecule 2-(2-Hydroxyphenyl)
benzothiazole: A Highly Photoluminescent Liquid Crystal Dopant
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Abstract: Fluorescent molecules with excited-state intramolecular proton transfer (ESIPT) character
allow the efficient solid-state luminescence with large Stokes shift that is important for various
applications, such as organic electronics, photonics, and bio-imaging fields. However, the lower
fluorescence quantum yields (ΦFL) in the solution or viscous media, due to their structural relaxations
in the excited state to reach the S0/S1 conical intersection, shackle further applications of ESIPT-active
luminophores. Here we report that the introduction of a cyano group (-CN) into the phenyl group of
2-(2-hydroxyphenyl)benzothiazole (HBT), a representative ESIPT compound, remarkably increase
its fluorescence quantum yield (ΦFL) from 0.01 (without -CN) to 0.49 (with -CN) in CH2Cl2, without
disturbing its high ΦFL (=0.52) in the solid state. The large increase of the solution-state ΦFL of
the cyano-substituted HBT (CN-HBT) is remarkable, comparing with our previously reported ΦFL

values of 0.05 (with 4-pentylphenyl), 0.07 (with 1-hexynyl), and 0.15 (with 4-pentylphenylethynyl). Of
interest, the newly-synthesized compound, CN-HBT, is miscible in a conventional room-temperature
nematic liquid crystal (LC), 4-pentyl-4′-cyano biphenyl (5CB), up to 1 wt% (~1 mol%), and ex-
hibits a large ΦFL of 0.57 in the viscous LC medium. A similar ΦFL value of ΦFL = 0.53 was also
recorded in another room-temperature LC, trans-4-(4-pentylcyclohexyl)benzonitrile (PCH5), with a
doping ratio of 0.5 wt% (~0.5 mol%). These 5CB/CN-HBT and PCH5/CN-HBT mixtures serve as
light-emitting room-temperature LCs, and show anisotropic fluorescence with the dichroic ratio of
3.1 upon polarized excitation, as well as electric field response of luminescence intensity changes.

Keywords: cyano group; ESIPT; fluorescence; host–guest liquid crystal; luminescent liquid crystal

1. Introduction

The light-emitting nematic liquid crystal (LC) phase at room temperature is important
for polarizer-less display applications with bright and low-power characteristics [1–4].
Nevertheless, it is quite challenging, by using a single new compound, to obtain nematic
LC phases with a single molecule in a wide temperature range covering room temperature.
The mixing strategy, a characteristic feature of LC materials, is a solution to overcome
this challenge, which is utilized for the preparation of functional room-temperature LCs—
-functional molecules are doped in a known room-temperature LCs. These doping systems
are also called as host-guest LCs, where functional molecules (=dopant) are “guest” and
room temperature LCs are “host”. Dye-doped LCs were proposed earlier as such host–
guest LCs, for the application of new display systems [5–7]. They have been considered
available for other applications, such as optical storage devices [8], security devices [9],
and smart windows [10]. Light-emitting nematic LCs are accessible by such host–guest
LCs using a luminescent dopant and room-temperature LC. Miscibility in the host LCs and
efficient emission are the basic requisites for the luminescent dopant molecules. Visible-
region luminescent molecules composed of rod-shaped, small-size aromatic cores are
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promising for sufficient miscibility. In this context, our group has focused on the use
of excited-state intramolecular proton transfer (ESIPT)-type fluorescent dopants based
on 2-(2-hydroxyphenyl)benzothiazole (HBT) [11–14]. The HBT-based molecules have
relatively small aromatic cores compared with typical dye molecules. Moreover, they have
a benefit of transparency in the visible region, but they are photoluminescent in green color
(~530 nm) upon ultraviolet excitations, which rely on the large Stokes shift due to the four-
level photo cycle including the ESIPT between enol and keto tautomers (Figure 1) [15–18].

Crystals 2021, 11, x FOR PEER REVIEW 2 of 13 
 

 

devices [9], and smart windows [10]. Light-emitting nematic LCs are accessible by such 
host–guest LCs using a luminescent dopant and room-temperature LC. Miscibility in the 
host LCs and efficient emission are the basic requisites for the luminescent dopant mole-
cules. Visible-region luminescent molecules composed of rod-shaped, small-size aromatic 
cores are promising for sufficient miscibility. In this context, our group has focused on the 
use of excited-state intramolecular proton transfer (ESIPT)-type fluorescent dopants based 
on 2-(2-hydroxyphenyl)benzothiazole (HBT) [11–14]. The HBT-based molecules have rel-
atively small aromatic cores compared with typical dye molecules. Moreover, they have 
a benefit of transparency in the visible region, but they are photoluminescent in green 
color (~530 nm) upon ultraviolet excitations, which rely on the large Stokes shift due to 
the four-level photo cycle including the ESIPT between enol and keto tautomers (Figure 1) 
[15–18]. 

Previously, we discussed that ESIPT molecules inherently possess the aggregation-
induced emission (AIE) character [19,20] and tend to be less or almost non emissive in a 
solution state due to the structural relaxation in the excited state to approach conical in-
tersections from the keto* state by a bond rotation (Figure 1), resulting in the acceleration 
of nonradiative decays [11,12,14]. However, we discovered that the introduction of aryl 
[11], alkynyl [12] or arylene ethynylene [14] groups into HBT (Figures 2 and S1) increases 
the fluorescence quantum yield (ΦFL) up to 0.15 in CH2Cl2 [14] (ΦFL = 0.01 for HBT in 
CH2Cl2; Figure 2). Of interest, room-temperature LC hosts, such as 4-cyano-4′-pentylbi-
phenyl (5CB), can be treated as viscous solvents––the absolute values of ΦFL in 5CB are 
larger than those in CH2Cl2, which can be explained by assuming that the rotation of the 
carbon–carbon bond between 2-hydroxyphenyl and benzothiazole units is dependent on 
the viscosity of the surrounding media [21,22]. The largest value of ΦFL in 5CB is 0.32 
among those of the HBT derivatives we developed thus far [12,14]. Meanwhile, Jacquemin, 
Massue, Ulrich and coworkers have reported the positive effect of silylethynyl groups 
introduced in 2-(2-hydroxyphenyl)benzoxazole (HBO) on the value of ΦFL in organic sol-
vents [23–26] and recently extended the findings to HBT and 2-(2-hydroxyphenyl)ben-
zimidazole (HBI) [27]. They and we have independently mentioned the impact of the in-
troduced alkyne groups on the restriction of rotation around the C–C bonds in HBT or 
HBO [12,14,26,27]. Zhang and coworkers have also reported arylethynyl-extended HBT 
derivatives [28,29]. Although these studies indicate the importance of alkyne substituents 
for the HBT, HBO and HBI series, the molecular design of the ESIPT compounds still 
needs to be improved for maximizing the potential of efficient ESIPT fluorescence in sol-
vents and host LCs. 

 
Figure 1. Schematic illustration of potential energy diagram of ESIPT process in 2-(2-hydroxy-
phenyl)benzazole. 
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Previously, we discussed that ESIPT molecules inherently possess the aggregation-
induced emission (AIE) character [19,20] and tend to be less or almost non emissive
in a solution state due to the structural relaxation in the excited state to approach con-
ical intersections from the keto* state by a bond rotation (Figure 1), resulting in the
acceleration of nonradiative decays [11,12,14]. However, we discovered that the
introduction of aryl [11], alkynyl [12] or arylene ethynylene [14] groups into HBT
(Figures 2 and S1) increases the fluorescence quantum yield (ΦFL) up to 0.15 in CH2Cl2 [14]
(ΦFL = 0.01 for HBT in CH2Cl2; Figure 2). Of interest, room-temperature LC hosts, such
as 4-cyano-4′-pentylbiphenyl (5CB), can be treated as viscous solvents—-the absolute val-
ues of ΦFL in 5CB are larger than those in CH2Cl2, which can be explained by assuming
that the rotation of the carbon–carbon bond between 2-hydroxyphenyl and benzothiazole
units is dependent on the viscosity of the surrounding media [21,22]. The largest value
of ΦFL in 5CB is 0.32 among those of the HBT derivatives we developed thus far [12,14].
Meanwhile, Jacquemin, Massue, Ulrich and coworkers have reported the positive effect of
silylethynyl groups introduced in 2-(2-hydroxyphenyl)benzoxazole (HBO) on the value
of ΦFL in organic solvents [23–26] and recently extended the findings to HBT and 2-(2-
hydroxyphenyl)benzimidazole (HBI) [27]. They and we have independently mentioned
the impact of the introduced alkyne groups on the restriction of rotation around the C–C
bonds in HBT or HBO [12,14,26,27]. Zhang and coworkers have also reported arylethynyl-
extended HBT derivatives [28,29]. Although these studies indicate the importance of
alkyne substituents for the HBT, HBO and HBI series, the molecular design of the ESIPT
compounds still needs to be improved for maximizing the potential of efficient ESIPT
fluorescence in solvents and host LCs.
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In this article, we report that the introduction of a cyano group into the 4-position of
2-hydroxyphenyl group in HBT drastically increase its ΦFL from 0.01 (HBT) to 0.49 (with
-CN) in CH2Cl2, without disturbing its high ΦFL (=0.52) in the solid state (Figure 2). The
large increase of the solution-state ΦFL of the cyano-substituted HBT (CN-HBT) is remark-
able, comparing with our previously reported ΦFL values of 0.05 (with 4-pentylphenyl;
C5P-HBT), 0.07 (with 1-hexynyl, C4-C≡C-HBT), and 0.15 (with 4-pentylphenylethynyl,
C5P-C≡C-HBT) (Figure 2). It should be noted that CN-HBT is recently reported as an
example of the products in the development of photoredox-type C–H hydroxylation re-
actions [30,31], but no study on the photophysical properties was reported except for one
article that focused on the use of HBT derivatives including CN-HBT as a γ-ray radiation
scintillator [32]. Polystyrene films doped with CN-HBT were exposed to irradiation and
the generated excited states emit keto* emission. However, no detailed studies by UV
light excitations nor quantitative discussions were reported. Here we found that CN-HBT
is miscible in 5CB up to 1 wt% (~1 mol%), and exhibits a large ΦFL of 0.57. Further de-
tailed experiments confirm the anisotropic absorption and fluorescence of CN-HBT in 5CB,
revealing its potential as a new ESIPT-based LC dopant with highly efficient fluorescence.

2. Materials and Methods
2.1. General Methods

All the chemicals were purchased from Tokyo Chemical Industry Co. Ltd. (Tokyo,
Japan), Fujifilm Wako Pure Chemical Co. (Osaka, Japan), or Merck and Co. (Sigma-Aldrich)
(St. Louis, MO, USA), and used as received. TLC analyses were performed on a glass
coated with Silica gel 70 F254 purchased from Fujifilm Wako Pure Chemical Co. Column
chromatography was performed on PSQ60B silica gel (spherical) purchased from Fuji
Silysia Chemical Ltd. (Aichi, Japan). 1H-NMR and 13C-NMR spectra were recorded in
CDCl3 on a Varian Mercury 400 spectrometer, operating at 400 and 100 MHz, respectively,
where chemical shifts were determined with respect to tetramethylsilane (TMS, δ 0.00)
or CHCl3 as an internal reference. All the mixtures of 5CB/CN-HBT and PCH5/CN-
HBT were prepared in the glass vial at corresponding weight ratios. Each mixture was
heated to 50 ◦C to give transparent homogenous mixtures and allowed to cool down to
room temperature.

2.2. Phase Characterizations

The optical textures were recorded by an Olympus BX53-P polarizing optical mi-
croscope (POM) equipped with a Mettler HS82 hot-stage system, where the sample was
loaded into a 5-µm thick sandwiched glass cell without surface treatment. Phase transi-
tion behaviors were characterized by a Hitachi High-Tech Science Corporation DSC620
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differential scanning calorimeter (DSC). The 1st heating run was started from 30 ◦C at
10 K min–1, and further heat/cool cycles were conducted at the same scan rate. X-ray
diffraction (XRD) experiments of the powders of the CN-HBT and 5CB/CN-HBT mixtures
were carried out using a Rigaku MiniFlex600 X-ray diffractometer (λ = 1.54 Å) with a D/teX
Ultra semiconductor detector. The sample was mounted on a silicon non-reflecting plate.

2.3. Absorption and Fluorescence Spectroscopy

Electronic absorption spectra were recorded on a JASCO V-750 spectrometer. Polar-
izing absorption spectra were carried out using a WP25M-UB mounted wire grid polar-
izer (ϕ~25 mm). Fluorescence spectra were measured on a JASCO FP-8500 fluorescence
spectrophotometer. Absolute fluorescence quantum yields (ΦFL) were evaluated on this
spectrometer with a JASCO ILF-835 fluorescence integrate sphere unit.

2.4. Fluorescence Lifetime Measurements

Fluorescence lifetimes were evaluated on a Hamamatsu Photonics Quantaurus-τ using
365 nm LED excitation pulses. Fluorescence decay profiles were obtained by averaging
a 20 nm range around the peak wavelength. The measurements were performed using
powders of CN-HBT and 5CB/CN-HBT (99/1 wt/wt) LCs in a quartz petri dish, and a
CH2Cl2 solution of CN-HBT (50 µM) in a 1 × 1 cm quartz cell.

2.5. Polarizing Fluorescence Microscopy

Fluorescence anisotropy was evaluated by micro-spectroscopy of polarized fluores-
cence. Glass sandwich cells with a cell-gap of 15 µm and a parallel rubbing treatment
on both substrates were purchased from EHC Co., Japan. A 5CB/CN-HBT mixture was
injected in the cell by capillary action and observed under a Nikon Eclipse LV100N-POL
POM with fluorescence measurement capability using a ×10 objective lens. UV light
(λEx, max = 385 nm) from a Thorlabs UV-M385L2 LED was passed through a linear polar-
izer and irradiated on the sample through a fluorescence cube equipped with a Nikon
330-380 band-pass excitation filter, Semrock Di01-R405 dichroic mirror, and Edmund LP420
long-pass emission filter. The fluorescence spectrum was measured using a Hamamatsu
PMA-12 fiber-coupled spectrometer after passing a polarizer (hereafter referred to as
analyzer). The measurement spot diameter was~100 µm.

2.6. Synthesis

CN-HBT (2-(benzo[d]thiazol-2-yl)-5-cyanophenol). Anhydrous dimethylacetamide
(DMAc) (30 mL) and one drop of poly(methylhydrosiloxane) (PMHS) was added to the mix-
ture of I-HBT [11] (151 mg, 0.43 mmol), Zn(CN)2 (52 mg, 0.45 mmol), tris(dibenzylideneace-
tone)dipalladium (Pd2(dba)3, 8.7 mg, 0.0095 mmol), and 1,1′-diphenylphosphinoferrocene
(dppf, 7.4 mg, 0.013 mmol) in a 20 mL Schlenk tube under argon, and the suspension
was degassed by freeze-pump-thaw cycles 3 times. The mixture was stirred at 110 ◦C
for 23 h, and then filtered off from an insoluble fraction through silica gel by eluting
with EtOAc. The filtrate was evaporated to dryness under reduced pressure, and the
residue was purified by silica gel column chromatography with hexane/EtOAc (5/1 v/v)
as an eluent to give pure CN-HBT in a 73% yield (0.079 g, 0.31 mmol). 1H NMR (CDCl3):
7.23 (dd, J = 8.4, 1.6 Hz, 1H, Ar-H), 7.39 (d, J = 1.6 Hz, 1H, Ar-H), 7.49 (td, J = 7.6,
0.8 Hz, 1H, Ar-H), 7.58 (td, J = 7.2, 1.2 Hz, 1H, Ar-H), 7.78 (d, J = 8.4 Hz, 1H, Ar-H), 7.96 (dd,
J = 8.0, 1.2 Hz, 1H, Ar-H), 8.04 (d, J = 8.0 Hz, 1H, Ar-H), 12.86 (s, 1H, OH). 13C NMR
(CDCl3): 167.52, 157.98, 151.64, 132.99, 129.07, 127.40, 126.66, 122.88, 122.70, 121.90, 121.86,
120.57, 118.22, 115.44.

3. Results and Discussion
3.1. Synthesis and Characterization of CN-HBT

We turned our attention to CN-HBT to investigate whether the positive “triple bond”
effect on the photoluminescence quantum yield is available with a cyano group in addition



Crystals 2021, 11, 1105 5 of 13

to an alkynyl one. As shown in Scheme 1, the cyano group was smoothly introduced
by the cross-coupling reaction of the I-HBT with Zn(CN)2 with the aid of palladium–1,1-
bis(diphenylphosphino)ferrocene (dppf) complex as a catalyst [33]. The reaction mixture
was easily purified and isolated by column chromatography using silica gel, and the
observed peaks in 1H and 13C NMR spectra were consistently assigned (Figures 3 and S2).
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microscopy images of CN-HBT in glass cell at (d,e) 25 ◦C and (f,g) 220 ◦C (d,f) without and (e,g) with
crossed polarizers.

The electronic absorption spectrum of the CN-HBT in CH2Cl2 showed peaks at 347
and 362 nm in the S0–S1 transition range, exhibiting a ca. 0.12 eV red shift from the
absorption spectrum of the HBT (Figure 3a). The absorption edges of the CN-HBT and C4-
C≡C-HBT are almost identical to each other, which suggests that the π-conjugation degree
of a cyano group is similar with that of the alkynyl group. The fluorescence spectrum
of the CN-HBT in CH2Cl2 shows one broad fluorescence band with a peak at 520 nm
(Figure 3a), which is assignable to the keto* emission of HBT derivatives. No enol* emission
was observed from the CN-HBT, suggesting that the energy barrier of the ESIPT was
small enough to undergo and the energy level of the keto* state was much lower than
that of the enol* state. The observed large Stokes shift of 1.04 eV further supports the
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ESIPT-based emission. The keto* emission was not only observed in organic solvents but
also in room-temperature nematic LCs. A small amount of CN-HBT was dissolved in
5CB or trans-4-(4-pentylcyclohexyl)benzonitrile (PCH5) to yield homogeneous host–guest
LCs (described later in detail). These two LCs, upon photoexcitation at 365 nm, clearly
displayed fluorescence at 528 and 524 nm, respectively (Figure 3b), characterizing the
ESIPT-based keto* emission. The fact that there is no fluorescence from the 5CBs in the
CN-HBT/5CB mixture is most probably because CN-HBTs are selectively excited by the
365 nm light, and a small number of directly excited 5CB molecules are quenched after
transferring their energy to the CN-HBTs. CN-HBT in the solid state is photoluminescent
in the same region with no significant wavelength shift (Figure 3b), implying no electronic
interactions among adjacent neighboring molecules.

Differential scanning calorimetry of the CN-HBT powder revealed one endothermic
peak at 213 ◦C on the 1st heating starting from 30 ◦C at 10 K min–1 (Figure 3c). It corre-
sponds to the phase transition from crystal (Cr) to isotropic liquid (IL), which is confirmed
by the disappearance of optical textures (Figure 3d) at this temperature on heating in POM
with crossed polarizers. This Cr–IL transition is reproduced on the 1st cooling (203 ◦C), the
2nd heating (213 ◦C), and further heating/cooling cycles.

3.2. Preparation and Characterization of Host–Guest LCs Using CN-HBT as Guest Dopant

To realize light-emitting room-temperature LCs, homogeneous mixtures were pre-
pared by mixing the CN-HBT in a room temperature LC as a guest luminophore. The
mixtures were prepared by mixing 5CB or PCH5 with CN-HBT at different weight ratios
in a glass vial. After checking the complete dissolution of the CN-HBT in the host LCs
upon heating at 50 ◦C to form colorless transparent liquid, the liquid was cooled down to
room temperature. A mixture of 5CB/CN-HBT (99/1 wt/wt) is visually homogeneous,
but its 2 wt% (98/2 wt/wt) mixture was obviously non-homogeneous, giving small pieces
of precipitated solid at room temperature. On the other hand, the PCH5/CN-HBT was
non-homogeneous even at 1 wt% (99/1 wt/wt). A mixture containing 0.5 wt% of CN-
HBT (99.5/0.5 wt/wt) was confirmed as a visually homogeneous mixture. The absence of
alkyl chains and the presence of a cyano group may both contribute to the relatively low
solubility (miscibility) compared with the HBT (maximum miscibility into 5CB: 9 wt%).

The non-homogeneity (phase separation) was also checked by means of POM and
X-ray diffraction analysis. As exemplified by the 5CB/CN-HBT system, the 1 wt% mixture
loaded in a glass cell without surface treatment showed a marble texture in POM between
crossed polarizers (Figure 4a), indicating a uniform nematic LC phase at room temperature.
When the mixture was heated to 40 ◦C, the optical textures disappeared to form an IL
phase (Figure 4b). In the PCH5/CN-HBT (99.5/0.5 wt/wt), a typical nematic schlieren
texture was observed at room temperature (Figure 4c). On the other hand, after loading
the 5CB/CN-HBT (98/2 wt/wt) mixture into a glass cell over 40 ◦C and cooling it down
to room temperature, needle-shaped crystals were precipitated (Figure 4d), which agrees
with the precipitation behavior confirmed by the naked eye.

CN-HBT in the solid powder exhibited several diffraction peaks in the XRD
(Figure 4e), which suggests that the powder is not amorphous but crystalline at room
temperature. On the other hand, the 5CB/CN-HBT (99/1 wt/wt) gave a featureless pat-
tern. The observed broad peak at approximately 2θ = 20◦ results from the fluctuating
pentyl groups from the 5CB, which is evidenced by the XRD pattern of the 5CB alone
(Figure 4e). In contrast, diffraction peaks were observed for a mixture of 5CB/CN-HBT
(98/2 wt/wt) (Figure 4e). These peaks clearly indicate the formation of CN-HBT crystal-
lites in the mixture, since the pattern and peak positions of the CN-HBT and 5CB/CN-HBT
(98/2 wt/wt) resemble one another. The homogenous mixtures were further characterized
by DSC. The peaks observed during the 1st cooling and 2nd heating, observed in the
5CB/CN-HBT (99/1 and 98/2 wt/wt), denote a phase transition between nematic LC
and the IL phase (Figure 4f). The single transition of N–IL phases in the 5CB/CN-HBT
(98/2 wt/wt) is against our initial expectation because the mixture is non-homogeneous
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judging from the POM and XRD measurements. However, we considered that the mixture
became a homogeneous nematic LC state between 25 and 34 ◦C due to the increased
solubility upon elevating the temperature, and thus showed a single N–IL transition in
the DSC. Overall, based on the visual and POM observations, as well as XRD analysis, we
concluded that the CN-HBT is miscible and serves as a fluorescent dopant in the 5CB and
PCH5 up to 1wt% (=1 mol%) and 0.5 wt% (=0.5 mol%), respectively.
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3.3. Rate Constant Analysis of Photoluminescence of CN-HBT in Solution and Nematic LCs

We discuss the impact of a cyano group on the photoluminescence behavior of the
HBT motif from the aspect of radiative (fluorescence) and nonradiative rate constants, kr
and knr, respectively. When the fluorescence decay follows a single exponential equation,
the values of kr and knr can be estimated by the following well-known equations,

ΦFL = kr (kr + knr)-1 (1)

τFL = (kr + knr)-1 (2)

where ΦFL and τFL denote an absolute fluorescence quantum yield and fluorescence
lifetime, respectively. These parameters were evaluated by fluorescence spectroscopy
using an integrated sphere and transient fluorescence spectroscopy with photoexcitation
at 365 nm. The obtained values for both in the CH2Cl2 and 5CB are summarized in
Table 1. The most interesting finding here is the remarkably large ΦFL value of 0.49 for
CN-HBT in CH2Cl2, which is much larger than that of the previously-reported hexynyl
analogue (C4-C≡C-HBT, ΦFL = 0.07). In 5CB, CN-HBT marked ΦFL = 0.57 that is still
significantly larger than that of C4-C≡C-HBT (ΦFL = 0.32). The values of τFL reveal
a good correlation with the substituents—-the order of the lifetime length is
CN-HBT > C4-C≡C-HBT > HBT. As shown in Table 1, the values of kr are almost constant
at ~1 × 108 s–1, while knr ranges from ~100 × 108 to ~102 × 108 s–1. The former indicates
the negligible impact of both the local dipoles and extended conjugations on total transition
dipole moments from all orbitals. The nonradiative decay processes are restricted by the
introduction of the alkynyl groups [12], but we discovered that the cyano group has a much
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greater effect. Considering that the fluorescence is emitted from single molecules in diluted
solutions and LC matrices, the nonradiative decays likely originate from a structural relax-
ation around carbon–carbon bond rotation between 2-hydroxyphenyl and benzothiazole
units. Our experimental observations suggest that a remote manipulation to suppress
the nonradiative decays is certainly possible, without changing the fluorescence energy
(wavelength), by incorporating appropriate substituents on the 2-hydroxyphenyl part. The
energy landscape at the excited states is currently under investigation and is expected to
provide an explanation for the unexpectedly high efficiency induced by the cyano group in
suppressing the nonradiative decay processes from S1 to S0 [12,14,34].

Table 1. Fluorescent quantum yield ΦFL, fluorescence lifetime τFL, and radiative rate constant kr and nonradiative rate
constant knr for HBT, C4-C≡C-HBT, and CN-HBT in CH2Cl2 (5 × 10–5 M) and 5CB (1/99 wt/wt) (λEx = 365 nm).

ΦFL/− τFL/ns kr/108 s–1 knr/108 s–1

in CH2Cl2 in 5CB in CH2Cl2 in 5CB in CH2Cl2 in 5CB in CH2Cl2 in 5CB

HBT 0.01 0.07 0.10 0.98 1.0 0.72 102 9.5
C4-C≡C-HBT 0.07 1 0.32 1 0.85 2.95 0.8 1.1 11 2.3

CN-HBT 0.49 0.57 4.81 4.94 1.0 1.1 1.1 0.87
1 Ref. [12].

3.4. Polarizing Absorption and Fluorescence Spectra

The alignment of the luminescent molecules plays an important role in obtaining
polarized fluorescence with a high dichroic ratio [35–37]. Taking advantage of the potential
of CN-HBT as a colorless fluorescent dopant with a high ΦFL of 0.57, basic properties
including polarized absorption and photoluminescence were evaluated for the host–guest
LC composed of 5CB and CN-HBT. The 5CB/CN-HBT (99/1 wt/wt) mixture was loaded,
by capillary action, into a 15 µm gap sandwiched ITO-glass cell whose surfaces are coated
with an antiparallel-rubbed polyimide. This surface treatment induces the uniaxial align-
ment of the long molecular axis of the 5CB in the nematic phase. Surrounded by the aligned
5CB molecules, the dispersed dopant molecules CN-HBTs are forced to align roughly in
the same direction, even though the shape of the CN-HBT molecules themselves is not a
typical rod.

Figure 5 represents the polarized absorption spectra measured with a polarizer in-
serted into the optical path. The LC cell filled with 5CB absorbed light due to the presence
of ITO, glass, polyimide surface, and 5CB. The difference of absorbance depending on the
polarizer directions (parallel // or perpendicular ⊥) appeared below ~345 nm, indicating
the absorption by 5CB takes place in this region. The absorption over ~345 nm should
derive from ITO and pseudo-absorption due to the light scattering. Then, the cell filled with
5CB/CN-HBT (99/1 wt/wt) afforded absorption spectra with characteristic two peaks over
345 nm that originates from aligned CN-HBT molecules. The polarized light in the parallel
direction was more absorbed than that in the perpendicular direction. The dichroic ratio
was calculated as DA = 2.9, according to the equation of ∆A//,367nm/∆A⊥ ,367nm, where the
definition of each absorbance is indicated in Figure 5. Similarly, the degree of polarization,
ρA, was calculated as 0.48 by Equation (3) [38],

ρA = (A// − A⊥)/(A// + A⊥) (3)
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is coated with rubbed polyimides with a parallel direction. The incident light was polarized at 0◦

(magenta, red) and 90◦ (turquoise, blue) from the orientational axis of the cell.

Supposing that the dihedral angle between the long molecular axis and transition
dipole is small (roughly estimated as ~5◦), the order parameter SA was evaluated as
0.38 according to the Equation (4) [38],

SA = (A// − A⊥) / (A// + 2A⊥) (4)

Although these anisotropic parameters are all smaller than the previous HBT-based
dopants developed by our group [11,12,14], it is worth noting that CN-HBT, without
alkyl chains, can align parallel to the direction of 5CB and exhibits an anisotropic
absorption capability.

Polarizing fluorescence microscopy was carried out to measure the anisotropic fluo-
rescence of the CN-HBT molecules uniaxially aligned in the 5CB host (Figure 6a). Figure
6b shows the dependence of the fluorescence spectrum on the analyzer angle. As expected,
the fluorescence intensity is highest when the analyzer is parallel (=0◦) to the alignment
direction (=director n) and lowest when the analyzer is perpendicular (=90◦). The dichroic
ratio is calculated in a similar manner to the absorbance as DFL = I///I⊥, where I// and
I⊥ are the fluorescence intensities at the analyzer angles of 0◦ and 90◦, respectively. The
calculated value of DF is 3.1 at λEm = 528 nm (Figure 6c), which is similar to the absorption
anisotropy. The degree of polarization (ρF) and order parameter (SF) were also evaluated
in the same way as polarizing absorption spectroscopy according to Equations (5) and (6),

ρF = (I// − I⊥)/(I// + I⊥) (5)

SF = (I// − I⊥)/(I// + I⊥) (6)

The calculated values of ρFL and SFL are 0.51 and 0.41, respectively. These values
are slightly smaller than those of C4-C≡C-HBT, which may be due to the absence of a
terminal alkyl chain which is compatible with 5CB molecules.

Electric field-induced reorientation was confirmed by applying a square wave voltage
with a frequency of 1 kHz between the ITO-glass substrates of the cell. Under an applied
field, the LC reorients to align its direction parallel to the electric field owing to the positive
dielectric anisotropy. Because the transition dipole moment of the CN-HBT also realigns
with the field, the polarization properties vary respectively. Figure 6d shows the voltage
dependence of the fluorescence spectrum measured with the excitation light polarization
and analyzer transmission axis both directed along the rubbing axis. Above approximately
2 V, the fluorescence intensity saturates at approximately 25% of the initial intensity. In this
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regime, the analyzer angle dependence becomes almost unnoticeable (Figure 6e), because
most of the molecules are aligned vertically to the substrates, and the detected fluorescence
only contains components emitted perpendicular to the transition dipole moment. The
polarized fluorescence properties and electric field response reveal the potential of the field-
responsive, light-emitting host–guest room-temperature LC systems utilizing CN-HBT as
a highly efficient fluorescent dopant.
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(PI) rubbing in antiparallel directions. Gray- and yellow-colored rod-shaped objects represent 5CB and CN-HBT molecules,
respectively. The LC director (n) orients along the rubbing axis at zero field and reorients to become perpendicular to the
substrates when the electric field is applied. (b) Analyzer angle dependence of the fluorescence spectrum of 5CB/CN-HBT
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4. Conclusions

The photoluminescent properties of an ESIPT luminophore, 2-(2-hydroxy-4-cyanophe-
nyl)benzothiazole (2-(benzo[d]thiazol-2-yl)-5-cyanophenol), were newly studied in detail.
This cyano-substituted HBT, named CN-HBT, only showed keto* emission in CH2Cl2,
LCs (5CB and PCH5), and in the powder state, suggesting that the energy barrier of the
ESIPT was small enough to undergo and the energy level of the keto* state was much
lower than that of the enol* state. CN-HBT marked a fluorescence quantum yield (ΦFL)
of 0.49 in CH2Cl2 that is much larger than HBT (ΦFL = 0.01) and 1-hexynyl-substituted
HBT (ΦFL = 0.07), characterizing the prominent effect of cyano substitution. Its high
fluorescent quantum yield is also retained in nematic LCs (ΦFL = 0.57 in 5CB) and it can
be homogeneously miscible in 5CB up to 1 wt%. Based on the experimental analysis of
radiative (kr)/nonradiative (knr) rate constants for the HBT series, it became clear that CN-
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HBT suppresses nonradiative decays while keeping the almost constant kr. Surprisingly,
the value of knr for the CN-HBT is 1% and 10% of that for HBT in CH2Cl2 and 5CB,
respectively. A host–guest light-emitting LC, prepared by the combination of 5CB and
CN-HBT with 99/1 wt/wt blend ratio, is able to uniaxially align in LC cells and showed
anisotropic absorption in the range of electronic transition of the CN-HBT. Upon polarized
UV excitation, the CN-HBT-doped LC emits anisotropic fluorescence with a dichroic ratio
of ~3.1. The out-of-plane fluorescence intensity can also be controlled by applying an
electric field that causes the molecules to align perpendicular to the substrate plane. The
doping method demonstrated in the present work conveniently provides light-emitting LCs
with tunable anisotropic luminescence controllable by macroscopic orientations. Especially,
we disclosed that the introduction of a cyano group into HBT is a promising approach
for yielding a fluorescence dopant molecule that is transparent in the visible region and
emits a green light efficiently upon photoexcitation by UV light. Further exploration of
the molecular designing on ESIPT fluorophores stands a chance of developing efficient,
highly-miscible, and color-tunable fluorescent dopants useful for host-guest LCs.
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