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Abstract: Perovskites have attracted increasing attention because of their excellent physical and chem-
ical properties in various fields, exhibiting a universal formula of ABO3 with matching compatible
sizes of A-site and B-site cations. In this work, four different prediction models of machine learning
algorithms, including support vector regression based on radial basis kernel function (SVM-RBF),
ridge regression (RR), random forest (RF), and back propagation neural network (BPNN), are estab-
lished to predict the formation energy, thermodynamic stability, crystal volume, and oxygen vacancy
formation energy of perovskite materials. Combined with the fitting diagrams of the predicted values
and DFT calculated values, the results show that SVM-RBF has a smaller bias in predicting the crystal
volume. RR has a smaller bias in predicting the thermodynamic stability. RF has a smaller bias in
predicting the formation energy, crystal volume, and thermodynamic stability. BPNN has a smaller
bias in predicting the formation energy, thermodynamic stability, crystal volume, and oxygen vacancy
formation energy. Obviously, different machine learning algorithms exhibit different sensitivity to
data sample distribution, indicating that we should select different algorithms to predict different
performance parameters of perovskite materials.

Keywords: perovskite; machine learning; performance prediction; algorithm selection

1. Introduction

With the progress of science and technology as well as the development of social
economy, people are very active in the research on the development and utilization of
various energy resources [1–6]. In recent years, ABO3 perovskite composite oxides have
attracted great interest [3,4,7–15]. Research has focused on the development of new per-
ovskite materials to improve activity, selectivity, and stability, as well as the development
of advanced manufacturing techniques to reduce their cost while ensuring their reliability,
safety, and reproducibility [14–16]. In ABO3 perovskite oxides, the A site is the rare earth or
alkaline earth metal ions, which usually stabilize the structure, while the B site is occupied
by the smaller transition metal ions [17]. Through partial substitution of A and B sites,
multi-component perovskite compounds can be combined [16]. When A or B sites are
partially replaced by other metal ions, anion defects or B sites at different valences can
be formed. This improves the properties of the compounds but does not fundamentally
change the crystal structure [17]. This kind of composite oxide has gas sensitivity, oxidation
catalytic property, conductivity, oxygen permeability, and other properties. In addition,
its structure and performance are closely related to the composition of the system [17].
Perovskite-type oxides can form compounds through partial doping of metal ions at A
and B sites on the basis of maintaining stable crystal structure, as well as controlling the
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elements and valence states so that the performance of perovskite materials present rich
diversity [18–20].

The research in the field of materials is generally based on the successful preparation of
experimental samples. The various properties of samples are measured to understand the
various physical properties, and the materials are analyzed and classified through different
performance parameters [21]. The traditional material experimental process has a strong
dependence on the samples. A lot of repetitive work during the experiment process leads
to long development times. With the continuous development of computer science, many
methods, such as first-principles calculation, phase field simulation, and finite element
analysis, have emerged to investigate the structure and performance of materials, but
they are often large and costly. These are the major factors limiting the development and
transformation of materials [22–24].

With the fast development of artificial intelligence, many researchers have applied
machine learning methods to accelerate material sciences [25,26]. Due to its strong data
processing capacity and relatively low research threshold, machine learning can effectively
reduce the cost of human and material resources in industrial development and shorten
the research and development cycle [27]. By replacing or cooperating with traditional
experiments and computational simulation, it can analyze material structure and predict
material properties more quickly and accurately, so as to develop new functional materials
more effectively [28,29]. Selecting different machine learning methods to predict material
performance parameters from existing large data sets can effectively improve the prediction
accuracy of material performance, so as to select materials with reasonable performance for
experimental research [21]. Using existing data to predict the performance parameters can
not only expand the space of material data but also provide guidance for material experi-
ments and applications. Different machine learning algorithms have different sensitivities
to material data in different ranges of data sets, so it is necessary to make a feature selection
on specific material data samples to evaluate algorithm by performance evaluation [30–32].

The perovskite data set calculated based on the first principles and density functional
theory by Antoine et al. was selected as the training samples [33]. Weike et al. showed that
deep neural networks utilizing just two descriptors (the Pauling electronegativity and ionic
radii) can predict the DFT formation energies of C3A2D3O12 garnets and ABO3 perovskites
with low mean absolute errors (MAEs) [34]. Wei et al. developed machine learning models
to predict the thermodynamic phase stability of perovskite oxides using a dataset of more
than 1900 DFT-calculated perovskite. The results showed that that error is within the range
of errors in DFT formation energies relative to elemental reference states when compared
to experiments and, therefore, may be considered sufficiently accurate to use in place of
full DFT calculations [35]. Using different machine learning algorithms, the formation
energy, thermodynamic stability, crystal volume, and oxygen vacancy formation energy of
perovskite materials were predicted [36,37].

As shown in Figure 1,
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Step 1: The original dataset (0) was divided (1) into training dataset (2) and test dataset (5).
Step 2: A different algorithm (3) was trained based on the training dataset (2) into

different models (4).
Step 3: Trained models (4) were used to predict test dataset (6).
Step 4: Performance evaluations (7) were obtained by calculation of predicted value

and true value.
Four kinds of machine learning algorithms were used to establish the multi-algorithm

prediction model for the multi-performance parameters of perovskite materials, and the
prediction accuracy of the model was compared and evaluated. The experimental results
have important reference value and practical significance for the further study of machine
learning methods in the prediction of perovskite material properties and the discovery of
new perovskite materials.

2. Principles and Methods
2.1. Regression Prediction of Support Vector Machines

According to the limited sample information, SVM seeks the best compromise between
the complexity of the model and the learning ability to obtain the best generalization ability
based on statistical learning theory [38–40]. SVM has many unique advantages in solving
small sample, nonlinear, and high-dimensional pattern recognition. Its basic idea is to map
the data x to the high-dimensional feature space F through a nonlinear mapping φ and
make linear regression in this space.

Assume a sample set {(xi, yi)}N
i , in which the input data are xi ∈ Rn, yi ∈ Rn, and

the optimal linear model function constructed in high dimensional space is:

f (x) = ωTφ(x) + b (1)

whereω and b are weight and bias item, respectively. Thus, the linear regression in the high
dimensional feature space corresponds to the nonlinear regression in the low dimensional
input space.

When using SVM to solve regression problems, we need to use the appropriate kernel
function instead of inner product according to the characteristics of solving problems, so as
to implicitly transform the inner product operation of high-dimensional feature space into
the kernel function operation of low dimensional original space. This skillfully solves the
“dimension disaster” caused by calculation in high-dimensional feature space [36]. The
commonly used kernel functions are RBF, linear, etc. [39]. In addition, SVM introduces
a parameter ε insensitive loss function and uses the loss function to complete the linear
regression in the high-dimensional feature space, while the complexity of the model is
reduced by minimizing ||ω||2. Finally, the objective function of SVM is as follows:

min
ω,b,ξ,ξ ′

J
(
ω, ξ, ξ ′

)
=

1
2

ωTω + C
n

∑
i=1

(
ξ + ξ ′

)
(2)

Here, we introduce a nonnegative relaxation variable ξ and ξ’, and C is a regularization
parameter to control the penalty for the samples that exceed the error.

2.2. Random Forest

The random forest (RF) regression algorithm is a combination algorithm based on
the decision tree classifier [36,41–44]. It uses the bootstrap re-sampling method to extract
multiple samples from the original samples, construct the decision tree for each of the
bootstrap samples, and then take the voting results that appear most in all the decision
trees as the final prediction result [36].

The decision tree corresponding to random parameter vector θ is T(θ), and its leaf
nodes are represented as I(x, θ). The steps of the RF algorithm are as follows:
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Step 1: Repeat the bootstrap method and randomly generate k training sets θ1, θ2, . . . ,
and θk use each training set to generate the corresponding decision tree {T(x, θ1)}, {T(x, θ2)},
. . . , and {T(x, θk)}.

Step 2: Assuming that the feature has M dimensions, m features are randomly selected
from the feature of M dimension as the splitting feature set of the current node, and the
node is split in the best way among the m features.

Step 3: The maximum growth of each decision tree is achieved, and the pruning is not
carried out in this process.

Step 4: For the new data, the prediction of a single decision tree T(θ) can be obtained
by averaging the observed values of leaf node I(x, θ) where the weight vector is wi(x, θ).

Step 5: The prediction of a single decision tree is obtained through the weighted
average of the observed value Yi(i = 1, 2, . . . , n) of the dependent variable, and the
predicted value û of a single decision tree is shown in Equation (3).

û =
n

∑
i=1

wi(x, θ)Yi (3)

Step 6: Obtain the weight wi(x) of each observed value Yi(i = 1, 2, . . . , n) by averaging
the weight wi(x, θt)(t = 1, 2, . . . k) of the decision tree, as shown in Equations (4) and (5).

wi(x) = k−1
k

∑
i=1

wi(x, θt)y (4)

û =
n

∑
i=1

wi(x)Yi (5)

From the original training sample set, n samples are randomly selected repeatedly to
generate a new training sample set training decision tree, and then M decision trees are
generated according to the above steps to form a random forest. The classification result of
the new data depends on the number of votes of the classification tree, and the weights are
updated in successive iterations.

2.3. Ridge Regression

Ridge regression (RR) is a biased estimation regression method for collinear data
analysis, which is an improvement of the least square estimation method [45–50]. It gives
up the unbiased advantage of the least square and gains the stability of the regression
coefficient at the cost of losing part of the information and reducing the fitting accuracy [48].
The multiple regression model can be expressed as follows:

Y = βX + ε (6)

where Y is the dependent variable, X is the independent variable, β is the regression
coefficient, and ε is the error.

The regression coefficient is estimated by the least square method as follows:

β =
(

XTX
)−1

XTY (7)

If the independent variables have multiple collinearities, the matrix XTX is singular
and the eigenvalue is very small; this causes the elements on the diagonal of the matrix(

XTX
)−1 to be very large and makes the parameter estimation extremely unstable [48].

Small changes in the data may lead to great changes in the parameter estimation. The
coefficients cannot objectively reflect the influence of the independent variables on the
dependent variables and also have a great impact on the prediction results.

Ridge regression is to add a diagonal matrix to the matrix XTX so that the eigenvalue
of the matrix becomes larger, and the singular matrix is transformed into a nonsingular
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matrix as far as possible, so as to improve the stability of parameter estimation, and the
obtained parameters can more truly reflect the objective reality. Ridge regression is used to
solve the regression coefficient β:

β =
(

XTX + KI
)−1

XTY (8)

where K is ridge regression parameter, K ∈ [0, 1]. The larger the value of K is, the smaller
the influence of collinearity on the stability of retrospective parameters is K = 0; it becomes
the least square estimation, which is an unbiased estimation. K 6= 0; it is a biased estimation,
and the variance of prediction increases with the increase of the variance K. Therefore, K
should be enough to eliminate the influence of collinearity on parameter estimation and be
as small as possible; this means that when the change of ridge trajectory tends to be stable,
the smaller value K should be selected as far as possible [50].

2.4. BP Neural Network

The BP neural network is a multilayer feedforward neural network trained by error
back propagation algorithm, also known as error back propagation neural network. It is
one of the most widely used neural network models at present [51–55]. The BP neural
network has the characteristics of self-organization, self-learning, and knowledge reasoning
for information processing and has the adaptive characteristics for uncertain regular
system [51]. It can use the training of samples to realize the mapping of any nonlinear
functional relationship from input to output and reveal its internal laws and characteristics
from these mapping relationships [52].

In the process of forward propagation, the input signal is processed layer by layer
from the input layer through the hidden layer to the output layer, and the output signal is
generated. The neural network element state of each layer only affects the neuron state
of the next layer; if the output signal cannot meet the expected output requirements, it
is transferred to the error backward propagation process. According to the prediction
error, from the output layer to the input layer, the weights and thresholds of the BP neural
network are constantly modified so that the prediction output of the BP neural network is
close to the expected output [56].

As shown in Figure 2, the BP neural network is composed of three parts: input layer,
hidden layer, and output layer, in which the hidden layer can have multiple layers. X1, X2,
. . . , and Xn represent the input value of the BP neural network, and Y1, Y2, . . . , and Yn
represent the output value of the BP neural network [56].
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At present, there is no more accurate method to determine the number of neurons
in the hidden layer. We can only determine the number of neurons in the hidden layer
through empirical formula and many experiments.

l =
√

m + n + a (9)

where l represents the number of hidden layer neurons, n represents the number of input
layer nodes, m represents the number of output layer nodes, and a represents an arbitrary
integer from 0 to 10.

In the learning process of the neural network, the phenomenon of over-fitting may
always occur. Over-fitting may not reflect the true result, so it is necessary to introduce reg-
ularization technology. The regularization techniques commonly used in neural networks
include L2 regularization and Dropout regularization [55].

2.5. Performance Evaluation

In this study, mean absolute error (MAE), mean square error (MSE), and coefficient of
determination (R2) were used to observe and measure the prediction accuracy of the model
and to compare the performance differences of different models. The smaller MAE and
MSE are, the larger R2 is, and the closer to 1 is, indicating that the prediction effect of the
model is better [42,49,57]. Their formula is as follows:

MAE =
1
n

n

∑
j=1

∣∣ŷj − yj
∣∣ (10)

MSE =
1
n

n

∑
j=1

(
ŷj − yj

)2

(11)

R2 = 1−

n−1
∑

j=0

(
yj − ŷj

)2

n−1
∑

j=0

(
yj − y

)2
(12)

where n is the number of samples, yj is the true value, ŷj is the predicted value, and y is the
average value.

3. Model Construction

The properties of the materials are potentially related and interacted with each other.
This makes it possible to predict some unknown properties from existing properties. In this
work, the data set of perovskite materials was obtained from researchers Antoine et al. [33]
based on the first principles and density functional theory. In the process of data prepro-
cessing, data cleaning was the main work, including the deletion of duplicated information,
a data legitimacy check, and the correction of the existing errors, so as to ensure the validity
of data. After data preprocessing, 5276 ABO3 perovskite high-throughput data sets were
obtained, and four characteristic performance parameters including formation energy,
thermodynamic stability, crystal volume, and oxygen vacancy formation energy in the
original material data set were going to predict [58].

The table of characteristic energy parameters of the dataset is shown in Table 1. For
the prediction of formation energy, stability, and volume, there are 5276 complete data sets.

For the prediction of formation energy, stability, and volume, 12 properties were used
as characteristic variables, including 11 independent variables and 1 predictive variable,
containing 5276 pieces of effective data.

For the prediction of oxygen vacancy formation energy, 13 properties were used
as characteristic variables, including 12 independent variables and 1 predictive variable,
containing 4914 pieces of effective data.



Crystals 2021, 11, 818 7 of 15

Table 1. Characteristic performance parameters of perovskite data sets.

No. Property Type Unit Description

1 Radius A number ang Shannon ionic radius of atom A.

2 Radius B number ang Shannon ionic radius of atom B.

3 Formation energy number eV/atom Formation energy as calculated by equation of the
distortion with the lowest energy.

4 Stability number eV/atom Stability as calculated by equation of the distortion
with the lowest energy.

5 Volume per atom number A3/atom Volume per atom of the relaxed structure.

6 Band gap number eV PBE band gap obtained from the relaxed structure.

7 a number ang Lattice parameter a of the relaxed structure.

8 b number ang Lattice parameter b of the relaxed structure.

9 c number ang Lattice parameter c of the relaxed structure.

10 alpha number deg α angle of the relaxed structure.

11 beta number deg β angle of the relaxed structure.

12 gamma number deg γ angle of the relaxed structure.

13 Vacancy energy number eV/O atom Thermodynamic stability was assessed using an
energy convex hull construction.

The perovskite property prediction model based on machine learning is constructed
as follows:

1. Data preparation: divide the effective data into training set and test set, 80% into
training set, 20% into test set, and normalize the data.

2. Model training: models of SVM-RBF, RF, RR, and BPNN algorithms were estab-
lished, respectively. Based on these algorithms, four characteristic performance parameters
including formation energy, thermodynamic stability, crystal volume, and oxygen vacancy
formation energy of perovskite materials, were independently trained.

3. Model effect evaluation: for the results of the test set, MAE, MSE, and R2 were used
to evaluate the model effect.

4. Model application: after training, multiple algorithm models could be used to
independently predict the four performance parameters of perovskite materials.

In order to improve the accuracy of model prediction, the algorithm should be opti-
mized before model training. For the application of support vector regression algorithm,
the grid search algorithm is used to find the optimal penalty coefficient and the optimal
kernel function radius.

4. Results and Discussion

Table 2 lists the evaluation results of training performance using different algorithm
models. MAE, MSE, and R2 were used to evaluate the model, and the results are shown
in Figure 3. It can be seen that the R2 value of RF is the highest, which is 0.7231, and the
values of MAE and MSE are the lowest, which are 0.3731 and 0.2449, respectively. RF has
the best prediction effect on the formation energy. For the stability prediction, the R2 value
of SVM-RBF is 0.8081, and the MAE and MSE are 0.2074 and 0.0898, respectively, which are
the best for the stability prediction. For crystal volume prediction, the R2 value of BPNN is
the largest, which is 0.9372, and the MAE and MSE are the smallest, which are 0.4134 and
0.4679, respectively. For the prediction of oxygen vacancy formation energy, the evaluation
indexes of SVM-RBF and RF are similar, and the prediction effect is better than that of RR
and BPNN.
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Table 2. Prediction results of four models on test set.

Property Method
Evaluation Index

MAE MSE R2

Formation
energy

SVM-RBF 0.5104 0.4016 0.5607

RF 0.3731 0.2449 0.7231

RR 0.5822 0.5109 0.4574

BPNN 0.4744 0.3514 0.6091

Stability

SVM-RBF 0.2074 0.0898 0.8081

RF 0.2023 0.0895 0.7792

RR 0.2465 0.1078 0.7263

BPNN 0.2239 0.0993 0.7808

Volume per
atom

SVM-RBF 0.4626 0.7085 0.9042

RF 0.4442 0.6271 0.9195

RR 1.8019 5.0720 0.3205

BPNN 0.4134 0.4679 0.9372

Vacancy energy

SVM-RBF 1.8631 6.7088 0.6631

RF 1.8742 7.0501 0.6562

RR 2.3823 9.9980 0.5265

BPNN 2.0144 6.7663 0.6651
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According to the above conclusions, the fitting diagram combining the predicted value
of multiple algorithms and the calculated value of DFT are shown in Figures 4–7. The
horizontal axis is the calculated data of DFT, while the vertical axis is the predicted data. In
Figure 4c, the points (DFT, Predicated) are closer to the reference points so that SVM-RBF
has a better prediction effect on volume. In the same way, RF has a better prediction effect
on volume, stability, and formation energy; RR has a better prediction effect on stability;
and BPNN has a better prediction performance on these four characteristic parameters,
which can effectively predict formation energy, stability, volume, and oxygen vacancy
formation of perovskite materials.

The above results show that the prediction effect of different algorithms on different
properties of material data is different. SVM-RBF can effectively predict the volume. RF
can effectively predict the crystal volume, thermodynamic stability, and formation energy.
RR can effectively predict the thermodynamic stability. BPNN can effectively predict the
formation energy, thermodynamic stability, crystal volume, and oxygen vacancy formation
energy. Therefore, the performance parameters in perovskite system which are difficult to
be obtained by traditional experimental methods can be predicted by machine learning.
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Figure 7. The fitting diagram based on the predicted value of BPNN and the calculated value of DFT is (a) the fitting
diagram of formation energy, (b) the fitting diagram of stability, (c) the fitting diagram of volume, and (d) the fitting diagram
of formation energy of oxygen vacancy. Red points work as reference points, which is ideal values obeyed y = x.

5. Conclusions

Four different machine learning algorithms, including support vector machine based
on radial basis function (SVM-RBF), random forest (RF), ridge regression (RR), and BP
neural network (BPNN), were used to predict the formation energy, stability, volume,
and oxygen vacancy formation energy of perovskite materials. The algorithm model gets
prediction results. SVM-RBF has a better prediction effect on the crystal volume; RF has
a better prediction effect on the crystal volume, thermodynamic stability, and formation
energy; RR has a better prediction effect on stability; and BPNN has a better prediction
effect on all four characteristic parameters. It is further proved that different machine
learning algorithms have different sensitivity to data, and different methods need to be
selected to predict different performance parameters of perovskite materials. The machine
learning method is applied to the performance prediction of perovskite materials, which
improves the prediction efficiency and the subsequent performance prediction effect. The
results have practical reference value for the study of machine learning methods in the
performance prediction of perovskite materials and even in the research and development
of new perovskite materials.
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