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Abstract: In the past decade, much evidence has been provided for an unusually low cost for bend
deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers)
having a bent shape on average. Recently, an analogous effect was observed for the splay mode
of bent-core mesogens with an acute apical angle. Here, we present a systematic computational
investigation of the Frank elastic constants of nematics made of V-shaped particles, with bend angles
ranging from acute to obtuse. We show that by tuning this angle, the elastic behavior switches from
bend dominated (K33 > K11) to splay dominated (K11 > K33), with anomalously low values of the
splay and the bend constant, respectively. This is related to a change in the shape polarity of particles,
which is associated with the emergence of polar order, longitudinal for splay and transversal for
bend deformations. Crucial to this study is the use of a recently developed microscopic elastic theory,
able to account for the interplay of mesogen morphology and director deformations.

Keywords: Frank elastic constants; microscopic elastic theory; bent mesogens; polar order; polar
molecular shape

1. Introduction

Breaking of the continuous rotational symmetry, in liquid crystals, brings about the
existence of a director field n̂(R), which locally corresponds to the average molecular
orientation. The ground state of conventional nematics is characterized by a uniform
director field, and deformations have a cost, which is described in terms of the Oseen–
Frank deformation free energy density [1,2]:

∆Fdef =
1
2

K11(∇ · n̂)2 +
1
2

K22(n̂ · ∇ × n̂)2 +
1
2

K33|n̂× (∇× n̂)|2, (1)

Here, Kii are the so-called bulk elastic constants for splay (i = 1), twist (i = 2) and
bend (i = 3) deformations. The recent discoveries of a variety of modulated nematic
phases and of unconventional elastic behavior challenge this well-established picture.
A different perspective is emerging, one novel aspect being a distinct role of polar order in
the presence of splay and bend deformations [3]. The director field polarity, longitudinal
for splay and transversal for bend deformations, can induce the polar order of mesogens
if these have a suitable symmetry. This affects the free energy and subsequently the cost
for director deformations.

There were early claims of the coupling between splay or bend deformations and
molecular polarity, intended either as an electrostatic (hence the involvement of “flexo-
electricity”) [4,5] or a steric interaction [6,7], but they remained mostly disregarded. Only
recently, the observation of very low bend elastic constants in liquid crystal materials
comprised of bent-shaped molecules, whether bent-core mesogens or bimesogens (liquid
crystal dimers) having a bent shape on average [8–17], together with the discovery of novel
modulated nematic phases [18–24], prompted renewed interest in this topic. Theory played
a major role in solving the controversy concerning the origin of the observed softening
of the bend elastic constant [11–13]. Both mesoscopic and microscopic approaches were
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used. In the former, the key point was the introduction of a flexoelectric contribution into
a phenomenological expression for the deformation free energy [25]. At the microscopic
level [26–29], what turned out to be crucial was the relaxation of the assumption, common
to classical theories, that the orientational distribution of particles remains unperturbed
when director distortions are present. Bent particles with an obtuse bend angle preferen-
tially align their long axis to the nematic director, and a bend deformation introduces a bias
in the orientation of their transversal (short) axes: orientations with the particle convexity
in accordance with that of the director field or in opposition to it have a different probability,
so a transversal polar order is induced. Since this allows better packing than in a uniaxial
environment, the result is a decrease in the cost for bend deformations. In agreement
with experiments, a subtle dependence of the bend elastic constant on the bend angle of
molecules was demonstrated both by generic models [29] and by detailed modeling of the
molecular structure [30–32].

The elasticity of nematics made of wedge-shaped mesogens has attracted less attention
by far. In principle, analogous considerations for (obtuse angle) bent molecules can be
made, with the difference that an effect on the splay mode is expected, since in this
case, the polarity of particles is parallel to the axis that aligns to the director, rather than
perpendicular [33]. Indeed, in a couple of theoretical studies a very low splay elastic
constant, lower than the twist constant, was predicted for conical rods [28,34]. Only
recently, an experimental observation of this behavior was reported for a mesogen with
a 1,7-naphthalene central core, which features an acute apical angle [35,36]. The uniaxial
nematic phase is followed, at low temperature, by a modulated phase, which has not yet
been fully characterized.

Here, we present a comprehensive analysis of the elastic properties of nematics made
of V-shaped mesogens of C2v symmetry. These represent paradigmatic systems where a
geometric parameter, the bend angle, can be identified as an appropriate descriptor to
connect the molecular structure and macroscopic behavior. We extend previous studies
to a wide range of bend angles, including acute ones. Our work relies on a recently
proposed microscopic approach [37,38], which generalizes the Straley theory for rod-
like mesogens [39] to particles of arbitrary shape. We use a generic model of particles,
made by a rigid chain of tangent hard spheres, which allows us to explore general effects,
without pretending to perform a punctual comparison with experimental data. We show
how the bend angle can be used to tune the relative cost for splay and bend deformation,
and we relate this change in behavior to the capability of nematics made of bent particles
to respond to splay and bend deformations with an induced polar order [37,38].

The paper is organized as follows. The next section gives a brief overview of the
theory and of the numerical methods, together with a description of the particle models
used. Then, in the third section we report and discuss numerical results, and finally, the
fourth section contains the conclusions.

2. Materials and Methods
2.1. Theoretical Framework

Our description of the nematic phase is based on Onsager second virial theory [40]
with modified Parsons–Lee correction [41–43] for particles experiencing hard-core repul-
sion. In such a perspective, the free energy density F of a uniform nematic system made up
by N particles at temperature T, contained in the volume V, is a functional of the single
particle orientational distribution function (ODF) f (Ω), where Ω are the angles defining
the particle orientation and can be expressed as a sum of an ideal, Fid, and an excess term,
Fex. The former includes the ideal gas free energy density, Fi.g., and a contribution that
accounts for the decrease of orientational entropy with respect to the isotropic phase:

Fid

kBT
=

Fi.g.

kBT
+ ρ

∫
dΩ f (Ω) ln[8π2 f (Ω)], (2)

whereas the excess free energy density is approximated by the second virial expression:
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Fex

kBT
= −ρ2η

2

∫∫
dΩAdΩB

∫
V

dRAB f (ΩA) f (ΩB)eAB(ΩA, ΩB, RAB). (3)

In these equations kB is the Boltzmann constant; ρ = N/V is the number density
of particles; RAB = RB − RA is a vector joining the centers of mass of a pair of particles
(A and B), whose orientations are given by ΩA and ΩB, respectively; and eAB is the
Mayer function [44], which in turn is defined in terms of the pair potential UAB as eAB =
exp{−UAB/kBT} − 1. The particle orientation is defined by the set of Euler angles Ω =
(α, β, γ), which rotate the laboratory fixed reference frame (OXYZ) into the molecular
frame (oxyz) attached to the particle (see Figure 1). Finally, η is the modified Parsons–Lee
factor [41–43], which approximately accounts for virial terms higher than the second:

η =
1− 3

4 ρveff

(1− ρveff)2 (4)

where veff represents the effective volume of a particle (vide infra).

Figure 1. Sketch of the laboratory frame of reference (OXYZ) and of the particle frame of reference
(oxyz). R is the vector position of the center of mass of the particle in the laboratory frame, and Ω is
the set of Euler angles that rotate (OXYZ) into (oxyz). The red segments represent the director field
with a splay distortion of wavenumber q = 0.05 σ−1.

In the presence of a non-uniform director field n̂(R), the ODF becomes a function
of the spatial position of the particle and crucial for our study is the use of a form that is
sensitive to both the molecular shape and the director field configuration. We have recently
proposed a non-local form [37,38] based on the general consideration that each part of a
molecule experiences the director at its specific location. Considering a model particle that
can be described as a chain of M segments and assuming the simplest form compatible
with the local nematic symmetry, we use the following ansatz:

f (Ω, R; [n̂]) =
exp

{
a ∑M

j=1[ûj · n̂(Rj)]
2}∫

dΩ exp
{

a ∑M
j=1[ûj · n̂(Rj)]2

} , (5)

where R is the position of the particle’s center of mass, ûj is a unit vector parallel to the jth
segment and n̂(Rj) is a unit vector parallel to the director at the position of the segment, Rj.
Here a is an adimensional parameter that measures the orienting strength: it jumps from 0
in the isotropic phase to a finite positive value in the (calamitic) nematic phase. The non-
locality of this form of the ODF brings about the interplay between the particle morphology
and the deformation field. This is the main difference from classical microscopic elastic
theories [39,45,46], in which a molecule is assumed to interact with the director field at the
position of its center of mass, and therefore, the ODF depends on the local orientation of
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the director, but it is not sensitive to spatial gradients of the latter. In other words, the ODF
is assumed to rotate to follow the director field, without changing its profile. A simple
form for a local ODF is the one-segment equivalent of Equation (5):

f loc(û, R) =
exp

{
aloc[û · n̂(R)]2

}∫
dû exp

{
aloc[û · n̂(R)]2

} (6)

where û is a unit vector parallel to the molecular axis that preferentially aligns with the
nematic director. For rod-like, and in general for axially symmetric particles, the definition
of this vector is obvious; for arbitrarily shaped particles, in the calculations reported in the
following, we have taken û parallel to the major principal axis of the tensor of gyration.

Using Equation (5) in Equations (2) and (3) with an appropriate form of the director
field, n̂(R), the free energy density in the presence of a specific deformation is obtained.
The deformation free energy density ∆Fdef is then calculated as the difference with respect
to the uniform nematic state. It is therefore possible to estimate the elastic constants for
splay, K11, twist, K22, and bend, K33, deformations. More specifically, we use the following
form for n̂ [46]:

n̂(R, q) = X̂ sin ν(R, q) + Ẑ cos ν(R, q) (7)

where X̂ and Ẑ are unit vectors parallel to the X and Z axis of the laboratory fixed reference
frame, and the angle ν(R, q) between the director in a generic position R and the director
at the origin, R = 0, is defined as

ν(R, q) =


arctan[qX/(1 + qZ)] splay
qY twist
arctan[qZ/(1− qX)] bend

(8)

The parameter q is the wavenumber of the deformation and is equal to 0 in the unde-
formed state. Then, using the Taylor expansion of the ODF, f (Ω, R; q), in Equations (2) and (3),
the elastic constants are obtained from the parabolic coefficients in q of the deformation
free energy density for the three modes:

∆Fdef =


1
2 q2 K11 splay
1
2 q2 K22 twist
1
2 q2 K33 bend

(9)

2.2. Interaction Potential and Model Details

We model particles as rigid chains made up by (M + 1) tangent identical hard spheres
of diameter σ. Beside V-shapes, some other particle geometries are examined for com-
parison (see Figure 2). In our calculations the unit vectors {ûj}j∈J1,MK appearing in the
definition of the ODF, Equation (5), are taken parallel to the sphere–sphere bonds and
are placed in the middle of bonds. The hard-core interaction potential between pairs of
particles labeled A and B is defined as

UAB(RAB, ΩA, ΩB) =

{
∞ if at least one sphere of A overlaps

with at least one sphere of B

0 otherwise
(10)
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Figure 2. Model particles considered in this work; σ is the hard sphere diameter, and χ is the bend
angle, equal to 45◦ in (a), 150◦ in (b), 155◦ in (c) and 25◦ in (d).

The geometric volume of a particle, v0, used to calculate the packing fraction φ = v0ρ,
is defined as the sum of the spheres’ volumes, from which, in the case of overlapping
spheres, the intersection volume has to be subtracted. For non-convex shapes, the geometric
volume is different from the effective volume veff appearing in the Parsons–Lee factor,
Equation (4), which is defined as the portion of space in which any part of a particle cannot
enter due to the presence of another particle [43]. We estimate veff as the volume enclosed
by the tessellated surface defined by a sphere of radius equal to 0.5 σ rolling over the
particle; a density of vertices on the surface equal to 1000 σ−2 is assumed [47]. The values
of v0 and veff, as well as other geometric parameters for all the particles investigated in this
work, are reported in Table 1.

Table 1. Geometric parameters of the particles investigated in this work (number of segments M,
bend angle χ, geometrical volume v0, effective veff volume); packing fractions at the isotropic-nematic
coexistence, in the isotropic, φI, and in the nematic phase, φN.

Particle M χ[◦] v0 [σ3] veff [σ
3] φI φN

Acute angle V-shaped

20 25 10.777 13.892 0.190 0.198
20 30 10.842 12.449 0.196 0.202
20 35 10.887 12.364 0.200 0.204
20 40 10.925 12.486 0.205 0.208
20 45 10.956 12.505 0.211 0.213

Obtuse angle V-shaped

10 140 5.760 6.485 0.247 0.255
10 145 5.760 6.485 0.236 0.246
10 150 5.760 6.485 0.228 0.239
10 155 5.760 6.485 0.220 0.233
10 160 5.760 6.485 0.213 0.229
10 165 5.760 6.485 0.208 0.225
10 170 5.760 6.485 0.204 0.223
10 175 5.760 6.485 0.201 0.221

Rod-like 10 180 5.760 6.485 0.200 0.221

Curved 10 155 5.760 6.485 0.225 0.236

Tripodal 30 25 15.703 20.091 0.227 0.234

2.3. Numerical Procedure

Given a specific geometry of particles, (i.e., the set of coordinates of the centers of hard
spheres), we evaluate integrals such as Equation (3) over a 6-dimensional discrete grid
of Euler angles (αA, βA, γA, αB, βB, γB), using Gauss–Legendre quadrature on azimuthal
angles and Gauss–Chebyshev quadrature on polar angles [48]. The segmental ordering
strength a is obtained for each number density of interest by minimizing the total free
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energy density, sum of Equations (2) and (3). Minimizations are performed by applying
Nelder–Mead simplex algorithm [49] implemented in MATLAB [50].

The packing fractions at the isotropic-nematic coexistence, in the isotropic, φI, and in
the nematic phase, φN, are determined by equating the pressure P and the chemical
potential µ of the two phases, which are calculated as

P = −
(

∂(VFid + VFex)

∂V

)
N,T

µ =

(
∂(VFid + VFex)

∂N

)
V,T

. (11)

2.4. Frames of Reference

For all the systems studied in this work, we defined the particle frame of reference
(oxyz) according to the following conventions: the origin o corresponds to the particle
center of mass, the z-axis and x-axis are parallel to the eigenvectors of the particle’s
gyration tensor corresponding to the largest eigenvalue and the second largest eigenvalue,
respectively. This implies that for obtuse angle particles, the C2 rotation axis is parallel to x,
while for acute ones, the C2 axis is parallel to z (see Figure 1).

The laboratory frame of reference (OXYZ) in the undeformed nematic phase has
the Z-axis parallel to the director, whereas X and Y can be arbitrarily taken. According
to Equations (7) and (8), in presence of deformations, Z is parallel to the director at the
origin O, and Y is perpendicular to the plane containing the splay and bend deformations,
whereas for twist deformations, Y is parallel to the twist axis.

2.5. Orientational Order Parameters

We characterize the orientational order of particles in the undeformed uniaxial nematic
phase by means of the nematic order parameter S and the biaxial parameter D [51], which
are defined as

S =
1
2
〈
3(ẑ · Ẑ)2 − 1

〉
q=0 (12)

D =
3
2
〈
(x̂ · Ẑ)2 − (ŷ · Ẑ)2〉

q=0 (13)

where x̂, ŷ and ẑ are unit vectors parallel to the corresponding axes of the particle reference
frame, and the symbol 〈· · · 〉q=0 stands for the orientational average over the undeformed
ODF (q = 0). S quantifies the degree of alignment of the particle’s long axis with the director,
whereas D measures the difference in alignment with the director of the transversal axes of
the particle. Both order parameters vanish in the isotropic phase, whereas in a perfectly
ordered phase, S = 1 and D = 0.

We also introduce two other order parameters to quantify the degree of polar order
induced by splay or bend deformations:

pxX =
〈

x̂ · X̂
〉

q (14)

pzZ =
〈
ẑ · Ẑ

〉
q (15)

where the symbol 〈· · · 〉q stands for the orientational average over the ODF in the presence
of a splay or bend deformation of wavenumber q. pxX quantifies the polar order of the
particle’s transversal axis x with respect to the laboratory axis X, whereas pzZ does the
same for the particle’s long axis z with respect to the laboratory Z axis. Both pxX and pzZ
vanish if the ODF does not have a polar character, as occurs for particles of any shape
in the uniform nematic phase. In the presence of splay or bend deformations, pzZ or
pxX, respectively, can take a finite value, provided that particles have a polar symmetry.
Of course, an ODF accounting for the polarity of the particle and of the director field, such
as Equation (5), is needed for this purpose. It may be worth stressing that here, we speak
of polarity in terms of symmetry; however, if molecules have an electric dipole, polar order
implies the presence of electric polarization.
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3. Results and Discussion

In the following, we report the results obtained for rigid V-shaped particles of C2v
symmetry, with different bend angles (see Figure 2a,b). The presentation is divided into
two subsections, one on acute and the other on obtuse angle particles. The former have
a longitudinal twofold symmetry axis; they are found to form a nematic calamitic phase
where this axis is preferentially aligned to the director. On the contrary, obtuse angle
particles, whose twofold symmetry axis is transversal, are predicted to form a nematic
calamitic phase in which this axis is preferentially oriented perpendicular to the director.
For intermediate values of the bend angle, no calamitic order is found. It may be worth
mentioning that we describe the elastic properties of a potential nematic phase, which takes
over from the isotropic beyond a certain density, but no comparison is made with other
possible phases, e.g., smectic or twist-bend nematic, which might supersede the nematic in
some cases [52].

In our calculations, we take σ as the unit of length and kBT as the unit of energy.
Since purely hard-core interactions are considered, systems are athermal; therefore, the
results are reported as a function of the volume fraction. However, a comparison with
thermotropic systems can be made through the order parameter.

3.1. Acute Angle Particles

Figure 3 shows the orientational order parameters S and D and the elastic constants
calculated for V-shaped particles made of 21 hard spheres with an acute bend angle between
25◦ and 45◦, as a function of the volume fraction. In these particles, the reference system
(oxyz) is defined with the z axis parallel to the twofold symmetry axis and the y axis
perpendicular to the plane containing the two arms (see see Figure 1). The axial order
parameter S, which quantifies the degree of quadrupolar order of the twofold symmetry
axis of the particles, is generally high, decreases as the bend angle widens and, for a given
particle, increases with increasing density. The biaxial order parameter D, which describes
the different alignment with the director of two transversal axes, one parallel to the segment
joining the centers of the terminal spheres and one perpendicular to the particle plane,
is low and increases with increasing bend angle, as expected on the basis of the particle
shape. It decreases with increasing density, with the only exception being the more biaxial
particle (χ = 45◦), for which a small growth of D with increasing density is found, just
beyond the isotropic-nematic transition. A non-monotonic relationship between biaxial
and uniaxial molecular order parameters is well known [53], but the initial increase of D
cannot be observed if the isotropic-nematic transition occurs at a very high S value. We
can also notice in Figure 3 that widening of the bend angle is associated with a shift of
the isotropic-nematic transition at higher density, which can be ascribed to the increase in
shape biaxiality.

As for the elastic constants, Figure 3b shows that the wedge shape has a dramatic
impact on the splay mode: K11 is anomalously low and exhibits a non-monotonic density
dependence. The general trend is a small increase of the splay constant after the transition,
which is followed by a decrease, until, at a certain density, K11 vanishes. A strong sensitivity
on the bend angle χ can be noticed, with the range of positive K11 values that becomes
very small for wider angles. This behavior is reminiscent of that reported for the bend
elastic constant of bent particles with an obtuse bend angle [26–29]. As discussed in that
context, negative values of bulk elastic constants are incompatible with the stability of the
uniform nematic phase [54]; however, systems can rearrange into other phases, such as
the twist bend nematic [18–24]. For the sake of comparison, we also report in Figure 3
the results obtained using the local form of ODF, Equation (6). In such calculations, the
structure of particles is partially accounted for; in fact, elastic constants are determined
using expressions, derived from Equation (3), containing generalized excluded volume
integrals [38], which are evaluated for pairs of particles by explicitly taking into account
their shape. However, the ODF appearing in such integrals is that of an effective rod-
like particle, which interacts with the director at the position of its center of mass, and it
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maintains its profile irrespective of the presence of a deformation. In Figure 3b–d, we
can see that the use of the local ODF has a dramatic effect on the splay constant, which
exhibits the typical monotonic increase with density, analogous to that of rod-like particles.
What makes the ODF defined in Equation (5) different from that defined in Equation (6) is
that the former is able to acquire a polar character in the presence of a polar symmetry of
the environment.

(a) (b)

(d)(c)

Figure 3. (a) Order parameters S and D (inset), and (b) splay, (c) twist and (d) bend elastic constant,
as a function of the volume fraction φ. Values obtained using the non-local form of the ODF,
Equation (5) (solid lines), and the local uniaxial form, Equation (6) (dashed lines), for the nematic
phase of acute angle V-shaped particles with different values of the bend angle.

The induced polar order can be quantified by the order parameter pzZ defined in
Equation (15). Figure 4a shows pzZ as a function of the deformation wavenumber q for
V-shaped particles with bend angle χ = 45◦ at different values of the packing fraction.
pzZ is equal to zero in the uniform nematic phase, but it then exhibits a linear increase
(in absolute value) with the wavenumber q of the splay deformation. For a given splay
deformation, pzZ takes a finite value at the isotropic-nematic transition and then increases
upon moving to higher density. The slope of pzZ(q) at q = 0, which can be seen as a kind of
’flexopolar’ coefficient [24], is a parameter that quantifies the capability of the material to
acquire polar order in response to a splay deformation. Figure 4b shows the slope of pzZ(q)
at q = 0 for V-shaped particles with different bend angles, as a function of the volume
fraction, and we can see that this capability increases as the bend angle widens.

It is interesting to observe that the bend elastic constants, shown in Figure 3d, are not
affected by the form of the ODF and exhibit the usual trend typical of rod-like particles,
characterized by a steep increase with increasing density. K33 seems to be essentially
determined by the aspect ratio of the acute angle V-shaped particles. For the twist elastic
constant, on the contrary, we can see in Figure 3c that there are some differences between
the results obtained using the local and the non-local form of the ODF. In particular,
the K22 values calculated using Equation (5) are smaller, exhibit a much weaker density
dependence and tend to flatten at high order. Here it is no longer a matter of symmetry,
but other geometrical features of particles, such as the biaxiality, can come into play. A role
of biaxiality is confirmed by the results obtained for a tripodal particle, which are shown in
Figure 5. We can see that for this particle, which has polar symmetry but uniaxial order
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(D = 0), the twist elastic constant does not change if either the non-local or the local form
of the ODF. It may be worth pointing out the difference between the polar and biaxial order
of particles with respect to elastic constants. Polar order is incompatible with the uniform
nematic phase but can be induced by a deformation of polar symmetry. As we have shown,
it can be accounted for by an ODF that changes in the presence of director deformations,
in a way that depends on the particle shape. On the contrary, the biaxial order of mesogens
is compatible with the symmetry of the uniform nematic phase. Therefore, it can be
accounted for even by classical microscopic theories of elasticity, provided that a form of
the ODF that is more general than Equation (6) and able to describe the different ordering
of the two transversal axes of particles is used [53]. As for the non-local ODF that we have
proposed, Equation (5), by construction, it takes into account the biaxiality as well as other
geometrical features of the particles considered.

(a) (b)

Figure 4. (a) Polar longitudinal order parameter pzZ for V-shaped particles with bend angle χ = 45◦

in the presence of a splay deformation, as a function of the deformation wavenumber q, at different
values of the packing fraction φ. (b) Slope of the longitudinal polar order parameter induced by a
splay deformation, pzZ(q), calculated at q = 0, as a function of the volume fraction difference φ− φN ,
for acute angle V-shaped particles with different values of the bend angle. φN is the packing fraction
in the nematic phase at the nematic-isotropic boundary. Negative pzZ values mean that the apex of a
V-shaped particle preferentially points towards the center of the splay deformation (see Figure 1).

Figure 5. Elastic constants as a function of the packing fraction φ for the tripodal particle shown in
the inset. Values calculated using the non-local form of the ODF, Equation (5) (full symbols), and the
local form, Equation (6) (empty symbols).

Finally, Figure 6 collects the three Frank elastic constants of particles with bend
angle χ = 45◦, which is close to the value of the apical angle in the molecules with
1,7-naphthalene central core investigated in Reference [36]. A strict comparison with
experimental results is beyond the scope of this work, since the model used here (rigid
particles interacting though a purely repulsive potential) lacks important elements for a
proper description of thermotropic nematics made of flexible molecules. Nevertheless, it is
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interesting to see that for S around 0.4÷ 0.5, which appears reasonable for thermotropic
systems, the anomalous order K11 < K22 < K33 is found, which is in line with the experi-
mental trend reported in [36], and the relative values of the three elastic constants are also
comparable to the measured quantities.

Figure 6. Elastic constants calculated for acute angle V-shaped with a bend angle χ = 45◦ (see inset),
as a function of the order parameter S.

3.2. Obtuse Angle Particles

Figure 7 shows order parameters and elastic constants for obtuse angle V-shaped par-
ticles made of 11 hard spheres, with bend angles in the range from 140◦ to 180◦. The latter
case is that of rod-like particles and is taken as a benchmark. In obtuse angle particles
the reference system (oxyz) is defined with the x axis parallel to the twofold symmetry
axis and y perpendicular to the plane containing the two arms. Thus, the order parameter
S describes the orientational order for the direction parallel to the segment joining the
terminal spheres, whereas D quantifies the different alignment with the director of the
twofold symmetry axis and of the axis perpendicular to the particle plane. Compared with
the acute angle systems examined in the previous section, obtuse angle particles have a
behavior closer to the rod-like reference; indeed, they present generally higher values of
the axial order parameter S, together with lower values of the biaxial order parameter D.

Figure 7b–d shows the elastic constants, and, as for the case of acute angle particles,
we also report the results obtained using the local ODF form, Equation (6). Of course,
the curves coincide for the rod-like particle, i.e., χ = 180◦. As the bend angle narrows,
the isotropic-nematic transition shifts to higher density, and the calculated elastic constants
exhibit a continuous decrease from the values for a straight rod. Such effects are also
predicted by the local ODF model; they can, at least partly, be ascribed to the lowering
of the particle aspect ratio as the bend angle narrows. With decreasing χ, the differences
between the predictions of the local and the non-local ODF model also increase. This can be
related to the increase in particle biaxiality, which is naturally accounted for by Equation (5).
However, this is not sufficient for the bend elastic constant, where a distinctive behavior
appears when the non-local form of the ODF is used: below a certain bend angle, it exhibits
a non-monotonic density dependence, analogous to that reported in the previous section
for the splay elastic constant of acute angle V-shaped particles. The unconventional bend
elasticity of bent particles with an obtuse angle was already investigated using different
models [26,27,29], and there is agreement on its origin being related to the emergence of
polar order. Unlike the case of acute angle particles, examined in the previous subsec-
tion, here, the polar order is transversal, being related to the non-equivalence of particle
orientations with the apex pointing either towards the center of the bend deformation or
in the opposite direction. A suitable quantity to describe this is the order parameter pxX ,
defined in Equation (14). For the linear particle (χ = 180◦), the order parameter pxX is
equal to zero, but for particles of C2v symmetry (χ < 180◦), it is found to increase linearly
with the wavenumber q of the bend deformation upon moving away from the uniform
nematic state, q = 0. Figure 8 shows the slope of pxX(q) at q = 0, and we can see that it
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increases with the narrowing of the bend angle, which means an increasing polar response
to bend deformations. For a given bend angle, the slope of pxX(q) takes a finite value at
the isotropic-nematic transition, and it is subsequently an increasing function of density,
i.e., of orientational order.

(a) (b)

(d)(c)

Figure 7. (a) Order parameters S and D (inset), and (b) splay, (c) twist and (d) bend elastic constant,
as a function of the volume fraction φ. Values obtained using the non-local form of the ODF,
Equation (5) (solid lines), and the local uniaxial form, Equation (6) (dashed lines), for the nematic
phase of obtuse angle V-shaped particles with different values of the bend angle.

Figure 8. Slope of the transversal polar order parameter induced by a bend deformation, pxX(q),
calculated at q = 0, as a function of the packing fraction difference φ− φN , for acute angle V-shaped
particles with different values of the bend angle. φN is the packing fraction in the nematic phase at
the nematic-isotropic boundary. The dashed line shows the results for the curved particle shown in
Figure 2c. Positive pxX values mean that the apex of a V-shaped particle preferentially points to the
opposite direction of the center of a bend deformation.

Before finishing this subsection, we will compare the elastic constants of the nematic
phase of V-shaped particles with those for the curved particle shown in Figure 2c. This
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model was already investigated [28,37,55] and is used here to explore the role of some more
subtle geometric parameters, rather than simply the shape polarity. A V-shaped particle
with bend angle χ = 150◦ (slightly smaller than the value of χ = 155◦ defined in Figure 2c
using a purely geometric criterion) is taken for this comparison, because it is found to be
equivalent to the curved particle, as far as the splay and twist constants are concerned (see
Figure 9). However, there are some differences between the bend elastic constants of the
two types of particles: for both, K33 exhibits a non-monotonic density dependence, but the
range of positive values is significantly narrower for the curved particle. This can be related
to a stronger tendency of nematics made of curved particles to acquire transverse polar
order in the presence of a bend deformation, as described by the slope of pxX(q) at q = 0,
reported in Figure 8. This comparison illustrates the high sensitivity of the bend elastic
constant of slightly bent particles to morphological details. Interestingly, an analogous
sensitivity was observed in the phase diagram: using theory and simulations, curved
particles were found to form the twist-bend nematic phase [55], which is characterized by
a heliconical deformation of the director field, whereas such a phase was not found for
V-shaped particles [52,56]. Furthermore, experimentally, there are several examples of the
twist-bend nematic phase for the so-called liquid crystal dimers, which are made up by
two mesogens linked by a flexible chain and have on average a smoothly bent shape [24].
However, there are only very few examples of the twist-bend nematic phase in bent-core
liquid crystals, which have a rigid core roughly comparable to a V-shaped particle [21].

Figure 9. Elastic constants as a function of the volume fraction φ, for a nematic phase formed by
obtuse angle V-shaped particles with a bend angle χ = 150◦, red full symbols, and by the curved
particles as shown in Figure 2c, blue empty symbols. (For the latter system, the φ scale is different
from the one in Figure 1a of [37], since in that case, the volume fraction was calculated as φ = veffρ.)

4. Conclusions

We have used a recently developed approach to investigate the elastic properties
of nematics made of rigid V-shaped particles. This is a minimal model, which allows
us to probe different behaviors as a function of a single geometric parameter, the bend
angle. Real liquid crystal molecules are characterized by a flexible structure; therefore, in
general, it is not possible to uniquely evaluate the bend angle. Conformational changes
can significantly modify the molecular geometry, and this has to be taken into account for
accurate prediction of elastic properties. However, this is not the objective of our study,
which is rather aimed at identifying general trends and correlations between molecular
structure and macroscopic properties. Our analysis demonstrates that, by tuning the bend
angle, the elastic behavior can be switched from bend dominated (K33 > K11) for acute
angles to splay dominated (K11 > K33) for obtuse angles, with anomalously low values of
the splay and bend elastic constant, respectively. Throughout the past decade, experimental
examples of the latter behavior were reported in bent-core nematics and in the so-called
liquid crystal dimers, and theory was crucial to relate the softening of the bend mode
to the transversal shape polarity. Here, we have presented a systematic investigation of
obtuse angle systems, and we have extended the study to acute angle particles, which
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are less investigated by far. We have identified analogous features for the two types of
particles, with the difference that the latter, due to the presence of a longitudinal polar axis,
affect the splay, rather than the bend mode. This change of behavior is in agreement with
very recent findings for acute angle bent-core mesogens. We can relate the softening of
Frank constants to the ability of a nematic system to acquire polar order, transversal or
longitudinal, in the presence of a bend or splay deformation, respectively; this is a material
property determined by the molecular structure and the thermodynamic state.

It is well known that liquid crystals have the ability to translate molecular chirality
into a chiral deformation of the director field on a length scale that is larger by orders of
magnitude, by a helical deformation of the director field. The effect of the molecular shape
polarity on the splay and bend elastic constants, which we have illustrated here, can be
seen as another example of this ability. In this case, the result cannot be uniformly splayed
or bent phases, due to the incompatibility of these deformation modes with the Euclidean
geometry of the 3D space [3]. However, the influence of the molecular shape polarity on
the elastic anisotropy can have an impact on the mesoscale, e.g., through the control of the
interaction between defects or embedded colloids and nanoparticles [57,58]. Interestingly,
a change of behavior from splay to bend-dominated has been observed in active nematics
as a consequence of changes of shape induced by activity [59].

A final comment regards microscopic theories of nematic elasticity. The results re-
ported here show the inability of classical theories to capture the significant effects of the
particle morphology on elastic constants. Their major fault is the neglect of changes in the
orientational distribution function in the presence of deformations. Usually, this neglect is
justified by the large size of director deformations on the molecular scale. However, our
results show that the coupling between the symmetry of molecules and that of the director
field can lead to a considerable relief of the energetic cost for elastic deformations.
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