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Abstract: An efficient enhancement of 2.78 µm emission from the transition of Er3+: 4I11/2 → 4I13/2

by Tm3+ introduction in the Er/Tm: PbF2 crystal was grown by the Bridgman technique for the
first time. The spectroscopic properties, energy transfer mechanism, and first-principles calculations
of as-grown crystals were investigated in detail. The co-doped Tm3+ ion can offer an appropriate
sensitization and deactivation effect for Er3+ ion at the same time in PbF2 crystal under the pump
of conventional 800 nm laser diodes (LDs). With the introduction of Tm3+ ion into the Er3+: PbF2

crystal, the Er/Tm: PbF2 crystal exhibited an enhancing 2.78 µm mid-infrared (MIR) emission.
Furthermore, the cyclic energy transfer mechanism that contains several energy transfer processes
and cross-relaxation processes was proposed, which would well achieve the population inversion
between the Er3+: 4I11/2 and Er3+: 4I13/2 levels. First-principles calculations were performed to find
that good performance originates from the uniform distribution of Er3+ and Tm3+ ions in PbF2 crystal.
This work will provide an avenue to design MIR laser materials with good performance.

Keywords: 2.78 µm mid-infrared emission; Er/Tm; PbF2 laser crystal; energy transfer mechanism;
first-principles calculation

1. Introduction

Over the past several decades, mid-infrared (MIR) solid-state lasers operating around
2.7–3 µm have received extensive attention for numerous applications in medicine surgery,
communications, remote sensing, pollution monitoring, and military countermeasures,
etc. [1–5]. Additionally, 2.7–3 µm lasers are suitable pump sources for longer wavelength
mid-infrared or long-infrared (8–12 µm) laser applications utilizing the optical parametric
oscillators [6,7].

Up to now, many kinds of rare-earth ions in favorable ~3 µm MIR emissions have been
analyzed, such as erbium ion (Er3+): 4I11/2 → 4I13/2 [8], holmium ion (Ho3+): 5I6 → 5I7 [9],
and dysprosium ion (Dy3+): 6H13/2 → 6H15/2 [10]. Among them, the Er3+ ion-doped
single crystal has been deemed as the effective source for ~3 µm laser operation, benefiting
from its abundant energy levels, such as GSGG [11], YSGG [12], YAP [13], Lu2O3 [14],
GdScO3 [15], SrF2 crystals [16], NdVO4 [17], InVO4 crystals [18], etc. As investigated, the
Er3+ ion can be directly pumped utilizing 808 or 980 nm commercial laser diodes (LDs)
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corresponding to Er3+ ion absorption transitions from ground state 4I15/2 to 4I9/2, 4I11/2
levels, respectively. To take further advantage of this, a co-doping suitable sensitization
ion having strong absorption around 980 nm or 800 nm would improve the absorption
efficiency, such as Yb3+, Nd3+, or Tm3+ ions [19–21]. However, the fluorescence lifetime of
the 4I11/2 level (the upper) is fairly shorter than that of the 4I13/2 level (the lower) of Er3+

ion, causing the possible termination of 2.7 µm mid-infrared emissions [22]. Therefore, the
shortcoming of the intrinsic self-terminating “bottleneck” effect of Er3+ ion is important
to consider. On one hand, the self-terminating “bottleneck” effect can be restrained by
the energy transfer up-conversion (UC) process: 2 4I13/2 → 4I15/2 + 4I9/2, which needs
heavy doping of Er3+ ion (>30 at.% ). The UC process can simultaneously depopulate the
4I13/2 level and populate the 4I11/2 level via non-radiative transition from 4I9/2 to 4I11/2
levels. However, excessive Er3+ doping concentrations will generate the inclusion defects
in as-grown crystal and degenerate the crystal quality and thermal performance, which is
not conducive to laser output efficiency [23,24]. On the other hand, we can focus attention
on co-doping a suitable deactivation ion for Er3+ ion to suppress the self-terminating effect,
such as Pr3+, Ho3+, Dy3+, or Tm3+ ions [25–28]. These deactivation ions can dramatically
reduce the population of lower Er3+: 4I13/2 levels, thereby achieving efficient 2.7 µm mid-
infrared emission. Based on the above investigation, it is noteworthy that Tm3+ ion can
simultaneously serve as sensitization and deactivation effects for Er3+ ion [29,30].

In recent years, fluoride crystals have attracted numerous attention in the field of
mid-infrared lasers, such as the β-PbF2 crystal [31]. The PbF2 crystal exhibits its intrinsic
advantages. The PbF2 crystal has lower phonon energy (257 cm−1), compared with GdLiF4
(432 cm−1), LiYF4 (442 cm−1), LuLiF4 (400 cm−1) and BaY2F8 (415 cm−1) crystals [32–34].
Such low phonon energy is conducive to reducing the non-radiative transition probability
and enhancing the spontaneous radiation transition probability between 4I11/2 and 4I13/2
levels of Er3+ ion [35]. Moreover, the PbF2 crystal is optically transparent in the region
of 0.25–15 µm, which is broader than other fluoride crystals, such as LiYF4 (0.12–8.0 µm),
BaY2F8 (0.2–9.5 µm), and KYF4 (0.15–9.0 µm). Additionally, another issue to consider is the
physical properties of the material. Some fluoride crystals have low thermal conductivity,
such as CaF2 and SrF2. The PbF2 crystal has high thermal conductivity (28 W/m/K) and
stable mechanical and chemical properties [36,37]. Consequently, with these favorable
characteristics, the PbF2 crystal may be selected as a promising host material.

In this paper, Er: PbF2, Tm: PbF2, Er/Tm: PbF2 crystals were successfully prepared by
the Bridgman technique. The spectroscopic properties of prepared crystals were analyzed
based on absorption spectra, emission spectra, and fluorescence decay curves. Compared
with the Er: PbF2 crystal, the Er/Tm co-doped PbF2 crystal presents a larger 2.78 µm
fluorescence emission intensity and higher fluorescence branching ratio. Moreover, the-
oretical calculations were performed to discover that the co-doping of the Tm3+ ion can
make the Er3+ and Tm3+ ions more evenly distributed in PbF2 crystals, which can effec-
tively break the local clusters of the Er3+ in Er: PbF2 crystal, thus ensuring efficient energy
transfer between Er3+ and Tm3+ ions, and resulting in the enhancement of 2.78 µm MIR
fluorescence emission.

2. Experimental Section

The 1.0 at.% Er: PbF2, 0.5 at.% Tm: PbF2, and 1.0 at.% Er/0.5 at.% Tm: PbF2 crystals
were grown by the conventional Bridgman method in an atmosphere of N2 with intermedi-
ate molybdenum heating. The fluoride powders of the PbF2 (99.999%), ErF3 (99.999%), and
TmF3 (99.999%) were all raw materials. The raw materials were weighed and thoroughly
mixed. The process of crystal growth was similar to our previous work [37]. The melt
was homogenized in a covered graphite crucible in a high-temperature zone at 1000 ◦C
for 8 h, and the crystal growth process was driven by lowering the graphite crucible at
a speed of 0.5 mm/h. After the growth process was completed, the cooling rate of the
crystal was 30 ◦C/cm–40 ◦C/h. The actual concentration of Er3+ and Tm3+ ions in the
grown samples were measured utilizing inductively coupled plasma atomic emission
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spectrometry (ICP-AES). The concentrations of Er3+ and Tm3+ ions in dual-doped Er/Tm:
PbF2 crystal were 1.15 at.%, and 0.58 at.%, respectively. The concentration of Er3+ ion in the
Er: PbF2 crystal was 1.15 at.%, and the concentration of Tm3+ ion in the Tm: PbF2 crystal
was 0.59 at.%.

The crystalline structure of as-grown samples was observed utilizing D/max2550 X-
ray diffraction (XRD) with Cu Kα radiation. The Perkin–Elmer UV-VIS-NIR spectrometer
(Lambda 900) with a resolution of 1 nm was used to detect the absorption spectra of
prepared samples in the range of 400–2200 nm. The emission spectra, up-conversion
fluorescence spectra, and fluorescence decay curves were detected and recorded using the
Edinburgh Instruments FLS920 and FSP920 spectrophotometers. The repetition frequency
of the excitation pulse for measuring the fluorescence decay curves was set to 20 Hz, and
the duration of the excitation pulses was 30s. All the measurements were performed at
room temperature.

3. Calculation Method

In the framework of density functional theory, VASP codes and the plane-wave basis
set method were used for calculation [38,39]. The mutual interactions were described by
the projector augmented-wave pseudopotential with an exchange-correlation function
(Perdew–Burke–Ernzerhof form) [40,41]. The cut-off was set at 550 eV and a 1 × 1 × 1
Gamma k-grid was used to guarantee the relaxation accuracy of 10−5 eV and 0.01 eVÅ−1

within a 2 × 2 × 2 supercell, respectively. The spin polarization was included in the
calculations. According to the method reported previously [42], the formation energy (∆E)
and cluster symbols were obtained. It is pointed that the energy correction of the PbF2
crystal was different from that of CaF2, SrF2, and BaF2 crystals. For a 2 × 2 × 2 supercell
with a net charge, the calculated value in PbF2 crystal was 0.069 eV.

4. Results and Discussion
4.1. Crystal Structure Analysis

Figure 1 shows the XRD patterns and refined XRD patterns of the Er: PbF2, Tm: PbF2,
Er/Tm: PbF2 crystals, and the JCPDS standard card of the PbF2 crystal (nos. 06-2051) [37].
The residuals of refinements (fit profiles shown in Figure 1) of Er: PbF2, Tm: PbF2, Er/Tm:
PbF2 crystals were 9.61%, 7.71%, 10.17%, respectively. It is obvious that no clear shift in
the phase diffraction peaks was observed and all XRD curves were well matched with
the standard card of the β-PbF2 crystalline phase (nos. 06-2051). The results demonstrate
successful co-doping of Er3+ and Tm3+ ions in PbF2 crystal without phase transitions.
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4.2. First-Principles Calculations

Based on the first-principal calculations, the cluster structure of Tm3+ and Er3+ ions
were simulated to research the change of local structures of doping ions in PbF2 crystal.
The possible thermodynamically stable Er3+ and Tm3+ centers in PbF2 crystals are shown
in Figure 2a,b. It is clear to see that there are 9 different types of centers in each Tm: PbF2
and Er: PbF2 crystals. In particular, only the 31|0|8|41-C center in the Tm: PbF2 crystal
varies from the 21|0|6|31 center in the Er: PbF2 crystal, and the other eight different
types of centers in the Tm: PbF2 crystal are the same as the Er: PbF2 crystal. Moreover,
Figure 2c shows the formation energy of Er3+ and Tm3+ versus the number of Er3+ and
Tm3+ ions within a cluster, respectively. It can be seen that the slope of Er3+ clusters in PbF2
crystal is −0.988 eV, which is almost the same as the slope of Tm3+ clusters in the PbF2
crystal (−1.003 eV). These results indicate that the clustering characteristics of Er3+ and
Tm3+ ions in PbF2 crystal are almost consistent. This phenomenon agreed well with the
approximately equal segregator coefficients of Er3+ (1.15) and Tm3+ (1.16) in the Er/Tm:
PbF2 crystal mentioned above, which may be owing to the slightly different ion radii
between Er3+ (88.1 pm) and Tm3+ (86.9 pm) ions. That is to say, it can be considered that
the Er3+ and Tm3+ ions replace Pb2+ ions with equal probability when they are co-doped
in PbF2 crystal, which makes the Er3+ and Tm3+ ions more evenly distributed in the PbF2
crystal. The results suggest that the efficient energy transfer between Er3+ and Tm3+ ions
can be guaranteed due to the uniform distribution of Er3+ and Tm3+ ions, and result in the
enhancing of 2.78 µm MIR fluorescence emission in the ensuing discussion.
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Figure 2. (a) Thermodynamically stable Er3+ centers in PbF2 crystal; (b) Thermodynamically stable
Tm3+ centers in PbF2 crystal; (c) Formation energy of Er3+ and Tm3+ versus the number of rare-earth
ions within a cluster.

4.3. Absorption Spectroscopy

The illustrations in Figure 3 shows the photos of Er/Tm: PbF2, Er: PbF2, Tm: PbF2
crystals and their cut and polished crystal pieces; their sizes are also marked, respectively.
It can be seen that all the crystal pieces are transparent and have no inclusions. Figure 3
illustrates the room temperature absorption spectra of Er: PbF2, Tm: PbF2, and Er/Tm:
PbF2 crystals ranging from 400 nm to 2200 nm. Clearly, the typical absorption bands
centered at approximately 417, 451, 486, 521, 541, 650, 802, 975, and 1509 nm in the Er:
PbF2 crystal originated from the transitions from the ground state 4I15/2 level to upper-
lying 2H9/2, 4F5/2,3/2, 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels of Er3+ ion,
respectively [37]. While in the Tm: PbF2 crystal mainly five absorption bands of Tm3+

ion are labeled, the absorption peaks centered at round 464, 680, 792, 1211, and 1618 nm
are in accord with the transitions from ground state 3H6 level to upper-lying 1G4, 3F2,3,
3H4, 3H5 and 3F4 levels, respectively. Obviously, the huge absorption band centered at
around 792 nm in the range of 750–830 nm corresponding to Tm3+: 3H6 → 3H4 transition
well coincides with the wavelength of 808 nm AlGaAs LD pumping. The absorption
bands in the Er/Tm: PbF2 crystal are altogether composed of the transitions of Er3+ and
Tm3+ ions discussed above, indicating the successful introduction of both Er3+ and Tm3+
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ions. Strong overlap between the Tm3+: 3H6 → 3H4 absorption transition and the Er3+:
4I15/2 → 4I9/2 absorption transition can be seen in the Er/Tm: PbF2 crystal. The absorption
overlap indicates that a possible nonradiative energy transfer process Tm3+: 3H4 → Er3+:
4I9/2 would effectively occur for enhancing the absorption efficiency of Er3+ ion ~800 nm.
Therefore, benefiting from the broad absorption band of Tm3+ ion centered at around LD
pump wavelength and the possibility for energy transfer, the Tm3+ ion can act as a suitable
sensitizer for Er3+ ion in the Er/Tm dual-doped PbF2 crystal.
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Figure 3. Absorption spectra of Tm: PbF2, Er: PbF2, and Er/Tm: PbF2 crystals ranging from 400 to
2200 nm at room temperature. (Illustration: the photos of Er/Tm: PbF2, Er: PbF2, Tm: PbF2 crystals
and their cut and polished crystal pieces, respectively.)

For demonstrating the sensitization effect of Tm3+ ion for Er3+ ion via the Tm3+: 3H4
→ Er3+: 4I9/2 energy transfer transition, the lifetimes of Tm3+: 3H4 level in the Tm3+ single-
doped and Er/Tm dual-doped PbF2 crystals were measured and shown in Figure 4a,b,
respectively. The decay curves were measured under the condition of 1.47 µm emission
(Tm3+: 3H4 → 3F4) and 800 nm excitation (Tm3+: 3H6 → 3H4) and were all well fitted by
single-exponential behavior. As shown in Figure 4a, the measured lifetime of the Tm3+:
3H4 manifold is 1.67 ms in the Tm: PbF2 crystal, while the lifetime is 0.54 ms in the Er/Tm:
PbF2 crystal shown in Figure 4b. The remarkable decreasing lifetime in the Er/Tm: PbF2
crystal indicates the effective sensitization effect of the Tm3+ ion. The energy transfer
efficiency from Tm3+: 3H4 to Er3+: 4I9/2 level can be calculated by the following equation:
ηET1 = 1 − τEr/Tm/τTm, where τEr/Tm and τTm are the lifetimes of Tm3+: 3H4 level in Tm:
PbF2, Er/Tm: PbF2 crystals, respectively. The high value of ηET1 (67.66%) confirms that the
Tm3+ ion has a significant influence on Er3+: 4I9/2 level in PbF2 crystal, and can effectively
act as a sensitizer for Er3+ ion for enhancing ~2.7 µm MIR emission.
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4.4. Emission Spectra and Emission Cross-Sections

For further clarifying the energy transfer mechanism between Tm3+ and Er3+ ions,
the emission spectra of Er/Tm: PbF2, Er: PbF2 samples in the range of 1400–1700 nm, and
Er/Tm: PbF2, Tm: PbF2 samples in the 1700–2200 nm region are shown in Figure 5a,b,
respectively. The test parameters of the luminescence performance of the prepared samples,
such as pump power and slits, are uniformed. As shown in Figure 5a, compared with the
Er: PbF2 crystal the emission intensity centered at around 1.55 µm corresponding to the
Er3+: 4I13/2 → 4I15/2 transition in the Er/Tm: PbF2 crystal weakened sharply, at almost ten
times lower. The result shows that the introduction of Tm3+ ion would significantly reduce
the population of the Er3+: 4I13/2 energy level, thereby enhancing the ~2.7 µm mid-infrared
emission and reversely weakening the 1.55 µm infrared emission. This depopulation
of Er3+: 4I13/2 energy level is mainly attributed to the deactivation effect of Tm3+ ions
via energy transfer process: Er3+: 4I13/2 → Tm3+: 3F4 in Er/Tm: PbF2 crystal. As the
deactivation energy transfer process occurs, the population on the Tm3+: 3F4 level would
increase, thereby enhancing the 1.91 µm emission (Tm3+: 3F4 → 3H6 transition) in the
Er/Tm: PbF2 crystal, but it is actually weakened (shown in Figure 5b). The 1.91 µm
emission intensity of the Tm3+ ion in Er/Tm: PbF2 crystal is nearly three times lower than
that in the Tm3+ single doped PbF2 crystal. This result is mainly assigned to the cross-
relaxation (CR) process between Tm3+ and Er3+ ions (Tm3+: 3F4 + Er3+: 4I13/2 → Tm3+:
3H4 + Er3+: 4I15/2), bringing about the depopulation of the Tm3+: 3F4 level and Er3+: 4I13/2
level. Therefore, the reduced emission intensity of 1.55 µm of Er3+ ion and 1.91 µm of
Tm3+ ion both would depopulate the ions on the Er3+: 4I13/2 level, which is beneficial to
enhance ~2.7 µm MIR emission. More importantly, as shown in Figure 6, the emission
intensity of the Er/Tm: PbF2 crystal centered at around 2.7 µm in the 2500–3100 nm region
is remarkably larger than that of the Er: PbF2 crystal, confirming that the efficient enhanced
~2.7 µm emission is achieved in the Er/Tm: PbF2 designed crystal. To further confirm
the prospects of Er: PbF2, Er/Tm: PbF2 crystals as the mid-infrared luminescent material
in laser applications, the 2.78 µm emission cross-sections are subsequently calculated
according to the Fuchtbauere–Ladenburg theory [43]:

σem(λ) =
Aβλ5 I(λ)

8πcn2
∫

λI(λ)dλ
(1)

where λ denotes the wavelength of fluorescence spectrum, I (λ) is the intensity of emission
spectrum at λ, I(λ)/

∫
λI(λ)dλ is the normalized line shape function of the emission

spectrum of prepared crystal, n is the refractive index of PbF2 crystal, c is the speed of light
in a vacuum, β is the fluorescence branching ratio of 4I11/2 → 4I13/2 transition, and A is
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the spontaneous emission probability. The value of β for ~2.7 µm mid-infrared emission
in Er: PbF2 is calculated to be 14.9%, and in the Er/Tm: PbF2 crystal is calculated to be
20.24%. The maximum emission cross-section of the Er/Tm: PbF2 crystal is calculated
to be 0.63 × 10−20 cm2 at 2780 nm, which is almost twice that of the Er: PbF2 crystal
(0.32 × 10−20 cm2). Moreover, as shown in Table 1, this higher stimulated emission cross-
section in the Er/Tm: PbF2 crystal possibly coincides well with the higher fluorescence
branching ratio β (20.24%) of the Er3+: 4I11/2 → 4I13/2 transition. A higher emission cross-
section is more favorable in achieving high performance of MIR laser operation. These
results are related to the more uniform distribution of Er3+ and Tm3+ ions in PbF2 crystal
after the co-doping of Tm3+ ions, which is consistent with the theoretical calculation results.
Furthermore, it is pointed out that the enhancing of 2.78 µm MIR fluorescence emission is
more dependent on the efficient energy transfer between Er3+ and Tm3+ ions, which comes
from the uniform distribution of doped ions.
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Table 1. MIR emission cross-sections σem, and lifetimes of 4I11/2, 4I13/ 2 levels of Er/Tm: PbF2, Er: PbF2 crystals compared
with other Er3+-doped crystals.

Crystal σem τ(4I11/2) τ(4I13/2) τ(4I11/2)/τ(4I13/2)
Ref.(10−20 cm2) (ms) (ms) (%)

1.0 at.% /0.5 at.%
Er/Tm: PbF2

0.63@2780nm 6.91 ± 0.01 3.14 ± 0.01 220.06 [This work]

1 at.% Er: PbF2 0.32@2780nm 6.03 ± 0.01 12.06 ± 0.05 50.00 [This work]
10 at.% Er:BaLaGa3O7 7.34@2714nm 0.72 7.99 9.01 [44]
10 at.% Er:CaLaGa3O7 17.9@2702nm 0.77 8.41 9.16 [45]
8 at.%Er:LuAl3(BO3)4 8.60@3170nm 2.10 2.54 82.68 [46]

7 at.% Er:Y2O3 1.41@2723nm 2.95 17.57 16.79 [47]
10 at.% Er:SrGdGa3O7 1.30@2.7µm 1.10 4.48 24.55 [24]

5at.% Er:YAP 9.00@2792nm 0.85 7.30 11.64 [13]
7 at.% Er:Lu2O3 1.10@2730nm 1.10 4.30 25.58 [14]

5 at.% Er:GdScO3 0.93@2720nm 2.24 4.57 49.02 [15]
4 at.% Er:SrF2 0.78@2727nm 9.56 15.06 63.48

[16]4 at.% Er:CaF2 0.65@2720nm 5.98 9.94 60.16

4.5. Energy Transfer Mechanism between Tm3+ and Er3+ Ions

Based on spectroscopic results discussed above, the simplified energy level scheme and
electron transitions of the Er3+/Tm3+ co-doped PbF2 crystal are presented in Figure 7. The
cyclic related processes of the Tm3+ and Er3+ ions in the crystal under optical excitation are
as follows: cross-relaxation, energy transfer between Tm3+ and Er3+ ions, and multiphonon
relaxation. The main two ET (namely ET1, ET2) and three CR (namely CR1, CR2, CR3)
processes are listed as follows:

ET 1: Tm3+: 3H4 + Er3+: 4I15/2 → Tm3+: 3H6 + Er3+: 4I9/2;
ET 2: Er3+: 4I13/2 + Tm3+: 3H6 → Er3+: 4I15/2 + Tm3+: 3F4;
CR 1: Tm3+: 3F4 + Er3+: 4I13/2 → Tm3+: 3H6 + Er3+: 4I9/2;
CR 2: Tm3+: 3F4 + Er3+: 4I13/2 → Tm3+: 3H4 + Er3+: 4I15/2;
CR 3: 2Er3+: 4I13/2 → Er3+: 4I15/2 + Er3+: 4I9/2.
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As discussed, the Tm3+: 3H4→ 3H6 transition is resonant with the Er3+: 4I15/2→ 4I9/2
transition in the Er/Tm: PbF2 crystal. Therefore, after the crystal is excited to the Tm3+: 3H4
level by a pump of 800 nm LD, ET1 process Tm3+: 3H4 → Er3+: 4I9/2 would occur. Ions
in the Er3+: 4I9/2 level decay non-radiatively to the lower Er3+: 4I11/2 level, and then decay
radiatively to the Er3+: 4I13/2 level and emit 2.78 µm mid-infrared light. Ions in the Er3+:
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4I13/2 level continue to decay radiatively to the ground state Er3+: 4I15/2 level and emit 1.55
µm infrared light. Similarly, the Er3+: 4I13/2 → 4I15/2 transition is resonant with the Tm3+:
3H6→ 3F4 transition, and the ET2 process from Er3+: 4I13/2 to Tm3+: 3F4 level takes place. The
ET2 process would reduce the population of the lower level of Er3+: 4I13/2, thereby enhancing
the 2.78 µm emission and weakening the 1.55 µm emission, as shown in Figures 5a and 6.
Meantime, the energy transfer up-conversion (UC) CR3 process (Er3+: 24I13/2→ 4I15/2 + 4I9/2)
in the crystal can also populate the Er3+: 4I11/2 level and depopulate the Er3+: 4I13/2 level.
Additionally, ions in the Tm3+: 3F4 level decay radiatively to the 3H6 level and emit 1.91 µm
emission. The subsequent CR1 populates the Er3+: 4I9/2 level, and then the Er3+: 4I11/2 level is
populated through the nonradiative decay from the 4I9/2 level to the 4I11/2 level, increasing the
population ratio of 4I11/2/4I13/2 levels. Moreover, the ions in the Tm3+: 3F4 energy level will
also absorb energy and jump to the upper Tm3+: 3H4 energy level due to Stark level splitting,
and then the CR2 process described above occurs. The CR2 process can simultaneously reduce
the population Er3+: 4I13/2, Tm3+: 3F4 levels, to achieve 2.78 µm emission enhancement and
1.91 µm emission reduction, as shown in Figures 5b and 6. The CR2 process also brings about
the increasing population of the Tm3+: 3H4 level. Besides emitting 1.47 µm light via the Tm3+:
3H4→ 3F4 transition, ions in the Tm3+: 3H4 level can populate the Er3+: 4I9/2 level via ET1
process, resulting in further enhancement of the sensitization effect. To prove the CR2 process,
the UC emission spectra of Er: PbF2 and Er/Tm: PbF2 crystals are shown in Figure 8 under
980 nm excitation. Clearly, as shown in Figure 7, under 980 nm NIR light excitation, the
electrons in the ground level 4I15/2 can be excited to the intermediate level 4I11/2, and the
electrons in the 4I11/2 level sequentially populate the 4F7/2 level (4I15/2 → 4I11/2 → 4F7/2).
Additionally, then, the multiple nonradiative multi-phonon relaxation in the 4F7/2 state in turn
populate the lower 2H11/2, 4S3/2, 4F9/2, and 4I9/2 levels, which would produce 800 nm light
via the process: 4I9/2→ 4I15/2. It is clear to see that the UC emission intensity of the Er/Tm:
PbF2 crystal is at least two times larger than that of the Er: PbF2 crystal at around 800 nm.
Obviously, Tm3+ ions have no absorption band matching the 980 nm excitation (shown in
Figure 3). This enhancing UC emissions phenomenon is possibly assigned to the CR2 and
ET1 mechanism processes illustrated in Figure 7. To summarize, the ET1, ET2, CR1, CR2,
CR3 processes all have significant effects on narrowing the lifetime gap of upper-lying Er3+:
4I11/2 and lower-lying Er3+: 4I13/2 levels or even achieving population conversion of these
two levels, thereby obtaining efficient enhanced 2.78 µm emission.
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4.6. Fluorescence Decay Curves and Fluorescence Lifetimes

For further demonstrating the energy interaction mechanism between Er3+ and Tm3+

ions, the time-resolved decay curves of the Er3+ ion 2.78 µm (4I11/2 → 4I13/2) and 1.55 µm
(4I13/2 → 4I13/2) fluorescence emission for the Er/Tm: PbF2 and Er: PbF2 crystals were
measured and shown in Figure 9. The lifetimes of 4I13/2 levels were measured under the
conditions of 1.55 µm emission (4I13/2 → 4I15/2) and 1.49 µm excitation (4I15/2 → 4I13/2).
The decay curves of the Er3+: 4I11/2 and Er3+: 4I13/2 levels are well fitted with single-
exponential behavior. As shown in Figure 9a,b, the measured lifetime of the upper-lying
4I11/2 level in the Er/Tm: PbF2 crystal (6.91 ms) is 14.6% longer compared with the Er:
PbF2 crystal (6.03 ms), which is assigned to the sensitization effect of the Tm3+ ion on the
upper-lying Er3+: 4I11/2 level. Moreover, as shown in Figure 9c,d, the measured lifetime of
the lower-lying 4I13/2 level in the Er/Tm: PbF2 crystal is 3.14 ms, which is 73.96% shorter
compared with the Er: PbF2 crystal (12.06 ms). This remarkable decrease of the lifetime of
lower-lying 4I13/2 level denotes that Tm3+ ions can dramatically depopulate the Er3+: 4I13/2
level via ET2, CR1, CR2, CR3 processes, thereby enhancing the 2.78 µm emission in PbF2
crystals. The ET2, CR1, CR2, CR3 processes all have significant effects on narrowing the
lifetime gap of upper-lying Er3+: 4I11/2 and lower-lying Er3+: 4I13/2 levels or even achieving
population conversion of these two levels. Besides, the energy transfer efficiency ηET2 was
calculated to be 73.96%, confirming the efficient deactivation effect of the Tm3+ ion for the
Er3+ ion. Furthermore, Table 1 shows the lifetimes of 4I11/2, 4I13/ 2 levels of Er/Tm: PbF2,
Er: PbF2 crystals, and other Er3+ doped laser crystals. The shorter fluorescence lifetime
of 4I13/2 lower level induces the longer fluorescence lifetime ratio τ(4I11/2)/τ(4I13/2). The
fluorescence lifetime ratio τ(4I11/2)/τ(4I13/2) in Er/Tm: PbF2 crystal is 220.06%, which is
dramatically larger than that of the Er: PbF2 crystal (50.00%) and other Er3+ doped crystals.
The remarkably enhanced τ(4I11/2)/τ(4I13/2) ratio in Er/Tm: PbF2 crystal is favorable
for achieving efficient laser operation ~2.7 µm. As a consequence, the introduction of
Tm3+ ions can simultaneously act as sensitization and deactivation ions for the Er3+ ion,
thereby enhancing 2.78 µm mid-infrared emission and reducing the laser threshold of
2.78 µm luminescence.
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Figure 9. (a) Fluorescence decay curves of the Er3+: 4I11/2 energy level of Er: PbF2 crystal (λex = 800 nm,
λem = 2780 nm); (b) Er3+: 4I11/2 energy level of Er/Tm: PbF2 crystal (λex = 800 nm, λem = 2780 nm);
(c) Er3+: 4I13/2 energy level of Er: PbF2 crystal (λex = 1490 nm, λem=1550 nm); (d) Er3+: 4I13/2 energy
level of Er/Tm: PbF2 crystal (λex = 1490 nm, λem = 1550 nm).
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5. Conclusions

In summary, Er3+: PbF2, Tm3+: PbF2, and Er3+/Tm3+: PbF2 crystals were prepared
successfully by the Bridgman technique. An efficient enhanced 2.78 µm emission was
obtained in the Er/Tm: PbF2 crystal for the first time, and the proposed energy transfer
mechanism of the Er/Tm: PbF2 crystal was systematically investigated. The theoretical
calculations were performed to discover that the co-doping of Tm3+ ions can make the Er3+

and Tm3+ ions more evenly distributed in PbF2 crystals, which can effectively break the
local clusters of Er3+ in Er: PbF2 crystal, thus ensuring efficient energy transfer between
Er3+ and Tm3+ ions, and resulting in the enhancing of 2.78 µm MIR fluorescence emission.
The cyclic energy transfer mechanism contains several energy transfer processes and cross-
relaxation processes, which all have significant effects on narrowing the lifetime gap of
upper-lying Er3+: 4I11/2 and lower-lying Er3+: 4I13/2 levels or even achieving population
conversion of these two levels. As proved, the Tm3+ ion can simultaneously act as an
appropriate sensitized and deactivated ion for the Er3+ ion in the PbF2 crystal. Compared
with the Er3+ single-doped crystal, the Er3+/Tm3+ co-doped PbF2 crystal has the larger
2.78 µm mid-infrared fluorescence emission intensity, higher fluorescence branching ratio
(20.24%), and higher stimulated emission cross-section (0.63 ×10−20 cm2), corresponding
to Er3+: 4I11/2 → 4I13/2 transition. Therefore, the introduction of Tm3+ ions is favorable
for achieving efficient enhanced 2.78 µm emission in the Er/Tm: PbF2 crystal, which can
become a promising material for low threshold, and high-efficiency mid-infrared laser
applications under the pump of a conventional 800 nm LD.
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