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Abstract: In materials science, crystal structures are the cornerstone in the structure–property
paradigm. The description of crystal compounds may be ascribed to the number of different atomic
chemical environments, which are related to the Wyckoff sites. Hence, a set of features related to the
different atomic environments in a crystal compound can be constructed as input data for artificial
neural networks (ANNs). In this article, we show the performance of a series of ANNs developed
using crystal-site-based features. These ANNs were developed to classify compounds into halite,
garnet, fluorite, hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite,
and spinel structures. Using crystal-site-based features, the ANNs were able to classify the crystal
compounds with a 93.72% average precision. Furthermore, the ANNs were able to retrieve missing
compounds with one of these archetypical structure types from a database. Finally, we showed
that the developed ANNs were also suitable for a multitask learning paradigm, since the extracted
information in the hidden layers linearly correlated with lattice parameters of the crystal structures.

Keywords: crystal structures; material discovery; deep learning; feature engineering;
multitask learning

1. Introduction

In recent years, machine learning algorithms have irrupted as an alternative tool to
model the properties and structure of materials [1–11]. These algorithms have allowed
scientists to work with large particle systems at shorter times and lower computational
costs with respect to the recurred quantum methods [12–15]. Agrawal and Choudhary [16]
have suggested that machine learning constitutes nowadays a fourth modeling paradigm
in science, which relies on the information stocked in large databases. In addition, strategic
initiatives [17–20] that seek to accelerate the material discovery–commercialization process
have come to the public scene. Among all machine learning algorithms, artificial neural
networks (ANNs) are perhaps the most extended algorithms, mainly due to their success
in the automatization of tasks that have been regarded as exclusive to humans [21–25].
Deriving from this success, deep learning [26,27] has emerged from machine learning as a
discipline that gathers all the activity related to the current ANNs—the zoo.

An important factor influencing the performance of ANNs is the input data [28,29]. In
fact, conceiving the components of the input data, which are called descriptors or features,
falls in a major area called feature engineering. In this sense, it turns out that it is necessary
to revisit how the input data was conceived in reported crystal-chemical works.

Fedorov and Shamanaev [30] have described inorganic crystal compounds in terms of
topological centers [31] to estimate thermodynamical variables with feed-forward ANNs.
These topological centers contained chemical features such as electronegativity, oxidation
state, molar mass, atomic covalent radius, and distance between a central atom and its
neighbors. Recently, Jiang et al. [32] also characterized the crystal structure using algebraic
topology to assess the DFT-formation energy, obtaining presumably better estimations than
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previously informed approaches based on the Coloumb matrix [33], which models electro-
static interaction between atom pairs. Saidi and coworkers [34] concatenated properties of
the atoms and molecules forming ABX3 perovskites to estimate the lattice constant, octahe-
dral tilt angle, and even band gap energies using convolutional neural networks (CNNs);
with these CNNs, hidden information was extracted from the 1D-input data. Pathak and
coworkers [35] developed a strategy using conditional variational autoencoders to generate
candidate materials that suit formation energy, energy per atom, and volume per atom
constraints. Since the characterization of the materials was based on concatenated one-hot
vectors, information concerning the structure was not necessary to generate the candidate
materials. Each one-hot vector represents an element of the periodic table. The elements
of this one-hot vector were zeros and ones, depending on the number of atoms in the
material formula. Similar non-structural approaches have been reported by Jha et al. [36]
and Goodall et al. [37]

Embeddings of elemental properties have been perhaps the most concurred mate-
rial characterization approach [3,38–41], which allows the combination of properties of
different magnitudes of scale and nature. Isayev and coworkers [40] characterized the
materials for the AFLOW repository with the so-called property-labeled materials frag-
ments. The starting point of this characterization is Voronoi tessellation, which establishes
the connection between atoms. The connected atoms allow the feature calculation using
elemental properties such as valence electrons, electron affinity, heat capacity, and chemical
hardness, for instance. Recently, Choubisa et al. [41] embedded atomic-like properties
to each specie of the ABX3 perovskite compound within the unit cell. These atomic-like
properties were related to frontier orbital energies, electron population, and polarization,
which were derived from DFT calculations.

Despite all the mentioned efforts, a more accurate approach can be tackled: Crystal
compounds are periodical systems. Due to periodicity, the description of a 1023 particle
system can be formulated in terms of the atoms within the unit cell. In this manner,
property embeddings could be constructed for each atom within the unit cell. Additionally,
all atoms of a crystal occupy positions in space that are characterized by point-symmetry
groups. These point-symmetry groups correspond to Wyckoff sites [42]. The atoms in
the same orbit of a Wyckoff site have the same local order and, as a consequence, the
description of the crystals can even be simplified in terms of the number of Wyckoff sites,
i.e., number of different chemical environments in a crystal. This natural consequence
of the periodicity of crystal systems can be exploited to characterize crystal materials
to develop ANNs. However, there barely are reports that use material characterization
based on symmetry sites. Ryan and coauthors [43] trained ANNs to distinguish chemical
elements based on the topology of the crystallographic environments. The local topology
around a crystallographic unique atom is represented by crystal structure fingerprints [44].
Ye et al. [45] characterized garnet and perovskite compounds with the ionic radii and
electronegativity of the cations to estimate their DFT-formation energy. Interestingly, this
work is one of the first to associate the cation geometries with their crystal sites.

In this article, ANNs were developed to classify crystal compounds in terms of their
structure types. The compounds were characterized with a reported methodology by
ourselves [46,47], which uses the number of different Wyckoff sites to construct the features.
The reported methodology has only been proven in a binary classification model in terms
of perovskite or non-perovskite structures. In this sense, this work can be considered as
an extension to multiclass classification. Contrary to the elemental-property embeddings,
which combine variables of different scale and nature, all constructed features describe the
compounds in terms of structural factors, as well as in terms of the atomic local order of the
different chemical environments of the crystal. The performance of the developed ANNs
validated the ability of the feature construction here implemented. In addition, the used
methodology has two highlighted criteria: (a) quantum calculations are not required to
obtain a feature, and (b) different compounds with the same structure type can be managed
regardless of their crystal system. This last fact is a consequence of the crystal definition.
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The ANNs were developed using the code patolli.py, which is available at GitHub [48].
Patolli was the name of a game in ancient Mexico, which also had divinatory properties.
With the code patolli.py, the aim was to create ANNs, called patollis focused on classifica-
tion and even prediction of the structure type of crystal materials.

2. Materials and Methods
2.1. Nomenclature

The compounds with the perovskite, spinel, garnet, hexagonal perovskite, layered
perovskite, -o-tp- perovskite, ilmenite, halite, and fluorite structures (Figure 1) were used
to create different collections to develop the ANNs. A brief review of the mentioned
structure types is provided in the Supplementary Materials. In this article, we refer to those
compounds characterized only by a vertex-shared octahedral framework as perovskite
structures. Additionally, we refer to Ruddlesden–Popper and Dion–Jacobson structures as
layered perovskites [49].
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Figure 1. Crystal structure types used in this work to classify the compounds: (a) garnet structure,
(b) spinel structure, (c) perovskite structure. An example of the layered perovskite structure is shown
in (d), which corresponds to the Ruddlesden–Popper phase. Similarly, an example of hexagonal
perovskite is shown in (e). The -o-tp- perovskite structure is depicted in (f), whereas the ilmenite struc-
ture is shown in (g). The fluorite and halite structures are labeled (h,i). The characteristic polyhedral
framework in the fluorite and halite structures are not shown to facilitate their visualization.

In addition to the structure type of Figure 1, compounds without any of the previously
mentioned structure types were used as examples of not-identified structure type. We refer
to these not-identified compounds as the “others” structure type.

All the ANNs were feed-forward, full-connected type and had two hidden layers. The
architecture of these ANNs is described in Table 1. The ANNs were named 4S4O-NEF, 4S4O-
WEF, 6S4O-NEF, 6S4O-WEF, 6S8O-NEF, 6S8O-WEF, and 6S10O-WEF. The nomenclature
refers to the number of crystal sites, S, characterizing the compounds of the used collection
to develop the ANNs (either 4 or 6). The number of outputs in the ANNs was pointed
out after the letter O, which could be 4, 8, or 10. The number of outputs corresponded to
the different structure types. Additionally, if a set of extra features was included in the
characterization of the compounds, it was indicated as WEF (with extra features) or NEF
(no extra features). This set of extra features corresponded to the average atomic radius
and electronegativity of the crystal sites, as well as to the density of the crystal compound.

The number of crystal sites influenced the number of features (input data) to char-
acterize the crystal compounds. When the set of extra features was used, the number of
features was 42 and 163 in the 4S- and 6S-ANN, respectively. Otherwise, the number of
features was 33 and 150.
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Table 1. Summary of the input data and the architectures of the developed ANNs. The first column enlists each of the
ANNs. The second column refers to the dimension of the input vector of the ANNs, whereas the last column indicates the
number of nodes in each layer.

ANN
Features in
Input Data

Architecture
(2 Hidden Layers +

Output Layer)
Structure Type Outputs

4S4O-NEF 33 231, 132, 4 Garnet, perovskite, spinel, and others

6S4O-NEF

150

900, 750, 4 Garnet, perovskite, spinel, and others

6S8O-NEF 900, 750, 8
Garnet, hexagonal perovskite, ilmenite, layered

perovskite, -o-tp- perovskite, perovskite, spinel, and
others

4S4O-WEF 42 210, 126, 4 Garnet, perovskite, spinel, and others

6S4O-WEF

163

1141, 652, 4 Garnet, perovskite, spinel, and others

6S8O-WEF 815, 163, 8
Garnet, hexagonal perovskite, ilmenite, layered

perovskite, -o-tp- perovskite, perovskite, spinel, and
others

6S10O-WEF 815, 652, 10
Fluorite, garnet, halite, hexagonal perovskite, ilmenite,

layered perovskite, -o-tp- perovskite, perovskite, spinel,
and others

Except for the 4S4O-ANNs, all ANNs were developed with a collection of compounds
having up to six Wyckoff sites. For the 4S4O-ANNs, a collection of compounds with up to
four Wyckoff sites was used. The collections used to develop the 4S4O- and 6S4O-ANNs
had compounds with the garnet, perovskite, spinel, and “others” structure types. Similarly,
the collection used to develop the 4S8O-ANNs had compounds with either the garnet,
hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite, spinel,
and “others” structure types. The collection used to develop the ANN 4S10O-WEF also
included the fluorite and halite structure types.

2.2. Features

The methodology published by Gómez-Peralta and Bokhimi [46,47] uses the number
of symmetry sites to characterize a crystal compound. The features are related to structural
factors, such as geometric and packing ones, as well as local functions related to the
chemical environment of the atoms in the crystal sites. The local functions [46,47] model
the interaction of all neighbor atoms in a j-Wyckoff site over a central atom in the i-Wyckoff
site, within cutoff radius Rc = 25 Å (Equation (1)).

fij =
(
χi − χj

)
∑

dij[n]≤Rc

n=1

[
1
2

(
cos

πdij[n]

Rc
+ 1

)]
exp

−( dij[n]

rnorm
i + rnorm

j

)2
 (1)

The function used to model this interaction has a Gaussian profile: the neighbor atoms
closer to the central atom have a larger contribution to the local function. Additionally,
the magnitude of the interaction is modulated depending on the nature of the involved
atom pair.

The detailed list of the used features may be consulted in the Supplementary Materials.
Since the referred methodology uses the number of combinations to compute the features,
there were 6 geometric factors, 15 packing factors, and 12 local chemical environment
functions to characterize the collection of compounds with up to four sites. Similarly, there
were 15 geometric factors, 105 packing factors, and 30 chemical environment functions
to characterize the collection of compounds with up to six sites. This makes 33 and
150 features for the collections with four and six sites. However, we also added the average
atomic radius and electronegativity of each site, which provided 8 and 12 features more,
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as well as the density of the compound. With these extra features, there were 42 and
163 features for the collections of compounds with up to four and six sites, respectively.

The features were arranged in the method described in Figure 2. This arrangement
did not influence the training of the ANNs, but it is important to look out once the ANNs
are developed.
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Figure 2. General architecture of the ANNs developed in this work. All ANNs had three layers. The
activation function in the hidden layers was a hyperbolic tangent, whereas in the output layer the
SoftMax function was used. The input data consisted of a series of features that could be grouped in
the manner described above in the figure. The features enclosed in dashed lines were not used in the
NEF ANNs, but they were in the WEF type.

2.3. Software and Computational Infrastructure

The ANNs were developed with the Python code patolli.py, which is available via
GitHub. Patolli uses a collection of crystal compounds taken from the Crystallography
Open Database [50–53]. This collection of compounds contains information about the CIF,
formula, number of Wyckoff sites, number of different elements in the formula, space
group, number of atoms in the unit cell, and the occupation of each Wyckoff site. The
atomic occupation of each Wyckoff site was assessed with the Python library pymatgen [54].
In fact, this description of occupied Wyckoff sites is crucial for the definition of the features
in the input data.

The code patolli.py is executed via the terminal and calls two text files that need to
be specified by the user: one defining all structure types in terms of their space groups
and occupied Wyckoff sites, and another that defines the characteristics of the ANNs to
be trained, as well as the hyperparameters of these. The crystal definition of the structure
types used in the research is given in the Supplementary Materials. The crystallographic
definition of the occupied sites in the perovskite and spinel structure was consulted in
references [55–58]. Similarly, compounds with the hexagonal perovskite, layered perovskite,
and -o-tp- perovskite structure were consulted according to the information provided
by Tilley [49]. The other structure types were crystallographically defined after visual
inspection of some of their compounds with the VESTA software package [59].

When patolli.py is executed, the code will ask the user whether further constraints
will be taken into account to create the collection of compounds to develop the ANNs.
These constraints are related to the number of atoms within the unit cell, the number of
different elements in the formula, and the highest number of Wyckoff sites to consider of a
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structure type. The code patolli.py also asks the user whether the extra features related to
the atomic radii, electronegativities, and density of the compound are included in the input
data. Finally, the code patolli.py asks whether the ANNs will be trained to differentiate not
identified compounds. This subset of not-identified compounds corresponds to the label
“others” and is created by randomly choosing compounds that do not match the crystal
definitions provided.

During patolli.py execution, the collection of compounds was created according to
the crystal structure definitions provided in the structure text files. The code automatically
computed the features and splits the whole collection into the TRAining–VALidation
(traval) set and the test set. After splitting the collection, csv files containing the compounds
as well as NumPy files, which contains the features, were created. The ANNs were trained
with the compounds of the traval set, which were previously standardized. After the
training of all ANNs was completed, these were tested with the compounds reserved in the
test set. If the user declared to perform a second test, patolli.py tested the ANNs with all
the remaining compounds of the integrated collection, which were not used in the traval or
test sets.

The library Keras 2.2.4 is required to satisfactorily execute patolli.py. The Keras
backends that have been proven to work are Theano 1.0.3 and TensorFlow 1.14.0. In
addition, the libraries pydot and graphviz were required to display some items related to
the library Keras. The 6S-ANNs were developed in the computer Mixkhua, which used
the NVIDIA GPU Tesla K40c. The training of the 6S-ANNs in this GPU lasted 3–6 min,
depending on the extension of the ANN. Mixkhua is located in the Artificial Intelligence
Laboratory of the Institute of Physics, UNAM. On the contrary, the 4S-ANNs were trained
on a personal computer with a processor AMD 9-9420 Radeon R5 and 8 GB RAM. On
average, the training of the 4S-ANNs lasted 5 min in the personal computer. Training the
6S-ANNs on this personal computer required longer times, even up to 1 h. In all cases, the
NumPy random seed used to develop the ANNs was 10. This seed is preconfigured in
patolli.py.

The linear regressions between the extracted features of the 6S10O-WEF ANNs and
lattice parameters were established via the Python library scikit-learn. For this purpose, a
Jupyter Notebook was prepared. This Jupyter Notebook can be consulted electronically
(see Data Availability section at the end of the article).

3. Results and Discussion
3.1. Classification of Crystal Compounds

Figure 3 shows the distribution of the used compounds to develop the 6S10O-WEF in
terms of the structure types of Figure 1. Based on Figure 3, the collection of compounds
used to develop the 6S8O-ANNs did not include those with the fluorite and halite struc-
ture. Similarly, the collection of compounds to develop the 6S4O- and 4S4O-ANNs only
contained the perovskite, garnet, and spinel compounds. It is important to remember that
the collection to develop the 4S4O-ANNs did not have compounds with more than four
Wyckoff sites. Additionally, it did not include the spinel compounds with the hausmannite
structure [57] in the collection to develop the 4S4O-ANNs, which are described with three
Wyckoff sites. The reason behind this will be explained later in the text. In all the collections,
the number of compounds labeled as “others” structure type was equal to the sum of the
compounds of all structure types.
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Figure 3. Distribution of the compounds of Figure 1 in the collection to develop 6S10O-WEF. The
number of compounds in the traval and test sets is shown in parenthesis. The collection to develop
6S10O-WEF was the most complete of all. The collection used to develop 6S8O-ANNs did not
include fluorite and halite compounds. Similarly, the collection to develop 6S4O- and 4S4O-ANNs
only contained the garnet, perovskite, and spinel structures. Since the collection used for 4S4O only
contained compounds with up to four Wyckoff sites, there were 193 and 57 compounds less with the
perovskite and spinel structure. In all the collections, the number of compounds belonging to the
“others” structure was equal to the sum of the compounds of all structure types.

Table 2 shows the precision in the classification of the test set compounds into each
structure type by the developed ANNs. Since the compounds of the traval set were used
during the learning process (optimization) of the ANNs, the precisions obtained with that
compounds set are provided to the reader in the Supplementary Materials. The precisions
obtained with the traval set were 2–3% higher than those of the test set, which is normally
observed in the development of this kind of models. The metric known as precision is
defined as the next quotient:

precision =
TP

TP + FP
where TP stands for true positive cases, whereas FP is for false positive ones (misclassified
sample after comparing with the actual label). This metric is important for predictive
purposes since it tracks the rate of correct predictions. The mean precision of all developed
ANNs was 93.72% after the test set compounds and 95.92% after the compounds of the
traval test. These values are similar to those reported by Gómez-Peralta and Bokhimi [46]
for a binary classification model, where the ANN outputs the probability of adopting the
perovskite structure.

The highest precisions in the classification were obtained for the compounds with
the garnet (97.60%, on average), perovskite (94.58%), spinel (95.25%), layered perovskite
(96.37%), and -o-tp- perovskite structure (91.67%). In addition to these, the compounds
labeled as “others” structure type were classified by the ANNs with a mean precision of
94.65%. In contrast, the precision obtained for the compounds fluorite, halite, ilmenite, and
hexagonal perovskite were mild. The mean precisions of the mentioned structure types
were 87.10%, 87.01%, 80.95%, and 77.78%, respectively. Since the number of compounds
with the hexagonal perovskite and ilmenite structures was low, we can suggest that the
precisions may improve after enrichment of the dataset with compounds of these structure
types. Furthermore, the diversity within the hexagonal perovskite compounds could also
be a factor of this diminished performance since different polytypes of the hexagonal
perovskite structure (such as 2H-, 6H-, 8H-, and 10H- structures) were included with the
same label compounds. The low number of available compounds in the data set was the
reason for gathering the mentioned structures under the label hexagonal perovskite.
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Table 2. Precisions in the classifications of the structure types (first column) achieved by each ANNs (from second column
to the last) after the compounds of the test set.

4S4O-NEF 4S4O-WEF 6S4O-NEF 6S4O-WEF 6S8O-NEF 6S8O-WEF 6S10O-WEF

Garnet 100.00 96.55 100.00 100.00 93.33 93.33 100.00
Perovskite 94.93 95.43 93.13 95.98 92.62 94.14 95.82
Spinel 98.44 96.92 94.24 96.32 95.52 94.93 90.41
Hexagonal perovskite NA NA NA NA 75.00 75.00 83.33
Ilmenite NA NA NA NA 71.43 85.71 85.71
Layered perovskite NA NA NA NA 97.22 94.59 97.30
-o-tp- perovskite NA NA NA NA 90.91 90.91 91.67
Fluorite NA NA NA NA NA NA 87.10
Halite NA NA NA NA NA NA 87.01
Others 97.54 98.61 92.74 92.47 93.63 94.25 93.32
Average 97.73 96.88 95.03 96.19 88.71 90.36 91.17

It is important to mention that all the compounds, except those adopting the fluorite
or halite structure, were described with at least three Wyckoff sites. Fluorite and halite
structures require two Wyckoff sites to be described. Since the methodology developed
by Gómez-Peralta and Bokhimi depends on the number of occupied sites, there were not
enough features to characterize compounds with halite and fluorite structures. In fact, the
referred methodology expected three non-zero features in the input data. To alleviate this
issue, the average atomic radius and electronegativities by site, as well as the density of
the compound, were included in the feature set. The inclusion of compound density is
justified since it could potentially model the presence of vacancies or solid solutions. After
including the mentioned features, there were eight non-zero features for the fluorite and
halite compounds. Nevertheless, the obtained precisions for fluorite and halite suggest
that more features are needed to improve the performance for these structure types.

Regarding each ANN developed, 4S4O-ANNs had the highest precisions, with 97.73%
for 4S4O-NEF ANN and 96.88% for 4S4O-WEF ANN (last row of Table 2). The result can
be explained in terms of a sufficiently large number of compounds with garnet, spinel, and
perovskite structure, as well as a small number of outputs in those ANNs. Similarly, 6S4O-
NEF and 6S4O-WEF ANNs had the same structure type outputs as 4S-ANNs and classified
the compounds with a mean precision of 95.03% and 96.19%, respectively. 6S8O-NEF and
6S8O-WEF included in their outputs the hexagonal perovskite, ilmenite, layered perovskite,
and -o-tp- perovskite and had mean precisions of 88.71% and 90.36%. 6S8O-NEF had the
lowest average score of all developed ANNs. It is interesting to compare the performance
of the 6S8O-NEF (88.71%) and 6S10O-WEF (91.17%). The differences between these ANNs
were the use of i) more features (average atomic radii and electronegativity per site, as well
as the compound density) and ii) the inclusion of the halite and fluorite compounds. In
addition, the use of the halite and fluorite structure type seem to improve the metrics for
the perovskite, hexagonal perovskite, and ilmenite compounds but did not do so with the
spinel compounds. The lower precision for the spinel compounds in the 6S10O-WEF with
respect to 6S8O-NEF may be related to the number of different elements in their formula,
which sometimes can be similar to fluorite and halite.

We performed a second and larger test on the developed ANNs. For this second
test, the remaining compounds of the database were used, i.e., these compounds were not
used either in the traval or test sets. In principle, it can be considered that the remaining
compounds belonged to the structure type labeled as “others”, since these compounds
did not match the provided definition of the crystal structure types. For this second test,
4S4O, 6S4O, 6S8O, and 6S10O ANNs were tested with 12,264, 19,229, 18,179, and 16,667
compounds, respectively. The difference in the number of compounds used in the second
test depended on the number of compounds in the traval and test sets. The results in the
classification of the remaining “others” structure compounds available with the ANNs are
in Table 3. More details regarding the number of compounds with respect to their Wyckoff



Crystals 2021, 11, 1039 9 of 16

sites are provided in Supplementary Materials. The results in Table 3 corresponded to the
metric known as recall, which is defined as follows:

recall =
TP

TP + TN

TN stands for true negative cases, whereas TP stands for true positive cases.

Table 3. Recall with the remaining compounds having structure types different to those depicted in
Figure 1 (second test).

ANN
Recall (%) by Number of Wyckoff Sites

1 2 3 4 5 6

4S4O-WEF 99.83 94.22 96.97 96.85 NA NA
4S4O-NEF 100.00 98.42 96.41 96.55 NA NA
6S4O-WEF 99.92 90.78 93.72 96.22 83.89 93.02
6S4O-NEF 100.00 97.33 92.72 96.15 82.71 92.53
6S8O-WEF 99.83 99.07 93.02 96.57 85.35 91.28
6S8O-NEF 100.00 97.61 94.12 96.01 85.75 91.06

6S10O-WEF 97.22 85.14 94.12 94.53 84.56 93.43

Table 3 shows the recall of “others” compounds in terms of their number of Wyckoff
sites. Recall of the “others” compounds was consistent with the precision shown in Table 2.
The NEF ANNs slightly outperformed the WEF ANNs in classifying the compounds
with less than three Wyckoff sites. The lower value in the classification of the two sited
compounds with the 6S10O-WEF can be attributed to confusion with the halite and fluorite
structures. Therefore, we may suggest that the compounds with the halite and fluorite
structure might have worked to improve the performance in the classification of the
compounds with some of the structure types of Figure 1. In contrast, the recall of the
five-site compounds was the lowest, which was a consequence of the small number of
existing compounds with that number of Wyckoff sites in the collection.

As previously established, the developed ANNs should classify all the remaining
compounds as “others” structure type. Except for the ANN 6S10O-WEF, the developed
ANNs were able to discriminate almost perfectly the compounds with less than three
Wyckoff sites as “others”. This result is noteworthy since none of the compounds of
Figure 1 are described with less than three Wyckoff sites, except those with the fluorite
and halite structures, as is well known by an experienced crystal chemist. This capability
to discriminate the compounds with less than three Wyckoff sites can be ascribed to the
quality of the used features.

3.2. Retrieval of Compounds with an Archetypal Structure Type

In general, it was observed that the misclassifications in the test set occurred between
the compounds belonging to the structure types of Figure 1 and the “others” structure
type. In fact, the purpose of the “others” structure output was to prevent ANNs from
systematically mixing up two structure types of Figure 1. The compounds confused by the
ANN between the phases depicted in Figure 1 were BaMnO3, Ba2Co2O5.56, and CsNiF3,
which were hexagonal perovskites misclassified as perovskites; MgSiO3, which was an
ilmenite misclassified as perovskite; Cs2NaYCl6 and Cs2AgAuCl6, which were perovskites
misclassified as -o-tp- perovskites; FeBO3, GaBO3, and Na0.22FeF3, which were perovskites
misclassified as spinel; and Fe1.2Mn1.6O4 and Ca(InS2)2, which were spinel misclassified as
ilmenite and perovskite, respectively. The structures of the mentioned compounds were
visually verified.

So far, we have not identified a pattern for the misclassified compounds of Figure 1
with the label “others”. The comprehension of these misclassified compounds can help
us to design new features that can avoid these errors. In contrast, we found that some
compounds of the test set initially labeled as “others” were systematically classified as one
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of the structure types of Figure 1. This was the case for the spinel compounds Ag2SO4
(space group Fddd) and Li2SO4 (Cmcm); the ilmenite compounds Fe0.33Sc0.33O, Nb2Mn4O9
and BiTi0.375Fe0.25Mg0.375O3 (R3c); the hexagonal perovskite compound Ba3CrS5 (P63cm);
and several perovskite compounds with the space groups Fd3m (Pb2ReMnO6), Fm3m
(Rb2ZrCl6), Pa3 (Ba8U2.668Fe4.8In0.532O24), R3m (Ba2Ca0.9Nb1.05O5.65), R3m (BaFe0.5Ta0.5O3),
P4mm (Pb0.998Ti0.964O2.9), and Amm2 (K0.73Na0.27NbO3). After visual inspection, we
verified that the ANNs correctly classified the enlisted compounds. For example, the
Pb2ReMnO6 had the distorted vertex–shared octahedral framework; Rb2ZrCl6 can be
considered a double cubic perovskite structure where half of the octahedral sites were
occupied, to mention some (Figure 4).
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Figure 4. Some of the compounds initially labeled as “others” were retrieved with one of the structure
types of Figure 1: (a) Pb2ReMnO6 (Fd3m) had the characteristic framework of the perovskite structure;
(b) Rb2ZrCl6 (Fm3m ) had the perovskite structure where half of the octahedra were occupied by
Zr; (c) K2FeCu(CN)6 (Fm3m ) had the characteristic octahedral framework spaced by cyanide units;
(d) NbFeF6 (R3 ) had the perovskite structure without occupied cuboctahedral sites; (e) Cs3W2Cl9
(P63/mmc ) had the hexagonal perovskite structure, without occupied octahedra connecting face-
shared columns; and (f) RbBa2Fe2F9 (R3m ), had the perovskite structure with vacant octahedra
within the face-shared columns.

In addition, a similar trend was observed with some compounds of the second test. It
is important to mention that the proportion of these compounds is a small fraction of the
not recovered compounds (errors) in Table 3. The list of these compounds is provided to the
reader in the Supplementary Materials. Interestingly, the ANNs were able to recognize the
hexagonal perovskite structure in compounds with vacancies such as Cs3W2Cl9 (P63/mmc)
and RbBa2Fe2F9 (R3m), as well as cyanide compounds with the perovskite structure such as
K2FeCu(CN)6 (Fm3m), and NbFeF6 (R3) had the distorted vertex–shared octahedral frame-
work with unoccupied cuboctahedral sites, for instance. It is also noteworthy to mention
that all hausmannite [57] compounds (I41/amd), which were not used in the collections to
develop the 4S4O-ANNs, were retrieved as spinel structures by the trained ANNs.

The systematic confusions of compounds initially labeled as the “others” structure
type have their origin in the provided definition of the structure types: neither the space
groups nor the Wyckoff occupation of these mislabeled compounds were considered.
Nevertheless, the developed ANNs were able to recognize the characteristic polyhedral
pattern of the structure types in Figure 1.

3.3. Lattice Parameter Assessment with the Extracted Features by the ANN

So far, we have focused the obtained results by the ANNs toward applications such as
automatized classification and retrieving of the compounds from a crystal database. The
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success of these ANNs is ascribed to the quality of the features used in the characterization
of the crystal compounds. Beyond these applications, it could be of interest to establish
correlations with other crystal variables using the processed information within the ANNs’
hidden layers. In fact, the information processed in the hidden layer constitute new finer
features that may be more accurate to consider for certain tasks.

We used the extracted features in the second layer of the ANN 6S10O-WEF to establish
a correlation with the lattice parameters of the simple cubic perovskite (Pm3m), double cu-
bic perovskite (Fm3m), orthorhombic perovskite (Pnma), trigonal perovskite (R3c), garnets
(Ia3d), spinels (Fd3m), and tetragonal Ruddlesden–Popper structures (I4/mmm). Accord-
ing to the architecture of ANN 6S10O-WEF (Table 1), there were 652 extracted features in
the second layer for each compound. The extracted features were computed after feeding
the ANN 6S10O-WEF with the input data except the local functions and the density of the
compound, which were set to zero (Figure 5). It was necessary to hide the local functions
and the density of the compound since their calculation requires knowledge of the lattice
parameter a priori.
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Figure 5. Feature extraction from the second hidden layer of the ANN 6S10O-WEF. Since the local
functions and the compound density were not fed to the ANN, the connections of these features with
the first layer are hidden. It is important to mention that the extracted features (x′1, x′2, . . . , x′652) were
the values computed by the second hidden layer prior to their activation. The extracted features were
afterward used to fit a linear regression model with the lattice parameter of certain compounds.

Table 4 resumes the results of these linear regressions. In all, 344, 205, 165, 714, 388,
134, and 196 compounds of the traval set with the simple cubic perovskite, double cubic
perovskite, garnet, spinel, orthorhombic perovskite, trigonal perovskite, and tetragonal
Ruddlesden–Popper structures, respectively, were used to fit the data. Additionally, 54, 33,
28, 127, 87, 22, and 31 compounds of the test set of the mentioned crystal structures were
used to test the linear regression fit. We found compounds of the test set that did not follow
the linear regression fit. For these outlier compounds, we found that the lattice parameters
were exaggerated, and therefore they were not considered in the calculation of the mean
square error. The number of non-outlying compounds appears also in Table 4. In all cases,
a correlation coefficient above 0.90 was established between the extracted features and the
lattice parameters of the studied structures types.
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Table 4. Results of the linear regression of the lattice parameters with the extracted features in the
second layer of the 6S10O-WEF ANN.

Structure Type R2 MSE Fitting MSE Test Mean Lattice
Parameters (Å)

Simple cubic perovskite
(Pm3m) 0.9996 0.0001

(344)
0.1057

(39 of 54) 4.1698 ± 0.4315

Double cubic perovskite
(Fm3m) 0.9992 0.0002

(205)
0.0984

(23 of 33) 8.4807 ± 0.5310

Garnet
(Ia3d) 0.9998 3 × 10−5

(165)
0.0931

(23 of 28) 12.0808 ± 0.3654

Spinel
(Fd3m) 0.9682 0.0256

(714)
0.0676

(107 of 127) 8.7000 ± 0.8976

Orthorhombic perovskite
(Pnma) 0.9836 0.0035

(388)
0.0683

(70 of 87)

5.5148 ± 0.3834
5.6433 ± 0.4045
7.8291 ± 0.5659

Trigonal perovskite
(R3c) 0.9994 0.0002

(134)
0.0297

(15 of 22)
5.3548 ± 0.3351

13.9118 ± 1.0555

Tetragonal
Ruddlesden–Popper
(I4/mmm)

0.9422 0.0085
(196)

0.0673
(18 of 31)

3.9434 ± 0.3340
15.9746 ± 3.9851

It is expected that having a larger amount of compounds of each crystal structure will
lower the number of outlier cases. The outlier compounds can be explained as cases where
it was not possible to establish a good interpolation. A larger collection of compounds to fit
a linear regression could also improve the metrics of the linear regression performance. In
addition, it is important to mention that these correlations between the extracted features
and lattice parameters were not possible to establish with the nodes of the first (which
provided 815 extracted features) or third layer (10 extracted features).

Other than the well-known relationship between the ionic radii in the aristotype
perovskite structure with the lattice parameter, an analog of this has been barely sketched
for spinels, garnets, and Ruddlesden–Popper structures. Concerning the perovskite com-
pounds, it is worthy to mention that Javed et al. [60] and Majid et al. [61,62] used similar
features to assess the lattice parameters of cubic, monoclinic, and orthorhombic perovskite
compounds with supported vector machines. Recently, Zhang et al. [63] established a rela-
tionship via Gaussian process regression between the ionic radii and the lattice parameter
of monoclinic double perovskites. Interestingly, Song et al. [64] deduced a tolerance factor
for garnet structures after reversion of the distorted dodecahedral cations to a regular cube.

3.4. Features’ Influence on the Performance of the ANNs

Finally, we used the compounds of the test set to analyze the influence of the features
on the performance in the classification of crystal structures. Table 5 contains the results
of this analysis. This analysis was performed after hiding the features of a given block
of Figure 2, i.e., the hidden features were set to zero. With this approach, the ANNs
do not receive complete information, thus some connections between the nodes will be
not triggered.
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Table 5. Precision of each developed ANN after hiding features according to Figure 2. The precision obtained in this table
were computed after the compounds in the first test set.

Precision (%) in the Test Set with

ANN All Features
No Atomic Radii and

Electronegativities
No Geometric

Factors
No Packing

Factors
No Local
Functions No Density

4S4O-NEF 97.73 NA 94.93 88.59 22.35 NA

6S4O-NEF 95.03 NA 95.00 76.60 50.84 NA

6S8O-NEF 88.71 NA 88.06 49.65 16.23 NA

4S4O-WEF 96.88 91.41 97.09 94.57 28.79 97.46

4S6O-WEF 96.19 86.28 96.16 81.40 41.27 95.33

4S8O-WEF 90.36 74.15 89.52 60.52 42.37 88.96

4S10O-WEF 91.17 80.30 89.67 69.09 37.04 89.35

Results in Table 5 points out that the most crucial set of features in the performance
of the ANNs were the local functions. After remotion of the local functions, the precision
dropped at least to 50.84% in the 6S4O-NEF, and to 16.23% in the 6S8O-NEF. The local
functions sum up the interactions of all neighbor atoms over a central atom in a crystal
site. The magnitude of the interaction depended on the nature of the involved atom pair.
The second most important block of features was the packing factors. The packing factors
measured the efficiency of the space-filling by the atoms of the crystal site. One of the
most known packing factors is the Goldschmidt tolerance factor, which is used in the
perovskite compounds. The most notorious reductions in the precision were obtained for
6S8O-NEF (49.65%), 6S8O-WEF (60.52%), and 6S10O-WEF (69.09%), which are the ANNs
with more structure type outputs. In contrast, hiding the geometric factors did not affect
the performance of the ANNs. The geometric factors were quotients of atomic radii, which
are related to the geometry defined by the first neighbor atoms.

The average atomic radii and electronegativities by site and the density of the com-
pound were features used in the WEF ANNs. In these types of ANNs, the omission of
the average atomic radii and electronegativities block affected the performance in the
classification. The precisions dropped to 91.41%, 86.28%, 74.15%, and 80.30% with the
ANNs 4S4O-WEF, 4S6O-WEF, 4S8O-WEF, and 4S10-WEF, respectively. In contrast, the
omission of the density of the compound did not affect the performance of the WEF ANNs.

4. Conclusions

We have shown that crystal-site-based features enabled the ANNs to classify the crystal
compounds with an average precision of 93.72%. The ANNs classified compounds with
garnet, perovskite, spinel, layered perovskite, -o-tp- perovskite, fluorite, halite, ilmenite,
and hexagonal perovskite structures with mean precisions of 97.60%, 94.58%, 95.25%,
96.37%, 91.67%, 87.10%, 87.01%, 80.95%, and 77.78%, respectively. The low scores obtained
by the ANNs were ascribed to the availability in the database of compounds with a structure
type. In addition, the compounds not belonging to any of the mentioned structures were
classified by the ANNs with a mean precision of 94.65%. Hence, the ANNs developed with
the used feature construction may find application in automatized systems for classifying
and retrieving compounds from crystal databases.

In addition to the mentioned application, we were able to establish linear correlations
between the lattice parameters with the extracted features in the ANN’s hidden layers.
More specifically, correlation coefficients above R2 = 0.9422 were established with the lattice
parameters of garnet, spinel, Ruddlesden–Popper, and perovskite compounds. We suggest
that the information derived from the ANN’s hidden layers may serve to establish other
correlations with optical or electronic properties, for instance. Thus, the developed ANNs
are suitable for multitask learning applications.
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It is important to mention that the ANNs were developed using the crystallographic
information of already-synthesized compounds. Each developed ANN constitutes a func-
tion to map the chemical composition and atomic spatial arrangement into a structure type.
Therefore, we expect that the crystal-site-based ANNs may also serve as a more accurate
tool to probe the space of possible new crystal compounds.

Supplementary Materials: The review of crystal structures, the list of used features, the crystallo-
graphic definitions of the structure types, the results in the traval and second test, and the retrieved
compounds in the second test are available online at https://www.mdpi.com/article/10.3390/cryst1
1091039/s1.

Author Contributions: Conceptualization, J.I.G.-P. and X.B.; methodology, J.I.G.-P.; software, J.I.G.-P.;
validation, J.I.G.-P. and N.G.G.-P.; formal analysis, J.I.G.-P. and X.B.; investigation, J.I.G.-P.; resources,
X.B.; data curation, N.G.G.-P.; writing—original draft preparation, J.I.G.-P.; writing—review and
editing, N.G.G.-P. and X.B.; visualization, N.G.G.-P.; supervision, J.I.G.-P.; project administration,
J.I.G.-P. and X.B.; funding acquisition, X.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in https://github.
com/gomezperalta/support_data_cs-anns.

Acknowledgments: J.I.G.-P. thanks the Artificial Intelligence Lab of the Institute of Physics, UNAM,
for the given support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, B.; Lu, Y.; Zhou, J.; Chouhan, T.; Wang, H.; Golani, P.; Xu, M.; Xu, Q.; Guan, C.; Liu, Z. Machine learning-guided synthesis

of advanced inorganic materials. Mater. Today 2020, 41, 72–80. [CrossRef]
2. Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J.

Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73–77. [CrossRef] [PubMed]
3. Sorkun, M.C.; Astruc, S.; Koelman, J.M.V.A.; Er, S. An artificial intelligence-aided virtual screening recipe for two-dimensional

materials discovery. NPJ Comput. Mater. 2020, 6, 106. [CrossRef]
4. Kaufmann, K.; Vecchio, K.S. Searching for high entropy alloys: A machine learning approach. Acta Mater. 2020, 198, 178–222.

[CrossRef]
5. Dai, D.; Liu, Q.; Hu, R.; Wei, X.; Ding, G.; Xu, B.; Xu, T.; Zhang, J.; Xu, Y.; Zhang, H. Method construction of structure-property

relationship from data by machine learning assisted mining for materials design applications. Mater. Des. 2020, 196, 109194.
[CrossRef]

6. Lee, J.W.; Park, W.B.; Lee, J.H.; Singh, S.P.; Sohn, K.S. A deep-learning technnique for phase identification in multiphase inorganic
compounds using synthetic XRD powder patterns. Nat. Commun. 2020, 11, 86. [CrossRef] [PubMed]

7. Park, W.B.; Chung, J.; Jung, J.; Sohn, K.; Singh, S.P.; Pyo, M.; Shim, N.; Sohn, K.S. Classification of crystal structure using a
convolutional neural network. IUCrJ 2017, 4, 486–494. [CrossRef] [PubMed]

8. Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. SchNet—A deep learning architecture for molecules
ans materials. J. Chem. Phys. 2018, 148, 241722. [CrossRef] [PubMed]

9. Pilania, G.; Gubernatis, J.E.; Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids.
Comput. Mater. Sci. 2017, 129, 156–163. [CrossRef]

10. Pilania, G.; Balachandran, P.V.; Kim, C.; Lookman, T. Finding new perovskite halides via machine learning. Front. Mater. 2016, 3,
19. [CrossRef]

11. Gómez-Peralta, J.I.; Bokhimi, X. Ternary halide perovskites for possible optoelectronic applications revealed by Artificial
Intelligence and DFT calculations. Mater. Chem. Phys. 2021, 267, 124710. [CrossRef]

12. Hong, Y.; Hou, B.; Jian, H.; Zhang, J. Machine learning and artificial neutal network accelerated computational discoveries in
materials science. WIREs Comput. Mol. Sci. 2020, 10, e1450. [CrossRef]

13. Schütt, O.; VandeVondele, J. Machine learning adaptive basis sets for efficient large scale density functional theory simulation. J.
Chem. Theory Comput. 2018, 14, 4168–4175. [CrossRef] [PubMed]

14. Smith, J.S.; Isayev, O.; Roitberg, A.E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational
cost. Chem. Sci. 2017, 8, 3192–3203. [CrossRef]

https://www.mdpi.com/article/10.3390/cryst11091039/s1
https://www.mdpi.com/article/10.3390/cryst11091039/s1
https://github.com/gomezperalta/support_data_cs-anns
https://github.com/gomezperalta/support_data_cs-anns
http://doi.org/10.1016/j.mattod.2020.06.010
http://doi.org/10.1038/nature17439
http://www.ncbi.nlm.nih.gov/pubmed/27147027
http://doi.org/10.1038/s41524-020-00375-7
http://doi.org/10.1016/j.actamat.2020.07.065
http://doi.org/10.1016/j.matdes.2020.109194
http://doi.org/10.1038/s41467-019-13749-3
http://www.ncbi.nlm.nih.gov/pubmed/31900391
http://doi.org/10.1107/S205225251700714X
http://www.ncbi.nlm.nih.gov/pubmed/28875035
http://doi.org/10.1063/1.5019779
http://www.ncbi.nlm.nih.gov/pubmed/29960322
http://doi.org/10.1016/j.commatsci.2016.12.004
http://doi.org/10.3389/fmats.2016.00019
http://doi.org/10.1016/j.matchemphys.2021.124710
http://doi.org/10.1002/wcms.1450
http://doi.org/10.1021/acs.jctc.8b00378
http://www.ncbi.nlm.nih.gov/pubmed/29957943
http://doi.org/10.1039/C6SC05720A


Crystals 2021, 11, 1039 15 of 16

15. Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [CrossRef]
16. Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in

materials science. APL Mater. 2016, 4, 053208. [CrossRef]
17. Materials Genome Initiative, Strategic Plan, National Science Technology Council. Available online: https://obamawhitehouse.

archives.gov/mgi (accessed on 4 August 2021).
18. Report of the Clean Energy Materials Innovation Challenge Expert Workshop, Mission Innovation. Available online:

http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-
Platform-Jan-2018.pdf (accessed on 4 August 2021).

19. Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R.S.; Gold-Parker, A.; Voigt, L.;
Brockway, A.M.; Aspuru-Guzik, A. The Harvard Clean Energy Project: Large-scale computational screening and design of
organic photovoltaics an the World Community Grid. J. Phys. Chem. Lett. 2011, 2, 2241–2251. [CrossRef]

20. Vom Material zur Innovation. Rahmenprogramm zur Förderung der Materialforschung “Bundesministerium für Bildung und
Forschung”. Available online: https://www.ptj.de/vom-material-zur-innovation (accessed on 4 August 2021).

21. Voulodimos, A.; Doulami, N.; Doulamis, A.; Protopapadakis, E. Recent developments in Deep Learning for engineering
applications. Comput. Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

22. Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J.
Radiol. 2017, 18, 570–584. [CrossRef] [PubMed]

23. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

24. Tkac, M.; Verner, R. Artificial neural networks in business: Two decades of research. Appl. Soft Comput. 2016, 38, 788–804.
[CrossRef]

25. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
26. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
27. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105,

2295–2329. [CrossRef]
28. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901. [CrossRef]
29. Ghiringelli, L.M.; Vybiral, J.; Levchenko, S.V.; Draxl, C.; Scheffler, M. Big data of materials science: Critical role of the descriptor.

Phys. Rev. Lett. 2015, 114, 105503. [CrossRef]
30. Fedorov, A.; Shamanaev, I.V. Crystal structure representation for neural networks using topological approach. Mol. Inf. 2017, 36,

1600162. [CrossRef]
31. Thimm, G. Crystal topologies—The achievable and inevitble symmetries. Acta Crystallogr. A 2009, 65, 213–226. [CrossRef]
32. Jiang, Y.; Chen, D.; Chen, X.; Li, T.; Wei, G.W.; Pan, F. Topological representations of crystalline compounds for the machine-

learning prediction of materials properties. NPJ Comput. Mater. 2021, 7, 28. [CrossRef]
33. Faber, F.; Lindmaa, A.; von Lillienfeld, O.A.; Armiento, R. Crystal structure representations for machine learning models of

formation enegies. Int. J. Quantum Chem. 2015, 115, 1094–1101. [CrossRef]
34. Saidi, W.A.; Shadid, W.; Castelli, I.E. Machine-learning structural and electronic properties of metal halide perovskites using a

hierarchical convolutional neural network. NPJ Comput. Mater. 2020, 6, 36. [CrossRef]
35. Pathak, Y.; Juneja, K.S.; Varma, G.; Ehara, M.; Priyakumar, U.D. Deep learning enabled inorganic material generator. Phys. Chem.

Chem. Phys. 2020, 22, 26935. [CrossRef]
36. Jha, D.; Ward, L.; Paul, A.; Liao, W.K.; Choudhary, A.; Wolverton, C.; Agrawal, A. ElmNet: Deep learning the chemistry of

materials from only elemental composition. Sci. Rep. 2018, 8, 17593. [CrossRef]
37. Goodall, R.E.A.; Lee, A.A. Predicting materials properties without crystal struture: Deep representation learning from stoichiom-

etry. Nat. Commum. 2020, 11, 6280. [CrossRef]
38. Xie, T.; Grossman, J.C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material

properties. Phys. Rev. Lett. 2018, 120, 145301. [CrossRef] [PubMed]
39. Schmidt, J.; Shi, H.; Borlido, P.; Chen, L.; Botti, S.; Marques, M.A.L. Predicting the thermodynamic stability of solids combining

density functional theory and machine learning. Chem. Mater. 2017, 29, 5090–5103. [CrossRef]
40. Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal fragment descriptors for predicting properties of

inorganic crystals. Nat. Commun. 2017, 8, 15679. [CrossRef] [PubMed]
41. Choubisa, H.; Askerka, M.; Ryczko, K.; Voznyy, O.; Mills, K.; Tamblyn, I.; Sargent, E.H. Crystal site feature embedding enables

exploration of large chemical spaces. Matter 2020, 3, 433–448. [CrossRef]
42. Brown, I.D. The Chemical Bond in Inorganic Chemistry. The Bond. Valence Model, 1st ed.; Oxford University Press: Oxford, UK, 2002;

pp. 121–133. [CrossRef]
43. Ryan, K.; Lengyel, J.; Shatruk, M. Crystal structure prediction via Deep Learning. J. Am. Chem. Soc. 2018, 140, 10158–10168.

[CrossRef]
44. Valle, M.; Oganov, A.R. Crystal fingerprint space—A novel paradigm for studying crystal-structure sets. Acta Crystallogr. A 2010,

66, 507–517. [CrossRef] [PubMed]
45. Ye, W.; Chen, C.; Wang, Z.; Chu, I.H.; Ong, S.P. Deep neural networks for accurate predictions of crytal stability. Nat. Commun.

2018, 9, 3800. [CrossRef]

http://doi.org/10.1002/jcc.24764
http://doi.org/10.1063/1.4946894
https://obamawhitehouse.archives.gov/mgi
https://obamawhitehouse.archives.gov/mgi
http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf
http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf
http://doi.org/10.1021/jz200866s
https://www.ptj.de/vom-material-zur-innovation
http://doi.org/10.1155/2018/8141259
http://doi.org/10.3348/kjr.2017.18.4.570
http://www.ncbi.nlm.nih.gov/pubmed/28670152
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://doi.org/10.1016/j.asoc.2015.09.040
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/JPROC.2017.2761740
http://doi.org/10.1063/1.4966192
http://doi.org/10.1103/PhysRevLett.114.105503
http://doi.org/10.1002/minf.201600162
http://doi.org/10.1107/S0108767309003638
http://doi.org/10.1038/s41524-021-00493-w
http://doi.org/10.1002/qua.24917
http://doi.org/10.1038/s41524-020-0307-8
http://doi.org/10.1039/D0CP03508D
http://doi.org/10.1038/s41598-018-35934-y
http://doi.org/10.1038/s41467-020-19964-7
http://doi.org/10.1103/PhysRevLett.120.145301
http://www.ncbi.nlm.nih.gov/pubmed/29694125
http://doi.org/10.1021/acs.chemmater.7b00156
http://doi.org/10.1038/ncomms15679
http://www.ncbi.nlm.nih.gov/pubmed/28580961
http://doi.org/10.1016/j.matt.2020.04.016
http://doi.org/10.1093/acprof:oso/9780199298815.001.0001
http://doi.org/10.1021/jacs.8b03913
http://doi.org/10.1107/S0108767310026395
http://www.ncbi.nlm.nih.gov/pubmed/20720316
http://doi.org/10.1038/s41467-018-06322-x


Crystals 2021, 11, 1039 16 of 16

46. Gómez-Peralta, J.I.; Bokhimi, X. Discovering new perovskites with artificial intelligence. J. Solid State Chem. 2020, 285, 121253.
[CrossRef]

47. Gómez-Peralta, J.I. Descubrimiento de Compuestos con Estructura Tipo Perovskita a Través de Inteligencia Artificial y Cálculos
Químico Cuánticos. Ph.D. Thesis, National Autonomous University of Mexico, Mexico City, Mexico, 19 February 2021. Available
online: http://132.248.9.195/ptd2020/diciembre/0805987/Index.html (accessed on 5 August 2021).

48. Patolli 2021. Available online: https://github.com/gomezperalta/patolli_2021 (accessed on 4 August 2021).
49. Tilley, R.J.D. Perovskites: Structure–Property Relationships, 1st ed.; Wiley: Chichester, UK, 2016; pp. 123–154.
50. Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A.

Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [CrossRef]
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