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Abstract: Iodonium ylides have recently attracted much attention on account of their synthetic
applications. However, only a limited number of reports concerning the properties and reactivity of
iodonium ylides exist, which is partly due to their instability. In this study, we synthesized several
iodonium ylides that bear both an electron-withdrawing group and an aromatic ring with an ortho-t-
BuSO2 group. Based on the crystal structures of the synthesized iodonium ylides in combination with
natural-bond-orbital (NBO) calculations, we estimated the strength of the intra- and intermolecular
halogen-bonding interactions. In addition, we investigated the reactivity of the iodonium ylides
under photoirradiation.
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1. Introduction

Iodonium ylides, a class of hypervalent iodine compounds [1], have attracted much
attention due to their use as carbene precursors for C-H-insertion and cyclopropanation
reactions (Scheme 1a) [2,3]. Moreover, iodonium ylides have been used for various synthetic
applications, including condensations with thioamides to produce thiazole rings in aqueous
media (Scheme 1b; Nu = thioamide) [4,5], and for the introduction of 18F atoms into
aromatic rings (Scheme 1c; Nu = F−) [6,7]. It has also been reported that depending on the
iodonium ylide and nucleophile that is employed, the equilibrium between the T-shaped
intermediates A and B can be influenced [6,7], and thus, the ratio of coupling products C
and D can be controlled.
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1. Introduction 
Iodonium ylides, a class of hypervalent iodine compounds [1], have attracted much 

attention due to their use as carbene precursors for C‒H-insertion and cyclopropanation 
reactions (Scheme 1a) [2,3]. Moreover, iodonium ylides have been used for various syn-
thetic applications, including condensations with thioamides to produce thiazole rings in 
aqueous media (Scheme 1b; Nu = thioamide) [4,5], and for the introduction of 18F atoms 
into aromatic rings (Scheme 1c; Nu = F−) [6,7]. It has also been reported that depending on 
the iodonium ylide and nucleophile that is employed, the equilibrium between the T-
shaped intermediates A and B can be influenced [6,7], and thus, the ratio of coupling 
products C and D can be controlled.  
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Scheme 1. General synthetic utility of iodonium ylides. (a) Cyclopropanation of alkenes (b) Introduction
of nucleophile into active methylene compound (c) Introduction of nucleophile into aromatic rings.
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However, to date, only a limited number of reports concerning the properties and
reactivity of iodonium ylides have been published, which is at least in part due to their
instability (e.g., degradation via intermediates A and/or B) on account of the remaining
σ-hole of intermediates A and B, which can react with nucleophiles such as water. We
anticipate that the synthesis of a variety of iodonium ylides and the investigation of their
properties would provide essential information for the advancement of synthetic applica-
tions such as chemoselective coupling reactions. Of particular interest to us are iodonium
ylides that contain a coordinating ortho group on the aromatic ring [8], as such groups are
known to stabilize iodonium ylides and other hypervalent iodine compounds [5–9], thus
increasing their solubility via intramolecular halogen bonding (XB) [10]. In this study, we
synthesized several iodonium ylides bearing both an electron-withdrawing group and an
aromatic ring with an ortho-t-BuSO2 group [8,11]. Based on the crystal structures of the
synthesized iodonium ylides in combination with natural-bond-order (NBO) analysis, we
also estimated the strength of the intra- and intermolecular XBs [12–23]. In addition, we
investigated the reactivity of these iodonium ylides under photoirradiation [24–27].

2. Results

We began by synthesizing iodonium ylides 2 via the condensation of iodosobenzene
1 [11] with a variety of active methylene compounds (Table 1). The reaction of 1 and the
active methylene compounds proceeded at 0 ◦C in etheric solvents such as THF or Et2O
to furnish the corresponding iodonium ylides (2) as precipitates with H2O, as the sole
byproduct. The desired products were collected by simple suction filtration and, following
an n-hexane wash, produced the pure compounds in acceptable yield (for details, see
the Supplementary Materials). The major advantage that this method [28] has over the
conventional method that uses iodoarene diacetate and an active methylene compound
under basic conditions is that it eliminates the need to remove the formed salt (e.g., KOAc
or NaOAc) with an H2O wash [29]. We tested a wide range of active methylene compounds,
which produced iodonium ylides 2a–h in 27–89% yield without significant decomposition
during the purification. This is presumably due to the enhanced electrophilicity of the
iodosobenzene compound and the increased stability of the product due to the presence of
the coordinating ortho-sulfonyl group.

Table 1. Synthesis of various iodonium ylides that bear an ortho-t-BuSO2 group on the aromatic ring
(2) from iodosobenzene 1.
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Figures 1 and 2, while pertinent crystallographic parameters are summarized in Table 2. As
expected, the distance between the iodine atom (I1) and the oxygen atom (O5) of the ortho-
sulfonyl group in 2e (2.737(3) Å) is within the sum of the van der Waals radii, implying the
presence of an intramolecular XB interaction [10,19]. In addition, the analysis of the packing
structure suggested the presence of an intermolecular XB in the solid state, in which the
carbonyl oxygen (O11) and sulfonyl oxygen (O5) interact with the hypervalent iodine
atom of 2e (Figure 1A). It is probably due to these interactions that 2e aligns to form the
dimeric columnar structure shown in Figure 1B. The X-ray structure of 2g, which contains
a residual molecule of chloroform, shows an intermolecular XB interaction in addition to
the intramolecular XB with the ortho-t-BuSO2 group seen in 2e (Figure 2). This implies
that this iodonium ylide may be able to recognize the substrates in coupling reactions via
XB interactions.
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Table 2. Crystallographic parameters of the intra- and intermolecular XB interactions in the crystals of iodonium ylides 2e
and 2g.

Compound C-I•••O (or C-I•••Cl) d(I•••O)/Å <(C-I•••O) or <(C-I•••Cl)/Deg

2e C14-I1•••O5 (intramolecular) 2.737 (3) 164.0
C13-I1•••O11 (intermolecular) 3.269 (4) 156.3
C14-I1•••O5 (intermolecular) 3.451 (3) 132.5

2g C15-I1•••O3 (intramolecular) 2.695 (3) 170.5
C9-I1•••O8 (intermolecular) 3.411 (4) 159.5
C9-I1•••Cl (intermolecular) 3.673 136.4

To estimate the interaction energies of the intra- and intermolecular XBs, we performed
an NBO analysis based on the crystal structure of 2e, using the gaussian software package
(Figure 3) [30,31]. The analysis demonstrated that the C14-I1 σ* orbital of the hypervalent
iodine moiety in 2e overlaps with the three types of lone pairs (LPs) of the intramolecular
sulfonyl oxygen (O5) (See the Supplementary Materials for the details of orbitals). The
energies of these interactions were calculated to be 3.15, 0.79, and 4.73 kcal/mol, respec-
tively (Figure 3A). Moreover, the intermolecular XB energies were estimated to be 0.70
and 0.29 kcal/mol, respectively (Figure 3B). These interaction energies may contribute to
the relative stability of this type of iodonium ylide. The corresponding results of the NBO
analysis performed for iodonium ylide 2g are summarized in Figure 4. The interaction
energies seem to be stronger when the interaction distance is shorter and the interaction
angle is closer to 180º, which is an ideal situation for XB interactions (Table 2).

Crystals 2021, 11, x FOR PEER REVIEW 4 of 7 
 

 

 
Figure 2. Crystal structure of iodonium ylide 2g: (A) sideview of 2g; (B) columnar structure formed by one stacked column 
of 2g and residual chloroform molecules. 

Table 2. Crystallographic parameters of the intra- and intermolecular XB interactions in the crystals of iodonium ylides 
2e and 2g. 

Compound C‒I•••O (or C‒I•••Cl) d(I•••O)/Å <(C‒I•••O) or <(C‒I•••Cl)/Deg  
2e C14‒I1•••O5 (intramolecular) 2.737 (3) 164.0 
 C13‒I1•••O11 (intermolecular) 3.269 (4) 156.3 
 C14‒I1•••O5 (intermolecular) 3.451 (3) 132.5 

2g C15‒I1•••O3 (intramolecular) 2.695 (3) 170.5 
 C9‒I1•••O8 (intermolecular) 3.411 (4) 159.5 
 C9‒I1•••Cl (intermolecular) 3.673 136.4 

 
Figure 3. NBO analysis of iodonium ylide 2e. (A1) Intramolecular XB between a lone pair of the sulfonyl group (Orbital#71) 
and the C14-I1 σ* orbital (Orbital#136) (type 1). (A2) Intramolecular XB between a lone pair of the sulfonyl group (Or-
bital#120) and the C14-I1 σ* orbital (Orbital#136) (type 2). (A3) Intramolecular XB between a lone pair of the sulfonyl group 

Figure 3. NBO analysis of iodonium ylide 2e. (A1) Intramolecular XB between a lone pair of the sulfonyl group (Orbital#71)
and the C14-I1 σ* orbital (Orbital#136) (type 1). (A2) Intramolecular XB between a lone pair of the sulfonyl group (Orbital#120)
and the C14-I1 σ* orbital (Orbital#136) (type 2). (A3) Intramolecular XB between a lone pair of the sulfonyl group (Orbital#119)
and the C14-I1 σ* orbital (type 3) (Orbital#136). (B1) Intermolecular XB between a lone pair of the carbonyl group and the
C13-I1 σ* orbital. (B2) Intermolecular XB between a lone pair of sulfonyl group and the C13-I1 σ* orbital.
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Finally, we investigated the reactivity of the synthesized iodonium ylides under
photoirradiation conditions (Scheme 2) [9,24–27]. When ylide 2a and ten equivalents of
N-methylpyrrole were irradiated at 365 nm, the active methylene group was introduced at
the C2 position of N-methylpyrrole in 61% yield (Scheme 2a). Unexpectedly, when ylide
2e–g and ten equivalents of N-methylpyrrole were irradiated at 365 nm, the aryl group (2-t-
BuSO2C6H4) of the ylide was exclusively introduced at the C2 position of N-methylpyrrole
(Scheme 2b).
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Based on these observations and recent related reports by other groups [7], the reaction
seems to proceed via a T-shaped tri-coordinated intermediate, which is different from a
free carbene species [32]. The T-shaped tricoordinated intermediate could be formed via
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a biradical species generated via photoirradiation [33]. The unexpected selectivity of the
reductive elimination might be explained by the steric hindrance of the dimedone and
Meldrum’s acid moieties in 2f and 2g, although a detailed mechanism for this transforma-
tion, including the selectivity in the case of 2e, is not clear at this stage. Iodonium ylides 2c
and 2h gave the coupling product 4 in 43% and 31%, respectively, while 2b and 2d did not
afford any coupling products, presumably due to degradation under photoirradiation.

3. Conclusions

We have synthesized a series of novel iodonium ylides that bear a coordinating ortho-t-
BuSO2 group on their aryl rings, and we have analyzed the crystal structures of two of these
molecules. Intra- and intermolecular halogen bonding (XB) interactions were observed in
the crystal structures of two ylides that were structurally characterized by X-ray diffraction
analysis. The synthesized iodonium ylides were found to serve as active transfer reagents
of methylene or aryl groups. Further synthetic applications and mechanistic studies are
currently under investigation in our laboratory.
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