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Abstract: New non-symmetrical 1:1 supramolecular H-bonded (SMHB) interactions, Ix/II, were
designed between the non-mesomorphic fatty acids (palmitic, oleic and linoleic acids) and 4-
tetradecyloxyphenylazo pyridine. Mesophase behaviors of the formed complexes were examined via
differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). In order to confirm
the H-bond interaction formations within the prepared SMHB complexes, FT-IR spectroscopy was
established whereby Fermi bands confirm these interactions. Mesomorphic investigations for all
complexes indicated that, independent of the terminal alkenyl chains of the natural acids, induced
dimorphic smectic phases were observed. The stability of formed mesophases was found to depend
on the degree of un-saturation of the terminal alkenyl group of acid component.

Keywords: alkenyl group; supramolecular H-bonding complexes; induced smectic phase; natural
fatty acid

1. Introduction

Hydrogen-bonding (H-bonding) interactions are considered to be one of the good,
fantastic strategies for the development of new supramolecular systems. Mesomorphic
supramolecular H-bonded (SMHB) systems by intermolecular H-bonding interactions
have attracted attention in application reports since the documents by Kato and Fréchet for
designing this interaction between pyridyl and benzoic acid moieties to build SMHB liquid
crystals [1–4]. These mesomorphic materials involved the non-covalent interactions and
have essential applications for functional molecular geometries. The architectures of the
LC molecules are mainly dependent on the molecular shape [5–9] and exhibit considerable
role for mesophase phenomena. SMHB is one of the most known interactions in chemical
and biological mechanisms in the association and aggregation of individual molecules.
SMHB liquid crystals that are based on the pyridyl and the carboxylic components are
widely reported [10–15].

Recently, cyano-substituted H-bonded complexes also have been investigated [16]. On
the other hand, azobenzene derivatives are widely reported in many research fields [8,9,17–19].
Many azopyridine bases have been designed and evaluated extensively toward applica-
tions of liquid crystals [20–22]. Thermal stability of azobenzenes and their possibility of
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molecular-mobility, in response to light and heat, offer them for many photonic applica-
tions [23–26]. Additionally, their rigidity and linear geometry make them important for
exhibiting LC phenomena [8,19]. Moreover, they can be incorporated in photoactive meso-
morphic materials because they can easily undergo photo-induced trans/cis isomerization.
Most of the investigated H-bonded LC systems are based on either rod-like [27–32] or
angular [13] intermolecular H-bonding complexes.

Many SMHB complexes are prepared by mechanical grinding, solvent dissolving
or heating of the H-bond blends without time-consuming or expensive chemical mecha-
nisms [33–35]. Additionally, H-bonding between pyridines and benzoic acids was used to
induce nematic (N), and smectic mesophases [36–40]. Recently, 1:2 molar ratio complexes
were formed and investigated for their mesomorphic behavior [14,15]. These investigated
mixtures process flexible acid core. It was found to exhibit induced N phase covering all
terminal chain lengths of the base.

Continuing our investigations, the goal of present study is to examine the possibility
of phase formation as a result of intermolecular H-bond interactions between both non-
mesomorphic natural fatty acids Ix, and 4-tetradecyloxyphenylazo pyridine, [41] II. So, we
could obtain new 1:1 SMHB complexes Ix/II (Figure 1) which are represented in Scheme 1.
Various fatty acid derivatives have been used bearing the terminal alkenyl chains in order
to monitor the effect of different unsaturation degree of alkenyl groups on the mesomorphic
properties.
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2. Experimental

The azopyridine component, II, was synthesized according to a previous method [41]
which is depicted in detail in Supplementary Information.

Preparation of 1:1 SMHB Complexes

Ix/II SMHB complexes were prepared from one mole of fatty acid (Ix) bearing different
terminal alkenyl chains and one mole azopyridine base (II) having terminal tetradecyloxy
chain. The two components of the mixture were melted together with stirring to prepare
an intimate blend and then allowed to cool to 20 ◦C (Scheme 1). The preparation of the
SMHB complexes (Ix/II) were affirmed via DSC and FT-IR spectroscopy.

3. Results and Discussion
3.1. FT-IR Spectroscopic Confirmation of Designed Complexes Ix/II

A representative example of FT-IR measurements were performed for individual
molecules of the complex Ia/II, i.e., 4-tetradecyloxyphenylazo pyridine (II) and palmitic
natural acid (Ia) as well as to their supramolecular complex (Ia/II). Collective FT-IR spectra
are illustrated in Figure 2. FT-IR spectral data of the complex (Ia/II) confirm the formation
of the H-bond interaction between the complementary acid and base components. As can
be seen from Figure 2, the C=O group signal is assigned at 1699 cm−1 for the palmitic
acid (Ia). The important confirmation of the formation of H-bonding interaction is the
C=O and OH stretching vibration. It has been documented [41,42] that the induced three
Fermi-bands (A-, B- and C-types) is an affirmation of the SMHB interactions. The Fermi-
band of A-type for the complex Ia/II is overlapped near the C-H vibrational bands at 2928
to 2855 cm−1. In addition, the induced peak at 2650.0 cm−1 is assigned to B-type of the
in-plane bending vibration of the OH group. Furthermore, the band at 1928.0 cm−1, related
to C-type, is due to the interactions between the overtone of the torsional effects and the
fundamental stretching vibrations of the OH group.
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3.2. Mesomorphic Studies of 1:1 SMHB Complexes Ix/II

Optical and mesophase analyses for the designed un-symmetrical possible 1:1 com-
plexes Ix/II, made from the three derivatives of the fatty acids Ix, and the base component II,
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were investigated via DSC and POM measurements. All determined data for the phase
transitions of all formed complexes are collected in Table 1. DSC curves, taken from the
second heating/cooling scans, for complex Ic/II are illustrated in Figure 3. Additionally,
POM investigation images of Ic/II are displayed in Figure 4. DSC examinations are con-
firmed by the POM analyses. Transition temperatures of all characterized SMHB complexes
are graphically illustrated in Figure 5 which is displayed to investigate the impact of the
unsaturation degree of the flexible terminal alkenyl of the fatty acids on the mesomorphic
transition behavior.

Table 1. Phase transition temperatures (T, ◦C), enthalpy of transitions (∆H, kJ/mol), and normalized transition entropy
(∆S) of supramolecular complexes Ix/II.

Cycle Upon Heating Upon Cooling

System TCr-I TCr-SmA TSmA-I TI -SmA TSmA-SmC TSmC-Cr ∆S I-SmA /R ∆S SmA-SmC
/R

Ia/II - 69.7 (27.04) 86.7 (2.70) 84.3 (2.02) 66.5 (3.04) 55.7 (27.00) 0.68 1.08

Ib/II 61.2 (58.50) - - 58.1 (3.60) 36.6 (4.06) 14.8 (23.64) 1.31 1.58

Ic/II 54.9 (49.60) - 53.9 (4.49) 37.0 (5.20) 12.9 (26.42) 1.65 2.02

Abbreviations: Cr-I = Solid-isotropic liquid; Cr-SmA = Solid-smectic A; SmA-I = Smectic A-isotropic liquid; SmA-SmC = Smectic
A-smectic C.
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Before the discussion of the mesophase behavior of designed complexes, it should
be noted that each of the fatty acids (Ix) and the 4-tetradecyloxyphenylazo pyridine (II)
are non-mesomorphic (i.e., are converted directly from the solid crystal to the isotropic
liquid phase upon heating). As can be seen from Figure 5 and Table 1, all the designed
SMHB complexes are mesomorphic having induced dimorphic phases. Data also revealed
that the 1:1 complexes possess regular melting points with respect to the terminal chains.
Their melting points were found to decrease with increasing the number of double bonds
within the terminal chain of acid component (Ix). The linoleic acid complex (Ic/II) shows
the lowest value of melting point upon heating, 54.9 ◦C. Moreover, Table 1 and Figure 5
show that the palmitic acid complex (Ia/II) exhibit induced only smectic A phase upon
heating (enantiotropic property), while on cooling, it showed dimorphic induced SmA
phase followed by SmC phase with relatively good temperature ranges. The smectic phase
stabilities are 84.3 and 66.5 ◦C, respectively for SmA and SmC upon cooling of Ia/II. Thus,
interactions of the H-bonding proved to be effective in the enhancement of thermal stability
of the SmA and leads to formation of induced dimorphic phases. In case of the other two
complexes Ib/II and Ic/II, their 1:1 molar ratios are dimorphic possessing monotropic SmA
and SmC phases with lower thermal stabilities. The SmA and SmC phases’ stabilities for
Ib/II are 58.1 and 36.6 ◦C, respectively through cooling cycle. While for Ic/II, the SmA and
SmC mesophases stabilities are 53.9 and 37.0 ◦C, respectively.

Generally, the mesophase phenomenon of any LC system depends mainly on its
mesomeric characters; intermolecular-interactions, and their molecular geometry. In the
present investigated SMHB complexes Ix/II, the mesomorphic stabilities depend on many
factors: 1. Lateral-adhesion of components which increases with the increment of the
degree of unsaturation of the acid terminal chains. Additionally, the alkenyl chain length
play considerable role in the induced mesophase. 2. Molecular shape which is affected
by the steric hindrance of the terminal fatty acid chains. 3. End-to-end interactions which
depend on the polarity and the degree of unsaturation of the terminal acid wings that
result in changes in the polarizability. On the other hand, the linking moieties greatly
impact the conjugation within the mesogenic unit of the molecule. It can be concluded that
the high molecular anisotropy will influence the induced smectic phases which resulted
from different conformation of the terminal alkenyl natural fatty acid chains that increases
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the length of the mesogenic part thus enhances the mesophase stability. Furthermore, the
higher attractions between the longer alkenyl chains of natural acid increase the terminal
interactions and alkenyl group aggregations which affect also their mesophase behavior.

3.3. Measurements of Entropy Changes

As evaluated from DSC data, the normalized entropy changes (∆S/R) were calculated
for the investigated non-symmetric 1:1 complexes (Ix/II) and are included in Table 1.
Graphical representation of the entropy changes from I-SmA and SmA-SmC transitions
upon cooling scan for all designed complexes Ix/II are illustrated in Figure 6. As can be
seen from Table 1 and Figure 6, increment of the entropy change is increased as the number
of double bonds within the acid alkenyl chain is increased. Moreover, the ∆S/R of I-SmA
transitions has lower magnitude compared to SmA-SmC entropy changes. These data are
in agreement with the previous findings [43]. The increment of the entropy changes with
the degree of saturation of terminal fatty acids may be due to the different bi-axiality of the
mesogenic portion of the formed complex which results in the change of the conformational
entropy, in addition to the different structural interactions between individual components
of the complex, which are impacted by the molecular geometry of the molecule.
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3.4. Effect of Replacement of the Natural Fatty Acid Component on the Mesophase Behavior of
Their Complex with 4-Alkoxy Phenylazo Benzoic Acid

To investigate the effect of exchange of the natural fatty acid component on the phase
transition properties, a comparison was constructed between the mesomorphic behavior of
present investigated SMHB complexes Ix/II, comprising a fatty acid component, and the
previously investigated complexes IIIn/II [41] possessing 4-n-alkoxy phenylazo benzoic
acid (Figure 7). The established comparison revealed that the replacement of the more
rigid alkoxyphenylazo benzoic acid derivative with the natural fatty acid destabilizes the
mesomorphic thermal stability and disrupts the N phase. The high stability of IIIn/II
complexes is coming from the high polarizability of acid molecules, as well as the rigidity
of individual components that leads to the high H-bonded intermolecular interactions
within the latter case [44].
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3.5. Thermogravimetric Characterizations

The thermogravimetric analysis (TG) of the designed complex Ia/II was investigated as
an example. TG thermogram and its corresponding derivative (DTG) of Ia/II is illustrated
in Figure 8. As can be seen from Figure 8, depending on the molecular geometry of
the complex, the decomposition takes place via two degradation steps. The maximum
degradation rate (Tmax) at 288 ◦C indicates that the complex is possessing good thermal
stability. Additionally, it was found that the second decomposition step takes place between
300 ◦C and 350 ◦C with maximum rate at ≈320 ◦C. It can be concluded that the present
evaluated complexes possess high thermal stabilities highly above the stability of the
mesophase.
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3.6. X-ray Diffraction (XRD) Measurements

The phase behavior of the present complexes (Ix/II) was affirmed by XRD analyses.
XRD used as another tool to confirm the mesomorphic assignments [45,46]. Figure 9 shows
the XRD for the complex Ia/II, as an example, for the present investigated series. The
measurement was performed on cooling of the complex mixture from the isotropic liquid
state. Figure 9 indicated that XRD analysis pattern showed two peaks at angles 2T = 50.0
and 25.0◦, which are assigned to the presence of two smectic transition phases observed
upon cooling. Thus, the XRD evaluations affirmed the presence of two monomorphic
peaks of the SmA and SmC mesophases.
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4. Conclusions 
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4. Conclusions

Newly designed liquid crystal SMHB complexes based on natural fatty acids, formed
from two non-mesomorphic components, were prepared and investigated mesomorphi-
cally. The SMHB interactions were confirmed by FT-IR spectroscopic analysis via the
formation of the induced Fermi-bands. The optical and mesomorphic properties of de-
signed 1:1 complexes were examined by POM and DSC tools. The results revealed that
dimorphic smectic phases are induced in all prepared complexes. The thermal stabilities
of the mesophase of the induced smectic A and C phases were found to depend on the
unsaturation degree of the terminal alkenyl natural acid chains. Furthermore, the smectic
C phase for all complexes were present near the room temperature upon cooling.
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