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Abstract: The effect of the dilution gas flow rate on inorganic oxide insulating layers can improve flu-
idised bed chemical vapour deposition (FBCVD) in Fe–Si/inorganic-oxide soft magnetic composites
and obtain excellent magnetic properties. Herein, Fe–Si/SiO2 composite particles coated via FBCVD
and deposited at a 125–350 mL/min Ar-dilution gas flow rate were prepared and sintered into
soft magnetic composites. Results demonstrate that SiO2 deposited on the Fe–Si substrate particle
surface changed from submicron SiO2 clusters (125 mL/min) to an incomplete SiO2 film, then to a
complete SiO2 film, and finally to a porous SiO2 film as the Ar-dilution gas flow rate increased. SiO2

layers began to transform from the amorphous to the beta-cristobalite state with a hexagonal crystal
structure between 1149.45 K and 1280.75 K. However, the SiO2 amorphous layers’ crystallisation
did not affect the Fe–Si substrate particles’ crystal structure. With the increasing Ar-dilution gas
flow rate, the saturation magnetisation of Fe–Si/SiO2 soft magnetic composites initially decreased
and then increased. The electrical resistivity increased before 150 mL/min, followed by an increase
between 150 and 250 mL/min and then decreased, whereas the total core loss exhibited the opposite
trend. These results show that magnetic performance can be promoted by selecting a suitable dilution
flow rate.

Keywords: dilution gas; soft magnetic composites; evolution mechanism; magnetic performance

1. Introduction

For advanced performance, as an energy conversion material in electromagnetic
devices [1–3] and high-power high-frequency electrical devices [4], Fe–Si/inorganic-oxide
soft magnetic composites have been studied by researchers worldwide. To coat an inorganic
oxide insulating layer on Fe–Si magnetic particles, several methods, such as ball milling [5],
mixed sintering [6], and the sol–gel process [7,8], were used to obtain Fe–Si/inorganic-oxide
core–shell particles with high insulating quality. The disadvantage of these methods is the
uncontrollability of homogeneity for the inorganic oxide-insulating layer. The fluidised
bed chemical vapour deposition (FBCVD) method was first used to coat inorganic oxides
on particles ~30 years ago [9]. Moreover, laboratory studies demonstrate that the FBCVD
technique is a suitable and effective method for coating inorganic oxide-insulating layers
on Fe–Si magnetic particles [10]. An 800-nm-thick inorganic oxide insulating layer can be
deposited at a rate ranging between 4.2 and 17.6 nm/min on Fe–Si substrate particles [11].

The inorganic oxide-insulating layers are deposited on the particle surface by thermally
decomposing the precursors [12–14]. However, during the subsequent particle-moulding
process, the inorganic oxide-insulating layers easily break and collapse because of the large
lattice mismatch and thermal expansion coefficient mismatch between inorganic oxides and

Crystals 2021, 11, 963. https://doi.org/10.3390/cryst11080963 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-1771-2229
https://doi.org/10.3390/cryst11080963
https://doi.org/10.3390/cryst11080963
https://doi.org/10.3390/cryst11080963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11080963
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst11080963?type=check_update&version=1


Crystals 2021, 11, 963 2 of 12

particle substrates [15,16], which may negatively impact performance. Therefore, research
attention should be focused on the interfacial bonding between inorganic oxides and
particle substrates and the compactness of the inorganic oxide-insulating layer’s deposition.
In the FBCVD system, multiple conditions, such as the deposition temperature, pressure,
particle substrate size, precursor flow rate, and dilution gases, affect the deposition process
and the properties of the final product. Recently, many studies have reported the effect
of FBCVD process parameters on the quality of inorganic oxide deposition and related
performance. Complete FBCVD experimental investigations were conducted to study
the effect of the deposition time and the precursor’s mole fraction on SnO2 deposition
with large hollow Ni particles [17]. To improve SiO2 layer deposition using FBCVD,
the effects of the deposition time and injection mode of SiH4 on the deposition process
were examined [18]. The effects of deposition temperature on the uniformity of the TiO2
distribution of the Fe–Ni particles and photocatalysis were examined using the geometric
limitation of real experiments [19]. Although these studies have significantly promoted
research, the FBCVD experimental conditions on the compactness of inorganic oxide
insulating layers deposited on the Fe–Si particle surface and the magnetic properties of
Fe–Si/inorganic-oxide soft magnetic composites have not been reported thus far.

Herein, the impact of the Ar dilution gas flow rate on the microstructure of the SiO2
layers deposited via FBCVD was examined. Further, the evolution mechanisms of SiO2
layers under a series of Ar dilution gas flow rates are reported, and the effect of the
magnetic properties of Fe–Si/SiO2 soft magnetic composites is described. The results
provide a certain basis for improving the Fe–Si/inorganic-oxide soft magnetic composites
and process knowledge of FBCVD.

2. Materials and Methods
2.1. Materials

In this study, the substrate particles used were commercial gas-atomized Fe–Si parti-
cles with a particle size ranging between 45 and 90 µm. The nominal composition of the
Fe–Si particles was Fe = 93.26, Si = 6.65, O = 0.02, C = 0. 07 (wt.%). Tetraethyl orthosilicate
(National Medicine Group Chemical Reagent Co., Ltd., Shanghai, China) with a purity of
99.0 wt.% was selected as the SiO2 precursor. Pure Ar gas (Nanjing Special Gas Plant Co.
Ltd., Nanjing, China) with a purity of 99.999 wt.% was used as the dilution and carrier gas.

2.2. Preparation of Fe–Si/SiO2 Composites Using FBCVD-HPS

Herein, Fe–Si/SiO2 soft magnetic composites were fabricated through an FBCVD-hot
press sintering (HPS) process, which involves two primary steps: (i) 50 g of Fe–Si particles
was placed on a stainless steel strainer, with 30-µm-diameter pores, within a vertical tube
furnace and fluidised using Ar dilution gas. Tetraethyl orthosilicate (outgassed at 423 K)
was introduced into the furnace by another Ar carrier gas flow (at a rate of 100 mL/min) for
60 min when the furnace temperature reached 930 K. The Fe–Si/SiO2 composite particles
were collected after the furnace cooled to room temperature. (ii) Next, 26 g of Fe–Si/SiO2
composite particles was packed into a graphite mould and sintered using an HPS condition
(Hubei Changjiang Jinggong Material Technology Co. Ltd., Ezhou, China). The pressure
was increased to 20 MPa, and then the temperature was increased to 1223 K in 10 min. The
Fe–Si/SiO2 soft magnetic composites were sintered at this temperature at a dwelling time
of 10 min. The Fe–Si/SiO2 composite particles and soft magnetic composites were adjusted
by varying the flow rate of the Ar dilution gas from 125 to 350 mL/min.

2.3. Characterisation

The element distribution, surface, and cross-section morphologies of Fe–Si/SiO2 com-
posite particles and soft magnetic composites were characterised via scanning electron
microscopy (SEM, Zeiss Sigma 300, Sigma, Ronkonkoma, NY, USA) and energy-dispersive
spectrometry (EDS, OxfordX-MAX). A Bruker D8 Advance X-ray diffractometer (XRD,
Bruker, Billerica, MA, USA), with CuKα radiation, was used to examine the phase com-
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position of the synthesised Fe–Si/SiO2 composite particles and soft magnetic composites.
Furthermore, the changes in the crystal structure information, for the Fe–Si/SiO2 soft mag-
netic composites during HPS, were obtained using Rietveld refinement. The Fe–Si/SiO2
composite particles were thermally analysed via differential scanning calorimetry (DSC,
Netasch 499C, Netzsch, Bavaria, Germany) at a heating rate of 10 K/min from 373.15 K to
1473.15 K under an argon atmosphere. The magnetic hysteresis loops of Fe–Si/SiO2 soft
magnetic composites were measured using a vibrating sample magnetometer (VSM, MPMS
XL-7, Quantum Design, CA, USA) at room temperature with a maximum applied field
of 20 kOe. Sheet resistances of the Fe–Si/SiO2 soft magnetic composites were measured
using a four-probe resistivity test system. The total core loss of Fe–Si/SiO2 soft magnetic
composites from 10 mT and 25–200 kHz, respectively, was examined using a B–H curve
analyser (SY-8219, IWATSU, Tokyo, Japan).

3. Results
3.1. Morphology of Fe–Si/SiO2 Composite Particles and Soft Magnetic Composites

The SEM and EDS mappings of the Fe–Si/SiO2 composite particles were used to
demonstrate the deposition of SiO2 layers on Fe–Si substrate particles. The surface mor-
phology of the Fe–Si/SiO2 composite particles deposited at a flow rate of 250 mL/min for
the Ar dilution gas is shown in Figure 1. The elemental signals of O obtained from the Fe–
Si/SiO2 composite particles are consistent with those of Fe and Si. The even distribution of
these three elements indicates that an excellent and uniform SiO2 layer can be deposited on
the surface of the Fe–Si substrate particles through FBCVD. Figure 2 shows the surface mor-
phologies of Fe–Si/SiO2 composite particles obtained at various Ar dilution gas flow rates.
Following FBCVD, compared with the clean and smooth surface of Fe–Si substrate parti-
cles seen in Figure S1, the surface of the Fe–Si/SiO2 composite particles became rougher.
Moreover, the particle surface morphology and SiO2 layer quality were influenced by the
flow rate of the Ar dilution gas. The submicron-sized SiO2 clusters can be observed on the
local areas of the sample surface when the flow rate of Ar dilution gas was relatively low
(125 mL/min, Figure 2a), and the as-formed SiO2 layer was unconnected. The deposited
SiO2 showed a decrease in the particle size, and its deposition changed from particles to a
film as the flow rate of Ar dilution gas increased to 150 mL/min (Figure 2b). Moreover, the
SiO2 layers deposited on the surface of the Fe–Si substrate were evenly distributed at a flow
rate of 200 mL/min of the Ar dilution gas, and the existing pits on the substrate surface
were covered (Figure 2c). As the flow rate of the Ar dilution gas increased (Figure 2e),
visible pores appeared among the SiO2 layers, indicating that the homogeneity and com-
pactness worsened at this stage. Furthermore, the cross-section backscattered images in
Figure 2 confirmed that the Fe–Si/SiO2 composite particles could be obtained at a gas flow
rate of 125 mL/min for the Ar dilution gas; however, the optimal Ar dilution gas flow rate
range for forming an integrated Fe–Si/SiO2 core/shell heterostructure was between 200
and 300 mL/min. During FBCVD, the relationship between the deposition rate and Ar di-
lution gas flow rate can be obtained from the average thickness of the SiO2 layers measured
from the cross-section backscattered images using ImageJ software (shown in Figure 2g).
The deposition rate for SiO2 layers on the Fe–Si substrate particle surface initially increased
from 2.20 (200 mL/min) to 9.70 nm/min (250 mL/min) and subsequently decreased to
2.68 nm/min (300 mL/min) after the integrated Fe–Si/SiO2 core/shell
heterostructure formed.

Figure 3a shows the SEM and EDS results of Fe–Si/SiO2 soft magnetic composites
sintered from the Fe–Si/SiO2 composite particles deposited at an Ar dilution gas flow rate
of 250 mL/min. A backscattered electron is sensitive to the mean atomic number of the
material: the larger the mean atomic number, the brighter the corresponding backscattered
electron image. The elemental distribution signal shows that the Fe element was mainly
concentrated in the inner Fe–Si particle area. The O element was distributed at the interface
between the Fe–Si particles, indicating that the Fe–Si/SiO2 soft magnetic composites
featured a core/shell heterostructure with a SiO2 layer shell and an Fe–Si-particle core. The
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detected backscattered high-energy electrons in Figure 3c–h indicate the evolution of the
cross-section morphology for the Fe–Si/SiO2 soft magnetic composites from an Ar dilution
gas flow rate of 125–350 mL/min. The Fe–Si compacts in Figure 3b showed a smooth
polished surface without defects or air gaps, indicating a high density and mechanical
strength. However, the uneven SiO2 layers with several pores can be observed in the
cross-sections of Fe–Si/SiO2 soft magnetic composites deposited at an Ar dilution gas flow
rate of 125 mL/min. A small portion of the interface between the Fe–Si particles became
difficult to distinguish. The uniformity, continuity, and average thickness of SiO2 layers
increased and the interface between the Fe–Si particles became more distinct when the Ar
dilution gas flow rate increased from 125 to 250 mL/min. However, with increase in the Ar
dilution gas flow rate from 300 to 350 mL/min, the inhomogeneous phenomenon of SiO2
layers reappeared. Furthermore, the mean thickness of the SiO2 layers decreased.
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3.2. Influential Mechanism of the Ar-Dilution Gas Flow Rate

Based on the typical fluidisation behaviour of Geldart-B particles [20], the gas flow rate
(VAr) of Ar gas, which contacts with the Fe–Si substrate particles, and the initial fluidisation
velocity (VFe(Si))) of Fe–Si substrate particles can be expressed as follows:

VAr =
(VAr1 + VAr2)× 10−6

60× πr2 (1)

VFe(Si) =
d2(ρFe(Si) − ρAr)g

1650× µAr
, (2)

where VAr1 and VAr2 are the flow rates of the Ar dilution and carrier gases, respectively
(mL/min). r is the radius of the stainless steel strainer (m); d is the particle size of the
Fe–Si substrate particles (m); ρFe(Si) and ρAr are the densities of Fe–Si substrate particles
and Ar gas, respectively (kg/m3); g is the acceleration because of gravity (N/kg); and
µAr is the viscosity of Ar gas (Pa·s). To maintain Fe–Si substrate particles in a fluidised
condition during FBCVD, the VAr should exceed VFe(Si). Figure 4 shows the schematic
of the possible influential mechanism of the Ar-dilution gas flow rate on the microscopic
appearances of Fe–Si/SiO2 composite particles. In this study, the gasflow status in the
reaction during FBCVD was determined by the flow rate of the Ar dilution gas. Under the
condition that the partial pressure of the gaseous SiO2 precursor was maintained constant
in the experimental system, the Ar-dilution gas flow rate corresponded to a variation in
gasflow boundary layer thickness. The SiO2 layers on the Fe–Si/SiO2 composite particle
surface changed with the flow rate of the Ar dilution gas as follows.
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Figure 4. Schematic of a possible influential mechanism of the Ar-carrier gas flow rate on the microscopic appearances of
Fe–Si/SiO2 composite particles.

1. When the Ar dilution gas flow is relatively low (125 mL/min), the dynamic viscosity
of Ar gas increases with the reaction temperature, although VAr before the reaction is
greater than VFe(Si). The Fe–Si substrate particles cannot continue to maintain fluidisa-
tion and the gas SiO2 precursor contacts with the partial surface of accumulated Fe–Si
substrate particles. At this stage, the SiO2 deposition presents submicron clusters.

2. As the Ar dilution gas flow rate increases to 150 mL/min, the Fe–Si substrate particles
break away from the state of being unable to fluidise because of high temperature, and
the gas SiO2 precursor passes through the substrate particles. However, the content
of the gas SiO2 precursor in the reaction system is less because of the low flow rate of
the Ar dilution gas. The submicron SiO2 clusters transition towards incomplete and
uneven SiO2 layers. Simultaneously, the deposition rate of the SiO2 layers drops.

3. When the Ar-dilution gas flow rate increases to some extent (200 and 250 mL/min),
the Ar dilution gas can maintain the Fe–Si substrate particles in a fluidised suspension
motion despite the increase in temperature during the deposition reaction. The
gaseous SiO2 precursor is uniformly distributed on the surface of the Fe–Si substrate
particles. According to the theory of sedimentary process [21], Ar gas functions
as a carrier and dilute gas precursor, belonging to quality transport control. The
diffusion resistance of the gaseous SiO2 precursor through the gasflow boundary
layer decreases with in the increasing Ar-dilution gas flow rate. Thus, the number
of gas–solid collisions and the reaction rate at the gas–solid interface are increased
by decreasing the occurrence of homogenous gas-nucleation reactions before contact
with the Fe–Si substrate particle surface. As the Ar dilution gas flow rate increases,
the SiO2 layer deposition rate increases. SiO2 layers exist in the form of a coated film.

4. However, as the Ar-dilution gas flow rate continues to increase (300 and 350 mL/min),
the excessive Ar dilution gas flow, at this time, reduces the diffusion resistance of
the gaseous SiO2 precursor, the retention time of the gaseous SiO2 precursor in the
vertical tube furnace, and the effective reaction time with the Fe–Si substrate particle
surface. Certain gaseous SiO2 precursors are expelled with the Ar dilution gas prior
to deposition, and the high gas flow rate will reduce the temperature around the Fe–Si
substrate particles. The deposition rate of the SiO2 layer at this Ar-dilution gas flow
rate decreases owing to the reduced reaction rate at the gas–solid interface. Thus,
surface defects, such as holes, appear in the SiO2 layers.

3.3. Crystal Structure Evolution during HPS

Figure 5a shows the XRD pattern of the Fe–Si/SiO2 composite particles deposited at
a Ar carrier gas flow rate of 250 mL/min. The observed peaks at 44.8◦, 65.2◦, and 82.6◦

indexed as (110), (200), and (211) agree with the α-Fe(Si) solid-solution (JCPDS file No.
3-065-6323). One extra amorphous peak arose at ~22◦, indicating that the SiO2 layer is
amorphous. An ultra-low intensity diffraction peak located at 26.6◦ appeared in the Fe–
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Si/SiO2 soft magnetic composites (Figure 5b), corresponding to the (011) plane of the SiO2
crystal phase (JCPDS file No. 1-070-2517). The results show that SiO2 layers crystallised
during HPS. Furthermore, the XRD experimental results were refined using Fullprof to
estimate the effect of the crystallisation of amorphous SiO2 layers on the crystal structure
of the Fe–Si substrate particles [22]. Table 1 lists the crystal refinement data. The low values
for Rwp (weighted peak residual variance factor), Rp (peak residual variance factor), and S
(fitting degree) indicate that the Rietveld calculations are consistent with the experimental
results. The additional SiO2 crystal phase in the Fe–Si/SiO2 soft magnetic composites was
arranged in a hexagonal crystal structure, in which the ratio of the vertical cell (c) to the
bottom cell (a) parameters was 1.368. Herein, the experimental conditions were maintained
in the thermodynamically stable region of tridymite (monoclinic system); however, this
contradicts the XRD results. This phenomenon can be interpreted using Ostwald’s step
rule [23,24], which states that the beta-cristobalite mesophase (hexagonal system) appears
during the transformation from amorphous SiO2 to the thermodynamic-stable phase
(quartz or tridymite). However, the amorphous SiO2 first converted to beta-cristobalite,
and then to quartz or tridymite. The long-term and stable existence of beta-cristobalite
is attributed to the different rate constants of these two reactions. The rate constant of
the former reaction is larger than that of the latter reaction. In the above-mentioned two
reactions, the new phase is formed via the destruction and reconstruction of the Si–O bond,
which requires high activation energy. However, in practice, the formation conditions of
beta-cristobalite are benign because the free energy difference between beta-cristobalite
and quartz or tridymite is low and even <10 kJ/mol with amorphous SiO2 [25]. It can
be hypothesised that the dynamic disordered structure of beta-cristobalite is similar to
the medium-range ordered structure of amorphous SiO2, increasing the reaction rate of
the transformation from amorphous SiO2 to beta-cristobalite. Therefore, the crystalline
structure of beta-cristobalite can be detected rather than that of the thermodynamically
stable tridymite after amorphous SiO2 crystallisation occurring at the temperature range
in this study. However, cell parameters (a = b = c = 2.859 Å) of the body-centred cubic
α-Fe(Si) phase in the Fe–Si/SiO2 soft magnetic composites are almost identical to those in
the Fe–Si/SiO2 composite particles. The schematic of the crystal structure of Fe–Si/SiO2
composite particles and soft magnetic composites were drawn using Vesta [26] based on the
structural parameters, after refinement in Figure 5c. The results show that the crystallisation
of SiO2 layers can occur during HPS but does not influence the crystal structure of Fe–
Si substrate particles. To demonstrate the thermal effect and temperature range for the
crystallisation of SiO2 layers, Figure 5d shows the DSC curve and the relative crystallinity
as a function of the temperature of Fe–Si/SiO2 composite particles. The DSC result shows
that the SiO2 layers transformed from the amorphous to the beta-cristobalite state between
1149.45 K and 1280.75 K. Furthermore, the crystallinity of Fe–Si/SiO2 composite particles
rose before 1226.05 K, which is attributed to the increase in crystal nuclei number. Then,
with an increase in temperature, the crystallisation rate curve tended to be relatively flat
and became smooth at 1280.75 K.

3.4. Magnetic Behaviour of Fe–Si/SiO2 Soft Magnetic Composites

Figure 6 shows the magnetic hysteresis curves of Fe–Si compacts and Fe–Si/SiO2
soft magnetic composites sintered from the composite particles deposited at different Ar-
dilution gas flow rates. The saturation magnetisation and the coercivity of Fe–Si compacts
reached 195.9 emu/g and 11 Oe, respectively. However, all saturation magnetisation values
decreased in Fe–Si/SiO2 soft magnetic composites compared with Fe–Si compacts, and
the saturation magnetisation of Fe–Si/SiO2 soft magnetic composites initially decreased
and then increased with the increase in the Ar-dilution gas flow rate, thus exhibiting a
trend opposite to that of the deposition rate of the SiO2 layers. This trend is attributed
to the Fe–Si/SiO2 soft magnetic composites, which are equivalent to the introduction of
non-magnetic SiO2 into the Fe–Si compacts, wherein the number of non-magnetic SiO2
first increased and then decreased with the increase in the Ar-dilution gas flow rate, thus
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varying the magnetic moment ratio of magnetic materials. Therefore, during FBCVD,
Fe–Si/SiO2 soft magnetic composites with different saturation magnetisation values can be
obtained by controlling the Ar-dilution gas flow rate. However, the coercivity of magnetic
materials is an inherent property influenced by the number and strength of magnetic
dipole moments and the interaction between adjacent magnetic domains. No difference
was observed between the Fe–Si/SiO2 soft magnetic composites and the Fe–Si compacts,
indicating that the non-magnetic SiO2 layers and Fe–Si/SiO2 core–shell structures affected
the magnetic domain.

Table 1. Crystal refinement data of Fe–Si/SiO2 composite particles and soft magnetic composites.

Refinement Parameters Phase Cell Parameters Bond Angle

Rwp Rp S a b c α β γ

Fe–Si/SiO2 composite particles 5.58% 4.18% 2.36 Fe–Si 2.859 2.859 2.859 90.00 90.00 90.00

Fe–Si/SiO2 soft magnetic composites 5.96% 4.37% 2.78
Fe–Si 2.859 2.859 2.859 90.00 90.00 90.00
SiO2 5.041 5.041 5.253 90.00 90.00 120.00Crystals 2021, 11, x FOR PEER REVIEW 8 of 12 
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Figure 7 shows the measured results of the bulk material’s electrical resistivity for
Fe–Si compacts and Fe–Si/SiO2 soft magnetic composites. According to the permeability
theory, the introduction of SiO2 layers with high resistivity (1011–1013 µΩ·cm) into the
Fe–Si compacts will increase the distance between conductive Fe–Si particles and destroy
the continuous and dense conductive network formed by the conductive Fe–Si particles,
thereby increasing the electron tunnelling barrier and reducing the electron tunnelling
probability. Therefore, all Fe–Si/SiO2 soft magnetic composites had higher electrical resis-
tivity values than the Fe–Si compacts (Figure 7). The electrical resistivity of Fe–Si/SiO2 soft
magnetic composites increased before 150 mL/min, followed by a rapid increase between
150 and 250 mL/min and then decreased. This result can be explained by combining with
the possible influential mechanism of the Ar-dilution gas flow rate on the microstructure
of Fe–Si/SiO2 composite particles (Figure 4). The electrical resistivity of Fe–Si/SiO2 soft
magnetic composites was affected by contact with the conductive Fe–Si particles and the
distance between conductive Fe–Si particles. SiO2 is deposited on the surface of Fe–Si
substrate particles in the form of molecules, one by one, during FBCVD. SiO2 deposition



Crystals 2021, 11, 963 9 of 12

on the surface of Fe–Si substrate particles is accompanied by several surface defects when
the Ar dilution gas flow is relatively low; thus, the conductive Fe–Si particles can directly
contact and generate a slow increase in electrical resistivity. SiO2 layers existed in the form
of a complete film as the Ar-dilution gas flow rate increased to 150 mL/min. The vacancies
filled up, and the conductive Fe–Si particles were no longer contacted. However, the
distance between Fe–Si particles increased with the increasing thickness of the SiO2 layer;
thus, the electrical resistivity rapidly increased. However, because the Ar-dilution gas flow
rate continued to increase, the surface defects, such as holes, appeared in SiO2 layers and
the conductive Fe–Si particle contact; thus, the electrical resistivity began to decrease.
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The total core loss (Wcv, W/kg) was a magnetic parameter for the Fe–Si compacts
and Fe–Si/SiO2 soft magnetic composites used in the power application. Table 2 lists Wcv
measured at 10 mT and 50–200 kHz for the Fe–Si compacts and Fe–Si/SiO2 soft magnetic
composites deposited at various Ar-dilution gas flow rates. With increasing measurement
frequency and maximum magnetic flux density, Wcv demonstrated a persistent increasing
trend for the Fe–Si/SiO2 soft magnetic composites. Moreover, we observed that the Wcv
of Fe–Si/SiO2 soft magnetic composites decreased slowly as the Ar-dilution gas flow rate
increased and then rapidly decreased and finally increased. When the Ar-dilution gas flow
rate reached 250 mL/min, the Wcv of Fe–Si/SiO2 soft magnetic composites was 215.7 W/kg,
which was 51.0% lower than the Fe–Si compacts at 200 kHz. This can be attributed to the
superior resistivity of the SiO2 layer, limiting eddy current losses at high frequencies.

Table 2. Comparison of the total core loss of Fe–Si compacts and Fe–Si/SiO2 soft magnetic composites.

Samples
Ar Dilution Gas

Flow Rate
(mL/min)

Total Core Loss (W/kg)

W10/25 W10/50 W10/100 W10/150 W10/200

Fe–Si compacts 0 19.8 54.6 151.4 274.1 423.2

Fe–Si/SiO2
composite compacts

125 19.5 53.9 150.7 225.5 275.8

150 15.6 42.8 119 215.9 271.2

200 13.9 39.1 108.1 197.4 259.3

250 11.0 30.7 83.7 152.7 215.7

300 11.4 31.9 90.6 169.5 221.5

350 13.9 38.3 106.4 192.1 232.5

4. Conclusions

FeSi/SiO2 soft magnetic composites were fabricated via FBCVD and HPS technologies.
The mechanism of the microstructural evolution of SiO2 layers, under a series of Ar-dilution
gas flow rates and its effect on magnetic properties of Fe–Si/SiO2 soft magnetic composites,
was examined. The results in this study can be summarized as follows.

• With an increase in the Ar-dilution gas flow rate from 125 to 350 mL/min during
FBCVD, SiO2 deposited on the Fe–Si substrate particle surface presented the micro-
scopic characteristics of “sub-micron SiO2 clusters (125 mL/min)→ incomplete SiO2
layers (150 mL/min)→ complete SiO2 film (200 and 250 mL/min)→ porous SiO2
film (300 and 350 mL/min)”.

• The dynamic disordered structure of beta-cristobalite was similar to the medium-range
ordered structure of amorphous SiO2, increasing the reaction rate of the transformation
from amorphous SiO2 to beta-cristobalite. Thus, SiO2 layers transformed from the
amorphous to the beta-cristobalite state with a hexagonal crystal structure at 1226.05 K
during HPS. However, the crystallisation of SiO2 layers did not affect the crystal
structure of Fe–Si substrate particles.

• The saturation magnetisation of Fe–Si/SiO2 soft magnetic composites initially de-
creased and then increased with increasing Ar-dilution gas flow rate. The electrical re-
sistivity of Fe–Si/SiO2 soft magnetic composites slowly increased before 150 mL/min,
followed by a rapid increase, between 150 and 250 mL/min, and then decreased
while the total core loss exhibited the opposite trend. The lowest total core loss value
(215.7 W/kg) was observed at the Ar-dilution gas flow rate of 250 mL/min.

The results pave the way for the efficient production of the Fe–Si/inorganic-oxide soft
magnetic composites and provide a certain basis for improving FBCVD technology.
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