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Abstract: Numerical modeling of the stress–strain state of composite materials such as fiber-reinforced
concrete is a considerable computational challenge. Even if a computational grid with the resolution
of all inclusions is built, it will take a great amount of time for the most powerful clusters to calculate
the deformations of one concrete block with ideal parallelization. To solve this problem, the method
of numerical homogenization is actively used. However, when plastic deformations are taken into
account, the numerical homogenization becomes much more complicated due to nonlinearity. In
this work, the description of the anisotropic nature of the hardening of the composite material
and the numerical homogenization for the J2 flow with isotropic hardening is proposed. Here, the
deformation of a composite material with a periodic arrangement of inclusions in the form of fibers is
considered as a model problem. In this case, the assumption is made that inclusions have pure elastic
properties. Numerical homogenization of the elasticity and plasticity parameters is performed on the
representative element. The novelty of the work is related to the attempt at hardening parameter
homogenization. The calculated effective parameters are used to solve the problem on a coarse mesh.
The accuracy of using the computational algorithm is checked on model problems in comparison
with the hardening parameters of the base material. The finite element implementation is built using
the FEniCS computing platform and the fenics-solid library.

Keywords: elastoplastic; hardening; homogenization; J2 flow; composites; fiber reinforcement;
finite element

1. Introduction

Composite materials are used in various industries. Over time, their structures change,
and their production is optimized in terms of operational properties. Composite materials
have the advantage of a high strength-to-weight ratio, improved thermal conductivity,
or isolation. Most composites are materials with elastoplastic properties, for example,
reinforced concrete [1–3]. The behavior of traditional materials has been studied well
enough, and there are mathematical models verified over time that describe the deformation
properties of a particular natural material, whereas the description of composite materials
is not so simple. In particular, the description of the deformations of a composite material
outside the theory of linear elasticity can be handled by a second-order radial return
algorithm [4].

In our study, we consider metal inclusions. For the mathematical description of the
deformation of concrete, we use the theory of plastic flow with isotropic hardening and a
description of the plastic flow region using the Mises yield criterion. Numerical modeling
of a composite material with a mesh resolution of all inclusions in the form of reinforcement
and distributed fibers is a considerable computational problem [5,6]. Modern computer
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equipment has impressive power due to a large number of cores with a high clock speed.
However, the complexity of the problem increases nonlinearly with an increase in the
structure size under consideration.

Previous work [7] proposed the use of the effective tensor of elasticity, obtained from
numerical homogenization, the parameters of plasticity, such as the yield stress, and the
hardening parameter as in concrete. At small values of plastic deformations, this approxi-
mation demonstrates good accuracy and can be used to describe plastic deformations until
the body begins to collapse. In other words, our model considers concrete stress–strain
dependence as piecewise linear, as shown in Figure 1. This model is supposed to be used
for stresses below material strength [8].
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In this work, a description of the anisotropic nature of the hardening of the composite
material and numerically homogenizing the hardening parameter for the J2 flow with
isotropic hardening is proposed. Deformation of a composite material with a periodic
arrangement of inclusions in the form of fibers is considered as a model problem.

On the representative element, the elastic parameters and the hardening parameter
are numerically homogenized. The calculated effective parameters are used to solve
the problem on a coarse mesh. The accuracy of the computational algorithm is checked
on model problems in comparison with the use of the hardening parameter of the base
material, i.e., concrete. The finite element implementation is built using the FEniCS [9]
computing platform and the fenics-solid library [10].

2. Materials and Methods
2.1. Problem Statement

A two-dimensional mathematical model describing the stress–strain state of a concrete
composite with steel fibers is considered, described by the equilibrium equation

divσ = 0, x ∈ Ω = Ω1 ∪Ω2, (1)

where Ω1 is a concrete subdomain, Ω2 is a subdomain of fiber inclusions, σ is a stress tensor.
For the plasticity model [11,12], the elastic tensor consists of elastic and plastic parts:

ε =


∂u1
∂x1
∂u2
∂x2

∂u2
∂x1

+ ∂u1
∂x2

 = εe + εp. (2)
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Next, the connection between the stress tensor and the elastic strain tensor using
the generalized Hooke’s law is added. For convenience, Voight notation is used. In a
two-dimensional case, Hooke’s law can be presented as:

σ =

 σ11
σ22
σ12

 = Cεe, C =

 C1111 C1122 C1112
C2211 C2222 C2212
C1211 C1222 C1212

, (3)

where C is an elasticity tensor, which is as follows for isotropic materials:

C =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

, (4)

where λ and µ are the Lamé coefficients determined through Young’s modulus E and
Poisson’s ratio ν. Model values of these parameters for concrete and steel are presented in
Table 1 [13,14].

Table 1. Model elastic parameters of concrete matrix, basalt, and steel fibers.

Material Young Modulus E, GPa Poisson Ratio, ν

Concrete 40 0.15
Steel 200 0.3

Yield criterion of plastic flow with isotropic hardening is following:

f (σ, εp, κ) = φ(σ)− qiso(κ)− σy ≤ 0, (5)

where φ(σ) is a scalar effective stress measure, qiso(κ) is a scalar stress-like internal variable
used to model isotropic hardening, κ is an internal variable, and σy is initial yield stress. In
this work, a von Mises model (also known as J2 flow) with linear isotropic hardening is
used. For this model, φ and qiso are written as:

φ(σ) =

√
3
2

sijsij, (6)

qiso(κ) = Hκ, (7)

where sij = σij− σkkδij/3 is the deviatoric stress and the constant H is a hardening parameter.
For associative von Mises plasticity with isotropic hardening, there are the following rates:

.
ε

p
=

.
λ

∂ f
∂σ

, (8)

κ =

√
2
3

.
ε

p
ij

.
ε

p
ij (9)

Concrete hardening parameters H and yield stress σy are taken as equal to 21.5 GPa
and 30.0 MPa, respectively. These values are related to compression and used for all kinds
of deformation in the modeling purposes of this study.

2.2. Hardening Parameter Homogenization Algorithm
2.2.1. Effective Hardening Parameter

The main assumption of this work is that the effective hardening parameter depends
on the tensor of plastic deformations and takes a certain numerical value for each of its
components. In this case, for the classical model of isotropic hardening, the description of
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compression and tension is described in the same way. The simplest form of the effective
hardening factor satisfying these criteria will be as follows:

he f f =
|εp

11|h1+|εp
22|h2+|εp

12|h3

|εp
11|+|εp

22|+|εp
12|

f or
∣∣∣εp

11

∣∣∣+ ∣∣∣εp
22

∣∣∣+ ∣∣∣εp
12

∣∣∣ 6= 0,

he f f = hc f or
∣∣∣εp

11

∣∣∣+ ∣∣∣εp
22

∣∣∣+ ∣∣∣εp
12

∣∣∣ = 0,
(10)

the following is true for it:

he f f = h1 f or ε
p
22 = ε

p
12 = 0 and ε

p
11 6= 0,

he f f = h2 f or ε
p
11 = ε

p
12 = 0 and ε

p
22 6= 0,

he f f = h3 f or ε
p
11 = ε

p
22 = 0 and ε

p
12 6= 0,

(11)

Let us take the effective value of the yield point equal to the concrete yield point. Next,
consider the algorithm with which one can calculate the values of h1, h2, h3.

2.2.2. Elastic Parameter Homogenization

First, the representative elements are selected. For the unidirectional location of fiber,
a unit cell is used. For the bidirectional location of fibers, a 2 × 2 cell is used. In the case
with a random distribution of fibers, the accuracy of the elasticity problem highly depends
on representative volume size. Therefore, an optimal representative volume with 16 fibers
is chosen. The effective elastic tensor of the composite material Ce f f is calculated using
representative volume, as in previous work [15].

2.2.3. Hardening Parameter Homogenization

Second, three problems of elastic plasticity are solved using very large values of the
boundary condition, for example, when the deformations on whole boundary are equal:

uD =
(
106 · x1, 0

)
,

uD =
(
0, 106 · x2

)
,

uD =
(
106 · x2/2, 106 · x1/2

)
.

(12)

Additionally, for each case, we obtain the averaged stress tensors σ1, σ2, σ3, which
must correspond to solutions with effective parameters. Given the large value of defor-
mation and, accordingly, the large value of stresses, it can be assumed that purely elastic
deformations are negligible, and the ratio of stress and strain is described by the elastic-
plasticity tensor. Thus, by solving the same problems on a homogeneous medium using
the effective parameters, we must obtain the same stress values. However, since complete
correspondence to the stress tensor by varying the value of the hardening parameter alone
is hardly obtained, the agreement that it is necessary to obtain correspondence with the
most essential components of the tensors is taken. Namely, σ1

11, σ2
22, σ3

12.
Further, by solving the problem on a coarse mesh with a uniform distribution of

the effective parameters Ce f f , he f f with boundary conditions (12), correspondence with
σ1

11, σ2
22, σ3

12 must be obtained. When solving the problem with boundary conditions (12),
smallness of the elastic deformations occurs and, accordingly, the following becomes true:

σ ≈ Cepε (13)

At the same time, from the theory of elastic flow with isotropic hardening, the elasto-
plastic tangent is equal to

Cep = Ξ− Ξ : ∂σg⊗ ∂σ f : Ξ
∂σ f : Ξ : ∂σg + h

, (14)

where Ξ = C/
(

I + ∆λC : ∂2
σσg
)
.
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As long as the values of the strain tensor for each point are the same, a hardening
parameter that will correspond to the selected direction of deformation can be calculated at
any point. To calculate the parameters, the following relations can be used:

h1 =
R1[1, 1]

Ξ1[1, 1]− σ1
11

ε1
11

− α1, h2 =
R2[2, 2]

Ξ2[2, 2]− σ2
22

ε2
22

− α2, h3 =
R3[3, 3]

Ξ3[3, 3]− σ3
12

ε3
12

− α3, (15)

where R = Ξ : ∂σg ⊗ ∂σ f : Ξ, and α = ∂σ f : Ξ : ∂σg (top index corresponds to each
problem). Thus, by solving three problems with different boundary conditions (12), the
sought-for hardening parameter values can be obtained.

2.3. Research Object

A two-dimensional concrete structure with inclusions in the form of fibers is consid-
ered for different cases of fibers:

1. Evenly distributed and unidirectional;
2. Bidirectionally distributed;
3. Randomly distributed.

The aspect ratio of fibers is 1 to 10 and the concentration is equal to 2.5%. The locations
of the fibers for each case are shown in Figure 2. The number of fibers is 256.
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location of fibers.

3. Results

For the object of study, the values of the elastic tensor coefficients and the components
of the anisotropic hardening coefficient in the case of unidirectional, bidirectional, and
random steel fiber distribution were calculated.

To check the effective parameters, the following tests were performed:

1. Compression along the horizontal axis (Figure 3a);
2. Compression along the vertical axis (Figure 3b);
3. Tangential stress (Figure 4a)
4. All-round compression (Figure 4b).

The purpose of the tests was to identify the scope of the proposed model.
In the first test, the left border is completely fixed, i.e., a Dirichlet boundary condition

equal to zero vector is applied, and normal stress is applied to the right border, which
increases from 0 to 200 MPa over 100 time steps. The second test is similar to the first,
but anchoring is at the bottom, and tensile stress is on the top. The third test is related to
tangential stress at the right side with anchoring on the left side.

In contrast to other tests, the fourth test features compression along two axes. A quarter
of the body with 1024 fibers is considered. For this problem, the random distribution is
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modeled as symmetric for vertical and horizontal axes. Thus, the simulated geometry is
the same. Normal stress is set above and on the right, and it also increases from 0 to 200
MPa over 100 time steps. The corresponding symmetry boundary conditions are set on the
left and below.
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In addition to material variation, the solution of the elastic plasticity problem with
isotropic hardening is performed on an inhomogeneous region on a computational grid
with full geometry (Figure 5a–c). This solution is considered as an exact solution. The
errors of the compared models are calculated referring to it. A coarse grid (Figure 5d)
requires a solution made using the effective elastic tensor. The models using the effective
hardening factor and the concrete hardening parameter are compared. When using return
mapping, the value of the plastic strain tensor for calculating the effective coefficient is
taken from the previous iteration.
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The computational mesh of the complete geometry for unidirectional, bidirectional,
and random fiber distribution and the coarse computational mesh, on which the solution is
performed using the effective parameters, have 33,963 vertices, 78,361 cells, 44,814 vertices,
100,063 cells, 47,822 vertices, 106,910 cells, and 2319 vertices, 4640 cells, respectively.

3.1. Calculation of Effective Parameters

To calculate the effective parameters, for the unidirectional location of fibers, a unit
cell is used. For the bidirectional location of fibers, we used a 2 × 2 cell. In the case with
a random distribution of fibers, the accuracy of the elasticity problem highly depends on
the representative volume size. It is thought that a 16-fiber case would be optimal. The
computational meshes for calculating the elastic parameters are shown in Figure 6a–f and
the computational mesh for calculating the hardening parameters is shown in Figure 6c.

The computational mesh for calculating the elastic parameters for unidirectional,
bidirectional, and random distribution and the coarse computational mesh for calculating
the hardening parameters have 528 vertices, 1126 cells, 2020 vertices 4319 cells, 2627 vertices,
5960 cells and 177 vertices, 312 cells, respectively.

After applying the algorithm, the effective parameters presented in Table 2 were obtained.
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Table 2. Calculated effective elasticity and plasticity parameters for all cases: unidirectional, bidirec-
tional, and random distribution of steel fibers.

Coefficient Unidirectional Bidirectional Random 1 Random 2 Random 3

C1111 45.23 GPa 44.20 GPa 44.04 GPa 44.11 GPa 44.43 GPa
C2222 43.23 GPa 44.20 GPa 44.05 GPa 44.09 GPa 43.69 GPa
C1212 17.77 GPa 17.77 GPa 18.01 GPa 17.95 GPa 18.01 GPa

C1122 C2211 7.87 GPa 7.86 GPa 8.09 GPa 8.03 GPa 8.09 GPa
C1112 C1211 147 KPa −112 KPa 112 KPa 4.12 MPa −140 MPa
C2212 C1222 −62.3 KPa −75.8 KPa 559 KPa 74.5 MPa −86.4 MPa

h1 25.69 GPa 22.91 GPa 21.96 GPa 22.28 GPa 23.00 GPa
h2 20.98 GPa 22.91 GPa 21.91 GPa 22.22 GPa 21.21 GPa
h3 22.17 GPa 22.17 GPa 23.44 GPa 23.11 GPa 23.38 GPa

3.2. Compression along the Horizontal Axis

Based on the results of test 1, the dependences of the maximum value of the displace-
ment modulus in all cases were obtained. They are presented in Figures 7–9.

Crystals 2021, 11, x FOR PEER REVIEW 9 of 26 
 

 

Coefficient Unidirec-
tional 

Bidirectional Random 1 Random 2 Random 3 𝑪𝟏𝟏𝟏𝟏 𝑪𝟐𝟐𝟐𝟐 𝑪𝟏𝟐𝟏𝟐 𝑪𝟏𝟏𝟐𝟐 𝑪𝟐𝟐𝟏𝟏 𝑪𝟏𝟏𝟏𝟐 𝑪𝟏𝟐𝟏𝟏 𝑪𝟐𝟐𝟏𝟐 𝑪𝟏𝟐𝟐𝟐  

45.23 GPa 44.20 GPa 44.04 GPa 44.11 GPa 44.43 GPa 
43.23 GPa 
17.77 GPa 
7.87 GPa 
147 KPa 

44.20 GPa 
17.77 GPa 
7.86 GPa 
−112 KPa 

44.05 GPa 
18.01 GPa 
8.09 GPa 
112 KPa 

44.09 GPa 
17.95 GPa 
8.03 GPa 
4.12 MPa 

43.69 GPa 
18.01 GPa 
8.09 GPa 
−140 MPa 

−62.3 KPa −75.8 KPa 559 KPa 74.5 MPa −86.4 MPa ℎଵ ℎଶ ℎଷ 

25.69 GPa 22.91 GPa 21.96 GPa 22.28 GPa 23.00 GPa 
20.98 GPa 
22.17 GPa 

22.91 GPa 
22.17 GPa 

21.91 GPa 
23.44 GPa 

22.22 GPa 
23.11 GPa 

21.21 GPa 
23.38 GPa 

3.2. Compression Along the Horizontal Axis 
Based on the results of test 1, the dependences of the maximum value of the displace-

ment modulus in all cases were obtained. They are presented in Figures 7–9. 

 
Figure 7. A graph of the dependence of the maximum value of the deformation modulus in Table 1 
for unidirectional fiber location case. Figure 7. A graph of the dependence of the maximum value of the deformation modulus in Table 1

for unidirectional fiber location case.

Crystals 2021, 11, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 8. A graph of the dependence of the maximum value of the deformation modulus on the 
traction value for solving the problem of plasticity, taking into account inclusions, using effective 
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 1 for 
bidirectional fiber location case. 

 

Figure 9. A graph of the dependence of the maximum value of the deformation modulus on the 
traction value for solving the problem of plasticity, taking into account inclusions, using effective 
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 1 for 
random fiber distribution case. 

The distributions of the deformation error modulus |𝑢௘௥௥|, which can be expressed 
by fine mesh solution 𝑢௙௜௡௘ taken as exact and homogenized solution 𝑢௛௢௠ as |𝑢௘௥௥| =ට൫𝑢௙௜௡௘௑ − 𝑢௛௢௠௑ ൯ଶ + ൫𝑢௙௜௡௘௒ − 𝑢௛௢௠௒ ൯ଶ, for test 1 for unidirectional, bidirectional, and ran-
dom distribution of fibers, are shown in Figures 10, 11, 12, 13, 14, respectively.  

Figure 8. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 1 for
bidirectional fiber location case.
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Figure 9. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 1 for
random fiber distribution case.

The distributions of the deformation error modulus |uerr|, which can be expressed
by fine mesh solution u f ine taken as exact and homogenized solution uhom as |uerr| =√(

uX
f ine − uX

hom

)2
+
(

uY
f ine − uY

hom

)2
, for test 1 for unidirectional, bidirectional, and ran-

dom distribution of fibers, are shown in Figures 10–14, respectively.
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Figure 10. Distribution of the deformation error modulus for test 1 for unidirectional case: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 11. Distribution of the deformation error modulus for test 1 for bidirectional case: (a) When using effective hardening
parameters; (b) when using the concrete hardening parameter.
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Figure 12. Distribution of the deformation error modulus for test 1 for random distribution case 1: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 13. Distribution of the deformation error modulus for test 1 for random distribution case 2: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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hardening parameters; (b) when using the concrete hardening parameter.

In all cases, it can be seen that when using the effective hardening parameter, the
solution has a significantly lower value of the deformation error.
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3.3. Compression along the Vertical Axis

Based on the results of test 2, the dependences of the maximum value of the displace-
ment modulus in all cases were obtained. They are presented in Figures 15–17.
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Figure 15. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 2 for
unidirectional fiber location case.
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Figure 16. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 2 for
bidirectional fiber location case.
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Figure 17. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 2 for
random fiber distribution case.

The distributions of the deformation modulus error for test 2 for unidirectional,
bidirectional, and random distribution of fibers are shown in Figures 18–22, respectively.
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Figure 18. Distribution of the deformation error modulus for test 2 for unidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
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Figure 19. Distribution of the deformation error modulus for test 2 for bidirectional case: (a) When using effective hard-
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Figure 18. Distribution of the deformation error modulus for test 2 for unidirectional case: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 18. Distribution of the deformation error modulus for test 2 for unidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 

  
(a) (b) 

Figure 19. Distribution of the deformation error modulus for test 2 for bidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
Figure 19. Distribution of the deformation error modulus for test 2 for bidirectional case: (a) When using effective hardening
parameters; (b) when using the concrete hardening parameter.
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Figure 20. Distribution of the deformation error modulus for test 2 for random distribution case 1: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 20. Distribution of the deformation error modulus for test 2 for random distribution case 1: (a) When using effective 
hardening parameters; (b) when using the concrete hardening parameter. 
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Figure 21. Distribution of the deformation error modulus for test 2 for random distribution case 2: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 22. Distribution of the deformation error modulus for test 2 for random distribution case 3: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.

In both unidirectional and bidirectional cases, as in test 1, it can be seen that the
method proposed in the article gives a solution with a significantly smaller error value.
However, for the case with random distribution error values when using effective and base
hardening, parameters are similar. This could be due to a bad representative volume.



Crystals 2021, 11, 776 17 of 26

3.4. Tangential Stress

Based on the results of test 3, the dependences of the maximum value of the displace-
ment modulus in all cases were obtained. They are presented in Figures 23–25.
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Figure 23. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 3 for
unidirectional fiber location case.
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Figure 24. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 3 for
bidirectional fiber location case.
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Figure 25. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 3 for
random fiber distribution case.

The distributions of the deformation modulus error for test 3 for unidirectional,
bidirectional, and random distribution of fibers are shown in Figures 26–30, respectively.
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Figure 26. Distribution of the deformation error modulus for test 3 for unidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
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Figure 27. Distribution of the deformation error modulus for test 3 for bidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 

Figure 26. Distribution of the deformation error modulus for test 3 for unidirectional case: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.



Crystals 2021, 11, 776 19 of 26

Crystals 2021, 11, x FOR PEER REVIEW 19 of 27 
 

 

  
(a) (b) 

Figure 26. Distribution of the deformation error modulus for test 3 for unidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
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Figure 27. Distribution of the deformation error modulus for test 3 for bidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
Figure 27. Distribution of the deformation error modulus for test 3 for bidirectional case: (a) When using effective hardening
parameters; (b) when using the concrete hardening parameter.
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Figure 28. Distribution of the deformation error modulus for test 3 for random distribution case 1: (a) When using effective 
hardening parameters; (b) when using the concrete hardening parameter. 
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Figure 29. Distribution of the deformation error modulus for test 3 for random distribution case 2: (a) When using effective 
hardening parameters; (b) when using the concrete hardening parameter. 

Figure 28. Distribution of the deformation error modulus for test 3 for random distribution case 1: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.
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Figure 28. Distribution of the deformation error modulus for test 3 for random distribution case 1: (a) When using effective 
hardening parameters; (b) when using the concrete hardening parameter. 
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Figure 29. Distribution of the deformation error modulus for test 3 for random distribution case 2: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.

Crystals 2021, 11, x FOR PEER REVIEW 21 of 27 
 

 

  
(a) (b) 

Figure 30. Distribution of the deformation error modulus for test 3 for random distribution case 3: (a) When using effective 
hardening parameters; (b) when using the concrete hardening parameter. 
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Figure 30. Distribution of the deformation error modulus for test 3 for random distribution case 3: (a) When using effective
hardening parameters; (b) when using the concrete hardening parameter.

In all cases, as in previous tests, we see that the method proposed in the article gives
a solution with better accuracy. In particular, this can be seen for random distribution.
However, accuracy could be worse for other representative volumes.
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3.5. All-Round Compression

Based on the results of test 4, the dependences of the maximum value of the displace-
ment modulus in all cases were obtained. They are presented in Figures 31–33.
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Figure 31. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 4 for
unidirectional fiber location case.
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Figure 32. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 4 for
bidirectional fiber location case.
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Figure 33. A graph of the dependence of the maximum value of the deformation modulus on the
traction value for solving the problem of plasticity, taking into account inclusions, using effective
parameters, effective parameters of elasticity, and plastic flow parameters of concrete for test 4 for
random fiber distribution case.

The distributions of the deformation modulus error for test 4 for unidirectional,
bidirectional, and random distribution of fibers are shown in Figures 34–38, respectively.
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Figure 34. Distribution of the deformation error modulus for test 4 for unidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
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Figure 35. Distribution of the deformation error modulus for test 4 for bidirectional case: (a) When using effective hard-
ening parameters; (b) when using the concrete hardening parameter. 
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In contrast to all other tests, the results of the fourth test show the weak side of
the proposed model, namely, when comparable values of the strain tensor components
occur. In this case, it is impossible to take into account the whole anisotropic nature of the
elastic–plastic flow of the composite material.



Crystals 2021, 11, 776 25 of 26

4. Discussion

J2 flow with isotropic hardening can be used to model plastic behavior of a great
variety of materials, for example, concrete. Fiber-reinforced concrete is currently of great
interest. Additionally, to model building blocks made of fiber-reinforced concrete, proper
homogenization or multiscale methods are required. The main focus of such methods is to
homogenize the elastoplastic tangent tensor. The algorithm presented here of hardening
coefficient homogenization is simple to understand in comparison to other plasticity
problem homogenization algorithms.

In a previous study, the algorithm of the homogenization of fiber-reinforced concrete
with elasticity tensor homogenization using a hardening parameter and the yield stress of
concrete without reinforcement was investigated. A satisfactory result with good accuracy
was obtained. In this study, we tried to add hardening parameter homogenization in order
to improve accuracy. A comparison with the previous algorithm was performed using
three different fiber locations and four tests.

5. Conclusions

According to the results obtained, the proposed model of the hardening coefficient
homogenization demonstrates satisfactory results when one of the components of the strain
tensor prevails. Under this condition, the results obtained have an error less than when
using the concrete hardening coefficient, as shown by tests 1, 2, and 3.

However, when the strain tensor components have comparable values, error values
become similar to the values of error of the simple model from previous work. This
is due to the anisotropy of the plastic flow that cannot be fully taken into account in a
simple numerical change in the hardening coefficient. In this case, we note that both
approximations work quite accurately at small plastic deformations.

In further work, it will be necessary to obtain a method of numerical homogenization,
which will have more degrees of freedom and describe the anisotropy of plastic deforma-
tions better. Different values of plastic parameters of concrete, for compression and tension,
should also be addressed in future work.
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