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Abstract: The synthesis of non-lead piezoelectric ceramics (1–z)(0.65Bi1.05Fe2O3-0.35BaTiO3)-z
Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 using a solid state method and a quenching strategy was investi-
gated. The processing conditions such as the sintering temperature and soaking time were optimized.
The patterns of X-ray diffraction (XRD) displayed a pure perovskite structure with no secondary
phases. The ferroelectric and piezoelectric characteristics of the samples were considerably improved
as a result of the lattice strain. The findings of the experiment revealed that the quenching technique
increases the piezoelectric sensor constant of 152 pC/N in optimized conditions. The enhanced piezo-
electric sensor constant (d33) value at z = 0.020 was ascribed to the incorporation of multi-cationic
BCZT, which modified the bond lengths at a unit cell level and gave rise to more flexibility in complex
domain switching. This facilitated easier domain alignment in response to the applied field and
resulted in an improvement in the electrical properties.
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1. Introduction

Lead-based piezoelectric ceramics with superior piezoelectric characteristics are suit-
able for actuators, energy storage capacitor applications, nanogenerators for energy har-
vesting, nano-positioners, nanosensors, piezocatalysts, switching and sensing devices, and
transducers [1–13]. Lead, on the other hand, has negative impacts on human health [14–16]
and causes other environmental issues. Furthermore, these ceramics have a relatively high
ferroelectric phase transition temperature (TC) (about 400 ◦C), making them appropriate
for high-temperature operations [17]. Due to environmental concern, lead-based ceramics
must therefore be replaced with lead-free piezoelectric materials having high working
temperature. A number of experiments have been carried out on lead-free piezoelectric
materials. Bismuth ferrite BiFeO3 (BFO) was discovered to be one of the most versatile
and acceptable materials among all lead-free piezoelectric options, owing to its high Curie
temperature (830 ◦C), rhombohedral perovskite structure at ambient temperature, and
a high polarization of approximately 100 µC/cm2 [18,19]. However, the production of
impurity phases makes it difficult to achieve a saturated ferroelectric hysteresis loop in
pure BFO. Furthermore, the valence changes in Fe (Fe3+ to Fe2+) and volatilization of Bi3+

result in a large electrical leakage current [20–23]. As a result of these disadvantages, the
practical applicability of BFO has been limited.

Many efforts have been made to make solid solutions using different ABO3 perovskite
ceramics materials in order to mitigate the shortcomings of BiFeO3. The electrical charac-
teristics of these solid solutions were improved to some extent. BiFeO3-BaTiO3 (BF-BT)
is the most appealing and promising of these solid solutions owing to its high operating
temperature [21] and relatively better electrical characteristics. However, the electrical
characteristics of BF-BT are affected by excessive BFO leakage current [21]. A quenching
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process to address this issue has been reported in several papers [24–27]. Although the
piezoelectric properties of BF-BT can be increased by the quenching procedure, they are
still not enough in practice; therefore, their piezoelectrical features need to be improved.
Recently, Liu et al. [28] reported a large piezoelectric sensor coefficient of d33 = 600 pC/N
in lead-free Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BCZT) materials. However, the working
temperature was found to be below 100 ◦C.

Based on the literature, the structure and corresponding electrical properties of BF-
BT-based systems are vulnerable to processing conditions and modifier elements. In
the present work, a new BF-based material was systematically investigated. Lead-free
(1–z)(0.65Bi1.05Fe2O3-0.35BaTiO3) (BF-BT) was chosen as a base composition and the effect
of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BCZT) content on its properties was studied for the
sake of improving the ferroelectric performance. Lead-free BCZT-modified BF-BT solid
solutions were prepared by a conventional mixed-oxide method followed by air quenching
and the effects of BCZT modification on the structural and electromechanical properties
were studied in detail. The processing conditions such as calcination, sintering tempera-
ture, and soaking time were optimized, all areas yet to be explored for this piezoceramic
system. The effect of BCZT modification on the crystal structure, ferroelectric, and piezo-
electric properties were studied. The underlying mechanism of the increased ferroelectric
characteristics and their stability, were also examined.

2. Experimental Procedure

A solid-state reaction with additional heat treatments was used for the synthesis of
piezoelectric ceramics with a composition of (1–z)(0.65Bi1.05Fe2O3-0.35BaTiO3) and zBCZT.
where z = 0.00, 0.010, 0.020, and 0.030. For the raw materials, commercially available
carbonates, and metal oxides of Bi2O3, Fe2O3, ZrO2, TiO2, CaCO3 and BaCO3 with a purity
greater than 99.9% (Sigma Aldrich Co., St. Louis MO) were used as source materials.
The stoichiometric formula was employed to accurately quantify these components, and
ethanol with zirconia balls was used for ball-milling for 24 h. Drying and calcining twice at
750 ◦C for 2 h resulted in phase development in the resultant slurry. Finally, the resultant
slurry was ball-milled in ethanol for 4 h with zirconia balls. The calcined powder was
pressed at 98 MPa, resulting in 10 mm diameter, disk-shaped ceramic specimens. The
pressed discs were sintered at 950 ◦C, 960 ◦C, 970 ◦C, 980 ◦C, and 990 ◦C and 1020 ◦C with
a soaking time of 2 h in covered alumina crucibles. Sintering took place at 1020 ◦C for 2 h,
after which the pellets were immediately cooled to ambient temperature.

The crystal structure and phase purity were determined using X-ray diffraction
(XRD, X’pert MPD3040, Philips, The Netherlands). Scanning electron microscopy (SEM,
JP/JSM5200, Japan) was used to assess morphology. The samples were polarized for 15 min
at room temperature in a silicone oil bath with a direct-current (DC) field of 5 kV/mm in
order to determine the piezoelectric characteristics. A Berlincourt d33 meter (IACAS, ZJ-6B)
was employed to determine the piezoelectric constant. The ferroelectric test system was
utilized to detect the hysteresis loops of the polarization against the electric field (P–E)
in silicon oil at a frequency of 10 Hz and ceramics’ loss at different frequencies in the
25–500 ◦C temperature range.

3. Results and Discussion

The X-ray diffraction (XRD) patterns of the synthesized BCZT-modified BF-BT ceram-
ics sintered at various temperatures are shown in Figure 1. It is well understood that the
sintering temperature and soaking time are critical for producing high-density ceramics.
To achieve optimized sintering conditions, the undoped BF-BT was sintered at different
temperatures of 950 ◦C, 960 ◦C, 970 ◦C, 980 ◦C, and 990 ◦C with soaking times of 2 h and
4 h. The sintering temperature range was selected based on previous studies of BF-BT-
based compositions [24,25]. The increased volatility of Bi at high temperatures destroyed
the base composition. No perovskite structure was obtained at a sintering temperature
T < 1000 ◦C. As a result, the optimized sintering temperature for undoped BF-BT ceramics



Crystals 2021, 11, 1077 3 of 9

was determined to be above 1000 ◦C. Figure 1 shows the effects of sintering temperature
on the XRD analysis of undoped BF-BT.
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Figure 1. X–ray diffraction patterns for BFBT–zBCZT (z = 0.00) ceramics in the 2θ ranges of 20–60◦

sintered at different temperatures.

Figure 2 depicts the XRD results at optimized sintering conditions. All the sintered ce-
ramics show a solid solution that is homogeneous and has a pure perovskite structure with
no unwanted secondary phases [29]. The optimized sintering temperature for undoped BF-
BT ceramics was determined to be 1020 ◦C with a 2 h soaking period. At these conditions,
a single pseudo-cubic structure was obtained, showing that the synthesized materials had
a perovskite crystal structure [29,30]. This demonstrates that the thermal treatment was
quite efficient in achieving a stable phase structure by suppressing undesirable phases.
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Generally, the microstructure of the ceramics determines their electrical properties.
Therefore, SEM micrographs were analyzed, as shown in Figure 3, to investigate the
microstructure of the BCZT-modified BF-BT sintered ceramics. All ceramics were well-
sintered with a close-packed structure with clear grains and grain boundaries. This shows
that no melting occurred at these sintering conditions. For the sample z = 0.00, an inho-
mogeneous microstructure was observed with a mixture of small-sized and large-sized
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grains. However, densification improved in samples z = 0.010 and 0.020. Here, as can
be seen from Figure 3, the sample z = 0.020 showed better densification with void free
and relatively homogeneous micrographs as compared to the other sintered samples. A
reduction in porosity is an important factor for enhancing ferroelectric or piezoelectric
characteristics [31]. The sample z = 0.030 showed an inhomogeneous microstructure with
small voids that suggests a decrease in densification in this sample. Overall, grain size
decreased from 6.6 µm for sample z = 0.00 to 5.8 µm for sample z = 0.030.
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Figure 5 shows the polarization-electric field (P–E) hysteresis loops of BT-BF ceramics
sintered at various temperatures with a soaking time of 2 h at an applied field of 2.5, 3 and
4 kV/cm, which are indicated by blue, black, and red, respectively. Up to a sintering
temperature of 1010 ◦C, the absence of the ferroelectric P–E loop of sintered samples
demonstrated the paraelectric phase of the material. As the sintering temperature increased
(1020 ◦C), the ferroelectric property of the material was progressively improved [29,30].
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Hence, the optimal sintering conditions were found to be 1020 ◦C and a soaking time of 2 h
for these ceramics.

Crystals 2021, 11, x FOR PEER REVIEW 5 of 9 
 

 

Figure 5 shows the polarization-electric field (P–E) hysteresis loops of BT-BF ceramics 
sintered at various temperatures with a soaking time of 2 h at an applied field of 2.5, 3 and 
4 kV/cm, which are indicated by blue, black, and red, respectively. Up to a sintering tem-
perature of 1010 °C, the absence of the ferroelectric P–E loop of sintered samples demon-
strated the paraelectric phase of the material. As the sintering temperature increased (1020 
°C), the ferroelectric property of the material was progressively improved [29,30]. Hence, 
the optimal sintering conditions were found to be 1020 °C and a soaking time of 2 h for 
these ceramics. 

 
Figure 5. Ferroelectric properties of BFBT–zBCZT (z = 0.00) sample sintered at 980 °C, 990 °C, 1010 

°C and 1020 °C. 

Well-saturated P–E hysteresis loops were observed with no pinching for all compo-
sitions sintered at optimized conditions, which confirmed normal ferroelectric behaviour 
[21–27]. BCZT incorporation successfully enhanced the ferroelectric characteristics of the 
base composition (z = 0.00), as indicated by an increase in remnant polarization Pr and a 
decrease in coercive field Ec, as illustrated in Figure 6. The Pr and Ec values change from 
~25 μC/cm2 and ~28 kV/cm for pure ceramics to ~28 μC/cm2 and ~26 kV/cm for z = 0.020, 
respectively. These results are comparable to previous reports on BF-based systems [10–
13]. Both Pr and Ec dropped as the BCZT content increased. This can be linked to inhomo-
geneous grain size, a drop in density and the presence of porosity inthe z = 0.030 sample. 
Also, it can be seen that very small grains were developed between larger grains. It is 
proposed that inhomogeneous grain size, the reduction in density, the presence of poros-
ity and very small grains between larger grains resulted in the slanted P–E loop for this 
sample. 

Internal stresses are generated at the grain boundaries during poling. Domain re-
orientation affects the re-orientation of spontaneous strain, which can modify the dimen-
sions of specific grains. Intergranular stresses are higher in ceramics with very small 
grains present between larger grains due to higher grain boundary density. Due to higher 
intergranular stresses at these grain boundaries, back fields are exerted that inhibit do-
main reversal and lower saturation polarization. When the field is removed, the high in-
tergranular stresses force the domains to switch back and lower the Pr. The polarization 
results are in good agreement with the microstructural results [32]. 

In contrast to BNT-based systems, all samples in the examined compositional range 
demonstrated conventional ferroelectric-like behaviour without visible pinching and the 

Figure 5. Ferroelectric properties of BFBT–zBCZT (z = 0.00) sample sintered at 980 ◦C, 990 ◦C, 1010 ◦C
and 1020 ◦C.

Well-saturated P–E hysteresis loops were observed with no pinching for all com-
positions sintered at optimized conditions, which confirmed normal ferroelectric be-
haviour [21–27]. BCZT incorporation successfully enhanced the ferroelectric characteristics
of the base composition (z = 0.00), as indicated by an increase in remnant polarization Pr
and a decrease in coercive field Ec, as illustrated in Figure 6. The Pr and Ec values change
from ~25 µC/cm2 and ~28 kV/cm for pure ceramics to ~28 µC/cm2 and ~26 kV/cm for
z = 0.020, respectively. These results are comparable to previous reports on BF-based
systems [10–13]. Both Pr and Ec dropped as the BCZT content increased. This can be
linked to inhomogeneous grain size, a drop in density and the presence of porosity inthe
z = 0.030 sample. Also, it can be seen that very small grains were developed between larger
grains. It is proposed that inhomogeneous grain size, the reduction in density, the presence
of porosity and very small grains between larger grains resulted in the slanted P–E loop for
this sample.
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Internal stresses are generated at the grain boundaries during poling. Domain re-
orientation affects the re-orientation of spontaneous strain, which can modify the dimen-
sions of specific grains. Intergranular stresses are higher in ceramics with very small
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grains present between larger grains due to higher grain boundary density. Due to higher
intergranular stresses at these grain boundaries, back fields are exerted that inhibit domain
reversal and lower saturation polarization. When the field is removed, the high intergranu-
lar stresses force the domains to switch back and lower the Pr. The polarization results are
in good agreement with the microstructural results [32].

In contrast to BNT-based systems, all samples in the examined compositional range
demonstrated conventional ferroelectric-like behaviour without visible pinching and the
corresponding non-ergodic to ergodic transition [22–27]. This behaviour may be linked to
the differences in domain morphologies and role of defects in the BF and BNT-based sys-
tems. Recently, in situ poling synchrotron X-ray diffraction revealed that the pseudo-cubic
symmetry preserved during and after the application of electric fields and piezoelectric
properties were linked to the presence of multi-symmetry polar nanoregions, which al-
lowed for a high average distortion in the applied field direction [33]. In another study,
by using in situ poling synchrotron XRD, the absence of long-range ferroelectric order
and the retention of short-range polar order was proposed in BF-based ceramics [34].
However, the exact mechanism in BF-based systems is still unclear and needs further
sophisticated studies.

All poled samples were aged for 24 h before the measurement of the piezoelectric
sensor coefficient (d33). For each sample, three readings were taken, and the mean was
calculated. The piezoelectric sensor coefficient was enhanced from ~50 pC/N for an
unmodified sample to ~152 pC/N for a 2 mol.% modified sample, as shown in Figure 7,
which is in good agreement with the ferroelectric properties. This value is better than the
previously reported values for lead-free piezoelectric ceramics, as shown in Table 1 [35–43].
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(z = 0.00–0.030) ceramics.

This increase in d33 at z = 0.020 may be ascribed to the incorporation of multi-cationic
BZCT, which modified the bond lengths at a unit cell level and gave rise to more flexibility
in the complex domain switching. Consequently, the enhancement in the d33 value was
observed for very flexible (at a unit cell level) compositions. Despite the fact that no dis-
cernible structural change was observed within the XRD detection limit for all specimens,
the electrical properties show that the addition of BCZT to the base BF-BT lattice has a
significant effect. The observed broadening of the peaks, in contrast to a pure cubic struc-
ture, may indicate the presence of some non-cubic distortion or pseudo-cubic phase that
is required for ferroelectricity to exist in materials. The variation in the electromechanical
properties strongly suggests that the origin of the high piezoelectric property is linked to
the crystal structure morphotropic phase boundary.
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Table 1. Comparison of the piezoelectric constant of various BF-BT ceramics.

Materials d33
(pC/N) Year References

BiFeO3–BaTiO3–Bi0.5K0.5TiO3 135 2013 [35]
0.65BFGa–0.35BT 145 2018 [36]

0.675BF-0.325BT-xLT 145 2018 [37]
0.75B0.975Nd0.025F–0.25BT+Mn 140 2018 [38]
0.73BF–0.25BT–0.02LCM + Mn 108 2015 [39]
0.99(0.67BF–0.33BT)–0.01LN 146 2017 [40]

0.60BF–0.40BT–0.02BZT 50 2017 [41]
0.75BF–0.25BT 47 2009 [42]

0.65Bi1.05Fe1−xGaxO3–0.35BaTiO3 140 2019 [43]
BF–BT–BCZT 152 2021 Current Work

4. Conclusions

In this work, an air quenching approach and a solid-state reaction method were used
to study the synthesis of lead-free BCZT-modified BF-BT piezoelectric ceramics. X-ray
diffraction patterns revealed a pure perovskite structure without any secondary phases. An
enhanced piezoelectric sensor constant of 152 pC/N was observed with improved remnant
polarization Pr ~28 µC/cm2. The combination of grain size effect, densification, and hence
improved polarization Pr is thought to be responsible for the enhanced piezoelectric prop-
erties in the optimized composition. This study suggests that the ferroelectric properties of
the BF-BT system were significantly improved by BCZT incorporation.
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