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Abstract: We studied the equilibrium self-assembly of an equimolar mixture of uniaxial liquid
crystals (LCs) and magnetic nanoparticles (MNPs) using molecular dynamics simulations. The LCs
are modeled by ellipsoids interacting via Gay–Berne potential, and MNPs are represented by dipolar
soft spheres (DSS). We found that the LCs show isotropic, nematic, and smectic phases when the
mixture is compressed at a fixed temperature. The DSS form chain-like structures, which remain
randomly oriented at low densities where the LCs are in the isotropic phase. At intermediate and
high densities, the DSS chains align along the nematic and smectic directors of LCs. We found that the
DSS inside a chain follow a ferromagnetic ordering. However, the mixture does not show a significant
macroscopic magnetization. The extent of nematic order in the DSS remains very similar to the LCs in
intermediate densities. At high densities, the DSS have a lower extent of nematic order than the LCs.
The structure of the LC–DSS mixture was further analyzed via projected pair correlation functions
for distances parallel and perpendicular to directors in the nematic and smectic phases.

Keywords: liquid crystals; magnetic nanoparticles; ferronematics; self-assembly; molecular dynamics

1. Introduction

Inclusions of nanoparticles in a liquid crystalline matrix have attracted much research
attention in the past few years [1,2]. These novel hybrid soft materials find interesting
technical applications in electro-optical devices, material design, medicine, and biotech-
nology [3–5]. In 1970, Brochard and de Gennes proposed that adding a small number of
magnetic nanoparticles (MNPs) can facilitate nematic ordering in liquid crystals (LCs) [6].
Since then, several experimental studies on the mixtures of lyotropic and thermotropic liq-
uid crystals of various shapes and magnetic nanoparticles have been reported elucidating
the magnetic-field-induced nematic order in LCs [7–10]. The primary focus of these early
studies was on the enhanced nematic ordering in the LC matrix due to the inclusion of mag-
netic nanoparticles. In contrast, much of the recent studies have focused on using MNPs to
introduce functionalities to liquid crystals [5], as the coupling of magnetic nanoparticles to
the external magnetic field [11] can be utilized to control the orientation of the LC director.

The self-assembly of the LC–MNP mixtures and their response to external fields have
been well explored in experiments [12–23]. Recent experiments have demonstrated that
the mixture of ferromagnetic platelets suspended in nematic LCs can have stable magnetic
domains, which makes these mixtures useful for potential magneto-optical devices due
to the switching ability of magnetic domains under the external magnetic field [22,24].
Furthermore, the mechanism of domain growth in these ferronematic mixtures is medi-
ated via the magneto–nematic coupling between MNPs and LCs [25]. Using Landau-de
Gennes’s free energy formalism, recent theoretical studies have shown that mixtures with
symmetric magneto–nematic coupling display a slow growth of domains. In contrast, sub-
domain morphologies dominated by interfacial defects can occur for asymmetric coupling
strengths [26,27].

The equilibrium self-assembly and dynamics of mixtures of LC and MNP with low vol-
ume fraction of MNPs are well studied in theory [28–32] and computer simulations [33–37].
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Recent computer simulations and experimental studies have demonstrated that the small
inclusion of magnetic nanoparticles strongly affects the isotropic to nematic (I–N) phase
transition in LCs in the presence of an external magnetic field [34,38,39]. The mixtures
with large volume fractions of MNPs are expected to display more intriguing ordering
as soft-sphere repulsive magnetic nanoparticles display a spontaneous magnetization at
high densities. The self-assembly of such mixtures has rarely been explored in computer
simulations and is absolutely necessary in view of the fact that the concentration of the
nanoparticles strongly affects the I–N transition in these hybrid mixtures [40,41].

In the present work, we considered an equimolar mixture of uniaxial LCs and MNPs
of similar size and analyze the self-assembly of the LCs and MNPs as the mixture is
compressed at a fixed temperature. We modeled uniaxial LCs by ellipsoids interacting
via the generalized Gay–Berne potential [42–46] and MNPs by repulsive spheres with
embedded point dipole, the so-called dipolar soft spheres (DSS) [47]. In equilibrium, the
DSS form chain-like structures, which remain randomly oriented at low densities while
showing spontaneous magnetization at high densities [47–49]. We found that the LC–DSS
mixture shows the isotropic phase at low densities where the LCs and DSS chains remain
randomly orientated. At intermediate and high densities, the LCs display the nematic and
smectic B phases, respectively. The DSS follow the orientation of the LCs in the nematic
and smectic phases. The overall magnetization of the LC–DSS mixture remains very low,
although the volume fraction of the DSS is large at high densities. The structure of the
LC–DSS mixture was further analyzed in different phases using pair correlation functions.

The rest of the paper is organized as follows. The details of the model and simulation
are given in Section 2. In Section 3, we present various order parameters characterizing the
orientational and ferromagnetic ordering in the LC–MNP mixture. We further discuss the
pair correlation functions for each species of the mixtures in different phases. Finally, in
Section 4, we summarize our findings and discuss the future outlook of the work.

2. Simulation Details

We considered a binary mixture of LC and DSS with a composition ratio of 50:50 and
performed MD simulations in the NVT ensemble using the LAMMPS package [44,50]. The
details of the model are the same as used in our previous works [36,51]. The LCs were
modeled by ellipsoids interacting via a generalized Gay–Berne (GB) potential, which is
defined as follows [44–46]:

U
(

Ai, Aj, rij
)
= Ur

(
Ai, Aj, rij

)
ηij
(

Ai, Aj
)
χij
(

Ai, Aj, r̂ij
)
, (1)

where Ai represents the rotation matrix for a particle i. Further, rij is the center-to-center
distance vector between particles i and j, and r̂ij is the unit vector along rij. The function
Ur
(

Ai, Aj, rij
)

controls the distance dependence of the GB potential, and the second and
third terms in Equation (1) define the dependence of the interaction potential on the relative
orientation and distance of the ellipsoids.

We considered uniaxial LCs with the lengths of the semi-axes, σe
a = σe

b = σ0 and
σe

c = 3σ0; see Figure 1a. These length parameters set the aspect ratio of LCs equal to 3.
The energy parameters for ellipsoids were chosen such that the energy of side-to-side
configuration would be five times stronger than end-to-end configuration. The units of the
length and energy were set by the width of the ellipsoid, σ0, and the well-depth of the GB
potential, ε0. The cutoff radius was set to rGB

c = 4.0σ0, and the empirical parameters of GB
potential were set to µ′ = 1.0, ν = 2.0 and γ = 1.0. The parameter µ′ is the same as µ used
for GB in Brown et al. [44]. Here, reserve µ to denote the dipole moment of the DSS.

The interaction among the LC and DSS was also modeled by a GB potential, with
shape and energy parameters for DSS taken as σs

a = σs
b = σs

c = σ0 and εs
a = εs

b = εs
c = ε0.

The cutoff radius was set the same as rGB
c .
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Figure 1. Panel (a): a sketch of the two ellipsoids separated by the distance rij. The unit vectors ûi

and ûj along the major axis of the ellipsoids represent their orientation. The width of an ellipsoid,
σ0, defines the unit of the length. In order to set the aspect ratio equal to 3, the end-to-end length of
an ellipsoid is taken to be equal to 3σ0. Panel (b): the schematic diagram showing two dipolar soft
spheres with embedded permanent dipole moment represented by vectors µi and µj. The vector rij

denotes the center-to-center distance between the two dipolar soft spheres. The diameter of the DSS
is considered to be equal to σ0, the width of the ellipsoids.

The DSS of diameter σ0 (see Figure 1b) interact via a combination of a soft sphere
potential and dipolar interactions [47,48]. The full potential for two DSS particles i and j
with dipole moments µi and µj is defined as [48]

U(ij) = USR
(
rij
)
+

µi · µj

r3
ij
− 3

(
µi · rij

)(
µj · rij

)
r5

ij
, (2)

where USR
(
rij
)

is the shifted-force soft sphere interaction given as

USR
(
rij
)
= USS

(
rij
)
−USS(rSS

c )−
(

rSS
c − rij

)dUSS

dr

∣∣∣∣∣
r=rSS

c

, (3)

in Equation (3), the cutoff radius for soft sphere potential is set to rSS
c = 2.5σ0, and

USS
(
rij
)
= 4ε0

(
σ0/rij

)12. (4)

The long range dipolar interactions are treated with the three dimensional Ewald
sum [49,52]. The parameters that characterize the structure and phase behavior of the mix-
ture are the reduced temperature T∗ = kBT/ε0, the reduced number density ρ∗ = Nσ3

0 /V
(where N and V are the total number of particles and total volume, respectively), and the
reduced dipole moment µ∗ = µ2/ε0σ3. Newton’s equations of motion for force and torque
were integrated into the NVT ensemble using the velocity Verlet algorithm. A reduced

MD time step ∆t∗ = ∆t/
√

mσ2
0 /ε0 = 0.002 was chosen, and simulations were performed

at fixed µ∗ = 3.0 and T∗, and various ρ∗. The value of the dipolar coupling parameter
λ = µ2/kBTσ3

0 is 9.0. At this value of λ, the DSS form long chain-like structures [48,53].
We considered a system consisting of 1000 LC (Ne) and 1000 DSS particles (Ns).

We started with a mixture equilibrated at low density and high temperature and then
quenched it to the desired T∗. Subsequently, we slowly compressed the mixture to obtain
desired densities, keeping T∗ constant by applying a Langevin thermostat [54]. At each
compression step, the mixture was equilibrated for 4× 106 time steps. All results presented
were averaged over 20 independently prepared samples.

3. Results

We considered the LC–DSS mixture at a low density, ρ∗ = 0.1, and temperature,
T∗ = 1.0, and slowly compressed it to achieve different densities in the range. To identify
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different orientationally ordered phases, we investigated the variation of the nematic or-
dering of each component of the LC–DSS mixture as a function of density. The nematic
ordering was quantified by the nematic parameter, which is defined as the largest eigen-
value of the ordering tensor, namely, the Q-tensor. For the LCs, the components of the
Q-tensor are defined as [54,55]:

Qαβ = (1/N)
N

∑
i=1

(1/2)
(

3ui
αui

β − δαβ

)
, (5)

where α, β = x, y, z, and ui
α are the components of the unit vector, ûi, representing the

orientation of the ith ellipsoid. For the DSS, the components of the Q-tensor are defined
as [47,48]

Qαβ = (1/N)
N

∑
i=1

(1/2)
(

3µi
αµi

β − δαβ

)
, (6)

where µi
α are the components of the unit dipole vector, µ̂i, for the ith DSS. Note that due to

the heat-to-tail invariance of the ellipsoids, û is equivalent to −û, in contrast to the DSS
where µ 6= −µ.

The nematic order parameters Se and Ss for the LCs and DSS are defined as the largest
eigenvalue of the corresponding Q matrix defined in Equations (5) and (6) [55,56]. The
normalized eigenvectors corresponding to Se and Ss define the directors n̂e and n̂s for LC
and DSS, respectively. We note that the directors are unit vectors representing the average
alignment of the LCs and DSS and n̂e,s is physically equivalent to−n̂e,s. The isotropic phase
of a liquid crystalline system is characterized by a low value (<0.4) of the nematic order
parameter, while the I–N transition occurs when the order parameter attains a value of
∼0.4 [56].

Figure 2 shows the variation of the nematic order parameters Se and Ss, for the LC and
DSS, respectively, as a function of density at temperature T∗ = 1.0. At low densities, both
Se and Ss remain close to zero, start to increase around ρ∗ = 0.4, and attain high values
close to 1 at higher densities. This behavior is similar to LC–DSS mixtures with an 80:20
ratio [33], except for the fact that the I–N transition in the present case is observed at higher
densities for T∗ = 1. The nematic phase lies in the range ρ∗ = 0.4 to ρ∗ = 0.5. At densities
higher than 0.5, the mixture exhibits the smectic B phase where, as we will analyze later,
LCs start to form layers in the direction of the smectic director. Furthermore, in contrast to
the 80:20 mixture, we observe that the extent of nematic ordering in the DSS is similar to
the LCs in the nematic phase; however, at higher densities, the nematic ordering in the LCs
is higher than the DSS [33,34].

We further investigated the relative orientations of the directors n̂e and n̂s for LC and
DSS, respectively, in the nematic and smectic phases by calculating the biaxiality parameter,
B, defined as follows [34,57]:

B =

〈
3(n̂e · n̂s)

2 − 1
2

〉
, (7)

where the parallel and perpendicular relative orientations of the directors n̂e and n̂s corre-
spond to the value of B equal to 1 and −0.5, respectively. We show the biaxiality parameter
with green star symbols in Figure 2. The value of B remains very close to 1, which suggests
that the directors of both components of the LC–DSS mixture remain parallel to each other
in the nematic and smectic phases.

At this point, it is interesting to investigate the degree of magnetization in the LC–DSS
mixture. In the 80:20 LC–DSS mixture, where the density of DSS is low, the net magne-
tization remains negligible in the nematic and smectic phases. However, in the present
case, one may expect a ferromagnetic order as the dipolar soft spheres display spontaneous
magnetization at high densities [48,58]. In order to investigate the ferromagnetic order
in the DSS, we calculated the polar order parameter 〈M〉 = 〈| ∑Ns

i=1 µ̂i · n̂s | /Ns〉. The
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blue triangles in Figure 2 denote the degree of magnetization of the DSS in the LC–DSS
mixture. The low values of M indicate that although the DSS in a chain form ferromagnetic
alignment; the overall magnetization remains rather low.

Figure 2. Variation of the nematic order parameters Se and Ss of the LCs and DSS, magnetization M,
and biaxiality parameter B as a function of density; see text.

Similar to the 80:20 LC–DSS mixtures, this situation can occur when two DSS chains
follow an antiparallel configuration, canceling the total dipole moment of each other.

These features can be visualized in the snapshots of the mixture shown in Figure 3.
The isotropic phase of the LC–DSS mixture, visible at low densities, is characterized by
randomly oriented LCs; see Figure 3a. The DSS form chain-like structures that remain
randomly oriented and distributed in the system; see Figure 3d. As shown in Figure 3b, at
intermediate densities (the snapshots shown in Figure 3b,e are considered at ρ∗ = 0.46),
the LC–DSS mixture displays the nematic phase where the LCs align along the director
n̂e, shown by orange arrow in Figure 3b. The DSS chains, shown in Figure 3b,e, orient
parallel to the LCs. The nematic director of the DSS, n̂s, (represented by the pink arrow
in Figure 3b,e) remains parallel to the nematic director of LCs. Similarly, at high densities
(see Figure 3c), the LCs show the smectic B phase. The DSS chains (Figure 3c,f) follow the
orientation of the smectic director of LCs. As shown in Figure 3c, the two directors, n̂e and
n̂s (shown by orange and pink arrows) are aligned parallel to each other.

Afterward, we analyzed the structure of the LC–DSS mixture via the pair correlation
functions of different species. As shown in Figure 4, in the isotropic phase, the pair
correlation functions for the LCs and DSS show a liquid-like behavior. For both species,
the pair correlation function has an oscillatory behavior at a short distance, which decays
quickly and the pair correlation functions saturate to 1. The first peak in the g(r) (which
accounts for the nearest neighbors) is more pronounced for the DSS than the LCs due to
their strong chain-forming tendency.
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Figure 3. Snapshots of the LC–DSS mixture at densities ρ∗ = 0.36 (panel (a)), ρ∗ = 0.46 (panel (b)),
and ρ∗ = 0.58 (panel (c)). Blue ellipsoids represent the LCs, red spheres denote the DSS Panels and
green arrows indicate the direction of the dipole moment. Panels (d–f) show the DSS in the absence of
the LCs. The orange and pink arrows represent the directors n̂e and n̂s. All snapshots were prepared
using the package OVITO [59].

Figure 4. Variation of the pair correlation function, g(r), as a function of distance for the LCs and
DSS at the density, ρ = 0.36. The grey dashed line represents the value of g(r) equal to 1.

In the nematic and smectic phases, the projected pair correlation function of both
species for distances parallel and perpendicular to the respective directors can be defined
as follows [60,61]:

g(r‖/⊥) =

∑ i,j
(i 6=j)

δ
(

rij,‖/⊥ − r‖/⊥
)

θ
(

σ/2− rij,⊥/‖

)
πNρ∗(σ/2)2∆r‖/⊥

(8)
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where rij,‖ =| rij · n̂s,e |, rij,⊥ =| rij −
(
rij · n̂e,s

)
n̂e,s |, and ∆r‖/⊥ is the volume of the

cylindrical shell considered around the particle i.
Figure 5a,b shows the projected pair correlation functions for the LCs in the direction

parallel and perpendicular to n̂e, respectively, as a function of distance. In contrast to the
isotropic phase, the height of the first peak in both g(r‖) and g(r⊥) is more pronounced
due to the enhanced density of the system. The location of the first peaks in g(r‖) and
g(r⊥) are around ∼2.5σ and ∼σ, respectively, indicating the orientational alignment of LCs
parallel to n̂e. However, since the g(r) quickly converges to 1, the layer-wise ordering is
not expected.

The longitudinal pair correlation function, g(r‖), for the DSS, plotted in Figure 5c, has
distinct peaks that occur at an interval of distance σ, confirming the strongly correlated
chain-like configuration of the DSS oriented along the director n̂s.

Figure 5. Projected pair correlation functions as a function of distance for the LC–DSS mixture at
the density, ρ∗ = 0.46: panel (a): projected pair correlation function for distances parallel to the
director of LCs, g(r‖), as a function of distance; panel (b): the pair correlation function for distances
perpendicular to the director of the LCs, g(r⊥), as a function of distance; panel (c,d): components
of the pair correlation functions parallel and perpendicular to the director of the DSS as a function
of distance. The grey dashed line represents the value of g(r) equal to 1. The inset in panel (d)
represents the front of the snapshot shown in Figure 3b.

In the transverse direction, the first peak in the pair correlation function occurs around
2σ, suggesting that the second DSS chain is two-particle diameter apart; see Figure 5d. This
further suggests that an LC layer separates two alternating DSS chains, or, as shown in
the inset of Figure 5d, the DSS chains remain localized in the cylindrical channels formed
by the LCs [36]. However, since the mixture is in the liquid state, the cylindrical channels
formed by the LCs are transient, and no long-range order is expected, as revealed by the
quick decay of the transverse pair correlation functions for the DSS (see Figure 5d).
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In the smectic phase, as shown in Figure 6a, the longitudinal pair correlation function
for the LCs has an oscillatory behavior. The peaks in g(r‖) appear at a regular interval
∼2.8σ suggesting a layer-wise ordering of LCs along the director, n̂e. The transverse pair
correlation function, shown in Figure 6b, suggests a hexagonal ordering of LCs inside a
layer, which would then correspond to the smectic B phase at high densities [33,34,61].
However, the smectic ordering requires further investigation.

Figure 6. Pair correlation functions as a function of distance for the LC-DSS mixture at the density,
ρ∗ = 0.58: panel (a): Longitudinal pair correlation function for the LCs, g(r‖), as a function of
distance; panel (b): transverse pair correlation function for the LCs, g(r⊥), as a function of distance;
panel (c,d): projections of the pair correlation functions for distances parallel and perpendicular to
the director of the DSS as a function of distance. The grey dashed line represents the value of g(r)
equal to 1.

The situation for the DSS, shown in Figure 6c,d, is very similar to the nematic case.
The component of the pair correlation function parallel to the director n̂s has distinct peaks
at distances comparable to single-particle diameter. The perpendicular component also
shows weak oscillations, indicating weak ordering in the transverse directions.

4. Discussion

To summarize, using extensive molecular dynamics simulations, we have presented
a study on the self-assembly of a 50:50 binary mixture of liquid crystals and magnetic
nanoparticles. Our results demonstrate that upon compression, the LCs show isotropic,
nematic, and smectic B phases at low, intermediate, and high densities, respectively. We
identified different phases using nematic order parameters for LCs. The DSS form chains,
which remain randomly oriented in the isotropic phase. In the nematic and smectic phases,
the DSS chains follow the LCs and orient along with the director of LCs. The orientational
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ordering of the two species was quantified using nematic order parameters. We found
that, in contrast to the 80:20 mixture, the extent of nematic ordering in the DSS in the
present case is very similar to the LCs in the nematic phase. However, at high densities,
the DSS display lower nematic ordering than the LCs, similar to the 80:20 mixture. The
relative alignment of the directors of both components was investigated via the biaxiality
parameter, which reveals that in the nematic and smectic phases, the DSS chains follow the
average orientation of the LCs. Although the DSS form ferromagnetic chains in the nematic
and smectic phases, the macroscopic magnetization of the LC–DSS mixture remains very
low, as reflected by the polar order parameter. The mixture does not show demixing or
microphase separation in the range of considered densities.

The structure of the LC–DSS mixture was explored using pair correlation functions. In
the nematic and smectic phases, the pair correlation functions were resolved in the parallel
and perpendicular directions of the respective directors. Our results suggest that albeit with
an equal number density, the DSS follow the phases of LCs and do not show ferromagnetic
phase at high densities of the LC–DSS mixture. The transverse pair correlation function of
the DSS indicates that the two DSS chains remain separated by a column of the LCs. In
this context, it will be interesting to explore mixtures with higher number densities of DSS,
which may show spontaneous ferromagnetic transitions at high densities. Furthermore,
the structure and rheology of the LC–DSS mixture in the presence of an external magnetic
field should be interesting as several intriguing effects are expected due to the interplay of
the microstructure, external flow, and magnetic fields [51,62].
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