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Abstract: In this work, titanium complexes of the bidentate bulky guanidine ligand [{(Dip)N}2CNR2]H
(where Dip = C6H3iPr2-2,6 and R = CH(CH3)2) (LH) were prepared. Reaction of LH with one equiva-
lent of [(CH3)2NTiCl3] underwent amine elimination to afford the monomeric complex [LTiCl3] (1)
in high yield. Attempts to reduce 1 with potassium graphite (KC8) in tetrahydrofuran (THF) were
unsuccessful. However, reacting 1 with 3.3 equivalents of KC8 in hexane led to the first example
of structurally characterized mono-guanidinate ligand stabilized dimeric TiIII complex [LTiCl(µ–
Cl)]2 (2). The synthesized complexes were characterized by NMR spectroscopy and the structures
were further confirmed by X-ray crystallography.
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1. Introduction

Stabilization of highly reactive low coordinate and low valent early transition metal
complexes has long been an area of interest for chemists, not only from a structural
point of view but also due to their reactivity pattern. The strategy that has been widely
sought is the application of steric bulk and the mono-anionic nature of the stabilizing
ligands. In this regard, N-containing chelating bidentate ligands such as amidinate [1–3],
guanidinate [1,2,4,5], β-diketiminate [6–8], and aminopyridinate [9–11] have recently at-
tracted enormous attention (Figure 1).
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1. Introduction 
Stabilization of highly reactive low coordinate and low valent early transition metal 

complexes has long been an area of interest for chemists, not only from a structural point 
of view but also due to their reactivity pattern. The strategy that has been widely sought 
is the application of steric bulk and the mono-anionic nature of the stabilizing ligands. In 
this regard, N-containing chelating bidentate ligands such as amidinate [1–3], guanidinate 
[1,2,4,5], β-diketiminate [6–8], and aminopyridinate [9–11] have recently attracted enor-
mous attention (Figure 1). 
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Figure 1. Guanidinate ligands (left) and other related bidentate monoanionic N-Ligands (R, R’ and 
R’’, for instance, alkyl or aryl substituents). 

The unusual oxidation state of +1 is known for all members of first row early transi-
tion metals except titanium, and these complexes are mainly stabilized by N-containing 
ligands [12–16]. Compared to other N-containing bidentate ligands, bulky guanidine lig-
ands seem to be more suitable due to the possibility of varying steric bulk on the NCN 
moiety that may push the phenyl rings down towards each other to stabilize (to form 
metal-metal bond) and protect metals in unusually low oxidation states [4,17,18]. Thus, 
we became interested to explore the possible isolation of titanium (I) species by applying 
guanidine ligands. Divalent titanium has already been widely used for a variety of metal-
promoted organic transformations, which shows that TiI species might be very interesting 
in terms of reactivity studies [19]. The chemistry of TiII complexes is mainly dominated by 
cyclopentadiene (Cp) ligands, however, N-containing ligands (aminopyridine) have also 
been successfully applied for Cp-free TiII species [20]. In comparison to TiII, isolation of TiI 
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Figure 1. Guanidinate ligands (left) and other related bidentate monoanionic N-Ligands (R, R’ and
R”, for instance, alkyl or aryl substituents).

The unusual oxidation state of +1 is known for all members of first row early transition
metals except titanium, and these complexes are mainly stabilized by N-containing lig-
ands [12–16]. Compared to other N-containing bidentate ligands, bulky guanidine ligands
seem to be more suitable due to the possibility of varying steric bulk on the NCN moiety
that may push the phenyl rings down towards each other to stabilize (to form metal-metal
bond) and protect metals in unusually low oxidation states [4,17,18]. Thus, we became
interested to explore the possible isolation of titanium (I) species by applying guanidine
ligands. Divalent titanium has already been widely used for a variety of metal-promoted
organic transformations, which shows that TiI species might be very interesting in terms
of reactivity studies [19]. The chemistry of TiII complexes is mainly dominated by cy-
clopentadiene (Cp) ligands, however, N-containing ligands (aminopyridine) have also
been successfully applied for Cp-free TiII species [20]. In comparison to TiII, isolation of TiI

species is a challenge to chemists [21]. Here, we describe our attempt to isolate TiI species
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using the steric bulk and the mono-anionic nature of the guanidinate ligands, and report
the synthesis and structures of TiIV guanidinate and its reduction to TiIII instead of TiI

complex.

2. Materials and Methods
2.1. General Information

All manipulations were performed with rigorous exclusion of oxygen and moisture
in Schlenk-type glassware on a dual manifold Schlenk line or in N2 filled glove box
(mBraun 120-G) with a high-capacity recirculator (<0.1 ppm O2). Solvents were dried by
distillation from sodium wire/benzophenone. Deuterated solvents were obtained from
Cambridge Isotope Laboratories and were degassed, dried, and distilled prior to use.
[(CH3)2NTiCl3] and guanidine ligand [LH] were prepared according to the published
procedures [22,23]. Commercial TiCl4 (Acros) was used as received. NMR spectra were
recorded on Varian 300 and Varian 400 MHz at ambient temperature. The chemical shifts are
reported in ppm relative to the internal TMS. Elemental analyses (CHN) were determined
using a Vario EL III instrument. The effective magnetic moments were determined using
Sherwood Scientific Magnetic Susceptibility Balance. X-ray crystal structure analyses were
performed using a STOE IPDSII equipped with an Oxford Cryostream low-temperature
unit. Structure solution and refinement was accomplished using SIR97 [24], SHELXL97 [25]
and WinGX [26]. Data collection and cell refinement by X-AREA-STOE. The single crystal
was irradiated with Mo-Kα at 133 K. The non-hydrogen atoms were refined with anisotropic
thermal parameters. All hydrogen atoms were added at calculated positions and refined
using a riding model. No absorption correction was applied to the data. Some of the
reflections at certain angles were omitted in the refinement of 2 and that might be the
reason for the B-alert in the checkcif. Selected crystallographic data are gathered in Table 1.

Table 1. Crystallographic data of the compounds 1 and 2.

Compound 1 2

Empirical formula C31H48Cl3N3Ti C68H110Cl4N6Ti2
Formula weight 616.97 1249.22
crystal system orthorhombic monoclinic
space group Pna2(1) C2/c

a [Å] 19.4050(9) 36.6350(15)
b [Å] 10.5550(4) 11.2480(8)
c [Å] 16.1720(7) 19.9120(15)

α [deg] 90.00 90.00
β [deg] 90.00 120.746(6)
γ [deg] 90.00 90.00
V, [Å3] 3312.3(2) 7051.8(8)

crystal size, [mm3] 0.43 × 0.32 × 0.25 0.38 × 0.36 × 0.33
$calcd, [g cm−3] 1.237 1.177

µ, [mm−1] (Mo Kα) 0.524 0.420
T, [K] 133(2) 133(2)

2θ range, [deg] 2.52–52.06 2.59–45.42
no. of reflections unique 6232 6661

no. of reflections obs. [I > 2σ (I)] 5081 2099
no. of parameters 343 374

wR2 (all data) 0.0687 0.1999
R value [I > 2σ (I)] 0.0351 0.0747

2.2. Syntheses

Synthesis of 1: LH (0.928 g, 2 mmol) was added to [(CH3)2NTiCl3] (0.397 g, 2 mmol) in
toluene (50 mL) at room temperature. The resulting brown–red solution mixture was then
heated overnight at 80 ◦C. After cooling to room temperature, the solution was filtered.
Volume of the filtrate was reduced to ca. 20 mL under vacuum. After standing at room
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temperature the solution afforded red crystals of 1. Yield: 1.01 g (82%). C31H48Cl3N3Ti
(616.96): Calcd. C 60.35 H 7.84 N 6.81; found C 59.95 H 7.79 N 6.77. 1H NMR: (C6D6,
400 MHz): δ = 0.66 (d, J = 6.9 Hz, 12 H, CH(CH3)2), 1.20 (d, J = 6.9 Hz, 12 H, CH(CH3)2),
1.58 (d, J = 6.9 Hz, 12 H, CH(CH3)2), 3.60 (sep, 4 H, J = 6.9 Hz, CH(CH3)2), 3.86 (sep, 2 H,
J = 6.9 Hz, CH(CH3)2), 7.01–7.11 (m, 6 H, C6H3) ppm. 13C NMR (100 MHz, C6D6, 298 K):
δ = 23.0 (NCHCH3), 23.1 (NCHCH3), 24.0 (CH(CH3)2), 24.1 (CH(CH3)2), 26.5 (CH(CH3)2),
26.5 (CH(CH3)2), 29.2 (CH(CH3)2), 51.1 (NCH), 124.8 (Cmeta), 143.2 (Cipso), 145.3 (Cortho),
170.2 (NCN) ppm.

Synthesis of 2: Hexane (50 mL) was added to 1 (3.040 g, 4.93 mmol) and potassium
graphite (16.27 mmol) at −30 ◦C. The suspension was then allowed to come to room
temperature and stirred overnight. The resulting green solution was then filtered. The
volume of the filtrate was reduced to ca. 10 mL as green crystalline material of 2 started
to precipitate. Filtrate was kept at room temperature to afford further material of 2. Yield:
0.850 g (28 %). C64H96Cl4N6Ti2.C6H14 (1249.22): Calcd. C 64.03 H 8.32 N 7.23; found
C 63.86 H 8.6 N 7.78. 1H NMR: (C6D6, 300 MHz): δ = −1.98 (br s), 0.47 (d), 0.56 (d),
1.16–1.25 (m), 1.48 (d), 1.57 (d), 1.87 (s), 2.09 (s), 3.11–3.30 (m), 3.48 (sep), 4.09 (s), 6.35 (br tr),
7.33 (d) ppm. µeff(298 K) = 0.95 µB.

3. Results

Reacting one equivalent of the bulky guanidine ligand [{(Dip)N}2CNR2]H (where
Dip = C6H3iPr2-2,6 and R = CH(CH3)2) (LH) with [(CH3)2NTiCl3] in toluene at 80 ◦C af-
forded selectively red crystalline material of mono(guanidinate) TiIV complex [{(Dip)N}2CN
R2]TiCl3] (1) in 82% yield (Scheme 1). Compound 1 was characterized using 1H and 13C
NMR spectroscopy along with elemental analysis. The 1H-NMR data was in accordance
with the nature of the compound formed, showing three doublets for the isopropyl CH3
protons and two septets for the isopropyl CH protons of the guanidinate ligand.
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Scheme 1. Synthesis of mono(guanidinate) titanium(IV) complex (1).

The molecular structure of 1 was confirmed by single crystal structure analysis. The
structure analysis revealed the expected mono(guanidinate)titanium(IV) trichloride com-
plex. A distorted trigonal bi-pyramidal coordination around titanium was observed
(Figure 2). Titanium is coordinated by two nitrogen and three chlorine atoms. The Ti-
N [Ti-N1 2.008 (2) and Ti-N2 2.049 (2) Å] and Ti-Cl [Cl1-Ti1 2.2461(9), Cl2-Ti1 2.2565(9)
and Cl3-Ti1 2.2185(8) Å] bond lengths were comparable to values in the literature [27,28].
The nearly identical C-N bond lengths [C1-N2-1.350(3), C1-N3-1.353(3), C1-N1 1.373(3) Å]
and the sum of the bond angles around N3 and C1 was approximately 360◦, confirm
sp2-hybridized nitrogen and carbon atoms. This shows the role of the lone pair of the
non-coordinating N-atom in the π system of the ligand that can lead to an increased electron
density at the metal center and may result in stronger bonding of the guanidinate ligand.
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To explore the possible reduction of 1 to TiI species, we analyzed its reaction with
KC8 in THF and found that it didn’t lead to the isolation of any characterizable product.
However, in hexane its reaction with 3.3 equivalents of KC8 (Scheme 2) led to a green
solution. Filtration and reducing the volume of solvent led to the isolation of green
crystalline material in a 28% yield. The low yield may be attributed to the low solubility of
the product in hexane.
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around titanium can be best described as distorted triangular bi-pyramidal with two N-
atoms of the chelating guanidinate and three halide ligands (Figure 2). The distortion is 
mainly caused by the NCN moiety of the ligand. The N-Ti-N bond angle [64.08(19)°] in 2 
is comparable to that in 1 [64.76(7)°]. The Ti-N bonds are slightly longer than those in 1. 

Scheme 2. Synthesis of mono(guanidinate) titanium(III) complex (2).

X-ray analysis showed 2 to be dimeric TiIII complex (Figure 3) where guanidinate
ligand is η2-coordinated. Compare to TiIV, TiIII guanidinates are rare [29–31] and dimeric
structures of TiIII guanidinates are not known, to the best of our knowledge. The geometry
around titanium can be best described as distorted triangular bi-pyramidal with two N-
atoms of the chelating guanidinate and three halide ligands (Figure 2). The distortion is
mainly caused by the NCN moiety of the ligand. The N-Ti-N bond angle [64.08(19)◦] in 2 is
comparable to that in 1 [64.76(7)◦]. The Ti-N bonds are slightly longer than those in 1. As
expected, the Cl-Ti bond for the bridging chloride ligand [Cl1-Ti1 2.403(2) Å] is longer than
the terminal chloride ligand [Cl2-Ti1 2.276(2) Å]. The long Ti-Ti distance of 3.127(2) Å rules
out any possible metal-metal bonding interaction. The magnetic susceptibility experiments
show the magnetic moment of µeff(298 K) of 0.95 µB which is comparable to values found
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in the literature [32,33]. The purity of the compounds was further confirmed by elemental
analysis.
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Figure 3. Molecular structure of 2. Ellipsoids are set at 50% probability; hydrogen atoms and one
hexane molecule are omitted for clarity. Selected bond lengths [Å] and angles [◦]: C1-N3 1.347(7),
C1-N1 1.355(7), C1-N2 1.374(7), N1-Ti1 2.026(5), N3-Ti1 2.078(5), Cl1-Ti1 2.368(2), Cl1A-Ti1 2.403(2),
Cl2-Ti1 2.276(2), Ti1-Ti1 3.127(2); N3-C1-N1 107.4(5), N3-C1-N2 128.3(5), N1-C1-N2 124.2(5), Ti1-
Cl1-Ti1 81.90(7), N1-Ti1-N3 64.08(19), N1-Ti1-Cl2 105.83(15), N3-Ti1-Cl2 117.88(15), N1-Ti1-Cl1A
93.73(15), N3-Ti1-Cl1A 139.54(15), Cl2-Ti1-Cl1 100.07(8), N1-Ti1-Cl1 151.10(16), N3-Ti1-Cl1 90.46(14),
Cl2-Ti1-Cl1A 97.96(8), Cl1-Ti1-Cl1A 98.10(7).

To satisfy our curiosity as to whether 2 can be reduced further it was reacted with
two equivalents of KC8 in THF. Despite a color change from green to red, all attempts to
produce isolatable material for characterization were unsuccessful.

4. Conclusions

To isolate titanium in the unusual oxidation state of +1, the reduction of monomeric
titaniumIV and subsequently isolated dimeric TiIII complexes, supported by a bulky guani-
dine ligand, were studied using THF and hexane as reaction solvents. Despite the fact that
in the present study the reduction of TIII/IV complexes didn’t lead to the desired TiI species,
it nevertheless highlights the challenges faced in search of the isolation of these complexes.
One possibility might be the use of aromatic solvents, as the highly reactive TiI complexes
(if formed) might lead to arene sandwiched TiI complexes. During these studies the first
example of structurally characterized dimeric mono(guanidinate) TiIII complex has been
isolated and structurally characterized.
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