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Abstract: By simple modification of a GC electrode with biofunctional material, hydroxyapatite
(HAp), an efficient electroanalytical tool, was designed and constructed. Modification of the GC
surface includes two steps in synthesis: electrochemical deposition and chemical conversion. The
properties, structure, and morphology of a nanosized material formed on a surface and absorbability
were studied by electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy
and scanning electron microscopy with energy-dispersive spectroscopy analysis. Numerous methods
in this work confirmed that the developed method for controlled HAp deposition results in a HAp
open structure and uniform morphology, which is capable of the selective absorption of the target
species. The main goal of this study was the possibility of using a HAp-modified electrode for the fast
screening of copper, cadmium, and lead content in honey and sugar samples. The electrochemical
behavior and potential of the electroanalytical determination of heavy metals using the HAp/GC
electrode were studied using cyclic voltammetry and square wave anodic stripping voltammetry. The
HAp/GC electrode exhibited great performance in the determination of heavy metals, based on the
reduction of target metals, because of the high absorbability of the HAp film and the electroanalytical
properties of GC. A linear response between 10 and 1000 µg/L for Cu and Pb and 1 and 100 µg/L for
Cd, with an estimated detection limit of 2.0, 10.0, and 0.9 µg/L, respectively, was obtained.

Keywords: hydroxyapatite; glassy carbon electrode; electroanalytical application; heavy metals;
food analysis

1. Introduction

Environmental contamination is one of the main health problems in industrial coun-
tries [1]. Metal pollution has become an increasingly important ecological problem in
developed and developing countries. Metal and metalloid pollution in the air, soil, and
water comes from mining activities; industrial production; industrial wastes and wastewa-
ter; the engines of passenger cars, trucks, and off-road vehicles; areas used for the illegal
disposal of hazardous waste; the burning of leaded gasoline, chemicals, and manure-based
fertilizers; some pesticides; geological processes; plastic films containing metals, etc. Heavy
metals in dust and gases can also enter soil and water by natural sedimentation, rainfall, or
infiltration when released into the air [2]. Toxic metals can easily enter the food chain if
contaminated water, soils, air, or plants are used for food production.

The term “heavy metals” refers to a metallic element that has a relatively high density
and is toxic or poisonous even at low concentrations. Heavy metals include elements such
as lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), zinc (Zn), chromium (Cr), and copper
(Cu). Some of them, such as Cd, are exclusively toxic, whereas some are biogenic, such
as Cu [3]. There are different sources of heavy metals in the environment such as natural,

Crystals 2021, 11, 772. https://doi.org/10.3390/cryst11070772 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-6600-8019
https://orcid.org/0000-0003-4267-2764
https://orcid.org/0000-0002-7518-8904
https://orcid.org/0000-0002-3185-6907
https://doi.org/10.3390/cryst11070772
https://doi.org/10.3390/cryst11070772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11070772
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst11070772?type=check_update&version=2


Crystals 2021, 11, 772 2 of 13

agricultural, industrial, domestic effluent, and atmospheric sources, as well as other sources.
They are stable in the environment, difficult to eliminate, and cause irreversible damage to
the survival, feeding, growth, and behavior of organisms. Activities such as mining and
smelting operations and agriculture have contaminated extensive areas of the world, mostly
by heavy metals such as Cd, Cu, and Zn [4]. Several authors have indicated that honeybees
and honey can serve as environmental bioindicators for metal pollution, as biomarkers for
the identification of botanical and geographical origins represent a honey fingerprint [5–7].

Honey bees can be exposed to heavy metals when foraging contaminated honey
and pollen resources and, in some cases, by airborne exposure. Traditional analytical
methods have been proposed for the detection and quantification of heavy metals in
honey samples [8] such as flame atomic absorption spectrometry (FAAS) for Ca, Mg, and
Zn [9]; atomic absorption spectrometry for Pb, Cd, and Cu [8,10]; or inductively coupled
plasma mass spectrometry to uncover metal content in honey samples [11–13]. However,
some of the above-mentioned methods are nonspecific and laborious and needed harmful
and expensive substances, which, in combination with a long sample preparation time
and well-trained operators, drastically increased the time and cost of analysis. Thus, the
development of different electroanalytical methodologies has been applied to explore metal
contamination. Stripping voltammetric techniques are powerful analytical tools that are
becoming widely used in various chemical analyses of food contaminants or essential
elements, additive dyes, and other organic compounds of biological significance [14] such
as anodic stripping voltammetry at Hg microelectrodes for the determination of Cu, Pb, Cd,
and Zn [15]; Cd and Pb at bismuth-film-modified glassy carbon electrodes using square
wave anodic stripping voltammetry [16]; or Zn, Cd, Pb, and Cu in raw propolis samples at
pencil lead–bismuth film electrodes [17,18]. These are successively applied for the analysis
of metals in honey samples.

In our previous research, we reported on the preparation of hydroxyapatite (HAp)
coatings on a glass carbon electrode by electrochemical deposition combined with the chem-
ical precipitation of Ca/P phases and subsequent treatment in alkaline (NaOH) solution
(physical and chemical process). Thin HAP coatings formed on the surface of GC electrodes
have excellent electroanalytical performance [19]. Hydroxyapatite (Ca10(PO4)6(OH)2, HAp)
is a new type of bioceramic with great bioactivity and particular multiadsorbing sites anal-
ogous to the mineral components of bone and teeth. Due to its “open structure”, great
varieties of cationic and anionic substitutions in HAp are possible, including its appli-
cation for electroanalytical purposes. Many different applications are reported in the
literature, mostly in bioscience, because of its acid–base properties, ion-exchange ability,
biocompatibility, and adsorption capacity [20–23].

The morphology of HAp coatings has been studied using Fourier-transform infrared
spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy
(AFM). The prepared film electrode has been used as a sensing material for the detection
of heavy metals in honey and sugar. Additionally, for the preparation of real samples, a
method for preparing natural organic materials has been developed.

Different approaches for the synthesis of Ca/P phases are presented in the literature,
including physical techniques (different performances of spraying, sputtering, evaporation,
or deposition) and chemical methods (sol–gel, immersion coating, hot-isostatic pressing,
electrophoretic deposition, electrochemical deposition, (micro)emulsion routes, dip coating,
or sintering) [24–27]. Different ratios of the crystalline/amorphous phase of HAp coatings
can be achieved due to the different methods of synthesis employed in the synthesis
of HAp [28,29]. The chemical composition, structure, and property of the amorphous
phase are dependent on the structure of its clusters. The formation of amorphous calcium
phosphate and its subsequent transition to crystalline hydroxyapatite lead to the formation
of a cluster structure [30] and the possible formation of a coordination complex of HAp
and heavy metals.

Electrochemical deposition, an environmentally friendly method for coating formation,
represents an ecologically clean and safe approach with unique advantages due to its
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ability to create a uniform coating on curved surfaces and other complex geometries.
Additionally, the process is economically acceptable and simple, as it can be performed at
room temperature, and the morphology of the coating can be easily controlled by changing
the time and potential of precipitation, concentration, and pH of the electrolyte or by
adding a growth guide [31,32].

The analytical performances of the electrochemical methods depending on the sensor’s
construction and some numerical data of the selected metals at HAp-modified electrodes
are presented in Table 1. From the presented results for the detection limit, it can be
seen that the electrochemical determination of heavy metals is comparable to the results
achieved with flame atomic absorption spectroscopy (FAAS).

Table 1. Electroanalytical and analytical performances reported for the electrochemical determination of selected heavy
metals at the HAp-modified electrode.

Electrode Modification/Substrate Electroanalytical
Methods Analytes Linear Range

(µg/L) Analyzed Samples LOD (µg/L) Ref.

HAp–CILE/CP 1 CV
SWASV

Pb
Cd 0.11–0.121 Wastewater sample 0.041

0.056 2009 [33]

nHAp/ionophore/Nafion/GCE 2 CV
ASDPV Pb 1 to 166 Real water sample 0.21 2009 [34]

CNT–HAp/GCE 3 CV
DPV Cd 2.25–33,723 Real tap

water sample 0.45 2009 [35]

Bi/HAp–CME 4 CV
SWASV

Pb
Cd Up to 150 Spiked lake

water sample
5
5 2013 [36]

HAp/Pt 5 CV
SWASV Pb 4.14–2277 River water

samples 4.2 2013 [37]

FAAS 6 FAAS
Cu
Zn
Pb

0.72
0.55
0.512

2015 [38]

HAp/GCE 7 CV
SWASV

Cu
Pb
Cd

10–1000
10–1000
1–100

Real sugar and
honey samples

2.0
10.0
0.9

2021
This work

1 HAp-modified carbon ionic liquid electrode (HAp–CILE): ionic liquid N-octylpyridium hexafluorophosphate (OPPF(6)) with a ratio of
50/50 (w/w = mixing the graphite powder with HAp to give an appropriate ratio of HAp/CP) and heating for 2 min at >65 ◦C. 2 Mixture
of lead ionophore (IV) (4-tert-butylcalix[4]arene-tet-rakis(N,N-dimethylthioacetamide)) with nanosized hydroxyapatite (nHAp) prepared
by one-step sonication for 20 min (from Ca(NO3)2 and (NH4)2HPO4; the molar ratio of Ca and P was equal to 1.67) and Nafion dropwise
on the GCE. 3 One-step sonication: CNTs dispersed in solution with the aid of ultrasonication for 20 min with Ca(NO3)2 and (NH4)2HPO4;
the molar ratio of Ca and P was equal to 1.67; 10 mL of 1 mg/mL carbon nanotube–HAp ethanol solution was added on the surface of
the GCE and dried under an IR lamp. 4 Bismuth (in situ)-modified HAp carbon-modified electrode by adding different content ratios
of HAp and graphite to the formation. 5 Electrodeposition of HAp on the surface of a bare platinum electrode. 6 After preconcentration
with hydroxyapatite nanorods originating from an eggshell. 7 Electrodeposition of HAp on the surface of a glassy carbon electrode via the
electrochemical deposition of and chemical conversation to HAp.

2. Materials and Methods

Chemicals, Solutions, and Apparatus All used reagents were of analytical reagent grade.
All of the solutions were prepared with double-distilled water. The Sigradur® glassy
carbon was supplied from Hochtemperatur-Werkstoffe GmbH, Thierhaupten, Germany.

Preparation of the GC Electrode Before use, the glassy carbon (GC) electrodes (5 mm
in diameter), which served as substrate electrodes in all experiments, were mechanically
polished with emery paper (2000 grit), followed by polishing with alumina powder down
to 0.05 µm. After polishing, the electrodes were treated ultrasonically in redistilled water,
rinsed with ethanol, and finally rinsed with redistilled water.

In order to achieve a reproducible and active electrode surface, the electrodes were
activated in 0.5 mol dm−3 HNO3, as noted in our previous study [32].

Preparation of HAp/GC Electrode The Ca/P-phase electrodeposition solution was pre-
pared by mixing 50 cm3 of 0.05 mol dm−3 Ca(NO3)2 · 4H2O and 50 cm3 of 0.04 mol dm−3

(NH4)2HPO4. The pH of the solution was adjusted to 5.0 by adding 0.5 mol dm−3 HNO3.
Electrodeposition was performed at a potential of−850 mV for 60 min at room temperature.
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The electrolyte was stirred with a magnetic stirrer at a constant speed. In that way, the
concentration of Ca2+ and HPO4

2− ions was constant during electrodeposition.
Alkaline treatment was performed in a bath with 1.0 mol dm−3 NaOH at 80 ◦C

for 60 min after electrodeposition. Between each step, the electrode was cleansed with
redistilled water.

As a result of the preparation procedure, a HAp/GC electrode was obtained.
Instruments All experiments were carried out at 25 ◦C.
The surface morphology was studied using a FEG–SEM Thermo Scientific™ Quattro

ESEM scanning electron microscope (SEM). Obtained images were quantified using ImageJ
software (Rasband, U.S. NIH, Bethesda, MD, USA). Preliminary examination of the sample
surface was conducted using a metallographic microscope (MMT 800BT, Mikrolab, Warsaw,
Poland), and the surface topography of the samples was evaluated using an atomic force
microscope (AFM, Dimension Icon, Bruker, Santa Barbara, CA, USA) in tapping mode using
a standard silicon probe model TESPA-V2 (Bruker, Santa Barbara, CA, USA). Achieved
images were quantified with ImageJ software (Rasband, U.S. NIH, Bethesda, MD, USA).
Electrochemical impedance measurements were made using Solartron SI 1287 and SI
1255 HF frequency response analyzer (FRA) instruments. The Solartron instruments were
controlled using Zplot and CorrWare computer software, while ZView and CorrView
software packages were used as tools for data analysis. For electrochemical voltammetric
measurements, a three-electrode cell was used with Ag/AgCl/3M KCl as the reference
electrode, a platinum electrode as the counter electrode, and GC or HAp/GC as the working
electrode with a potentiostat (AutoLab PGSTAT 302N) connected to a PC and driven by
GPES4.9 software (Eco Chemie).

Preparations of Sugar and Honey Samples A representative sample (sample of sugar
purchased from a local store and two samples of honey purchased from a local beekeeper
from two localities: mountainous and coastal) of up to 2.0 g was digested in concentrated
nitric acid, and the mixture was left in the digester for 24 h. The mixture was transferred
to porcelain pots, which were annealed at 160 ◦C for 30 min. After cooling, 8 mL of H2O2
and 2 mL of HNO3 were added. The resulting solution was completely clarified. A 10 mL
volume of aliquots of the prepared samples (pH = 4, adjusted with HNO3) was transferred
to a 100 mL flask and filled with 0.2 mol dm−3 solution of KNO3.

3. Results
3.1. Electrodeposition of Ca/P Phases on the GC Electrode and Surface Morphology of the HAp
Coating on the GC Electrode
3.1.1. Deposition

For the surface modification of the HAp coating on the GC electrode, a two-part
method was performed [19]. The first part comprised the electrochemical and chemical
reactions. Electrodeposition was performed at a potential of −850 mV at room temperature
for 60 min. Electrochemical reactions involve the reduction of hydrogen (electrochemical
reaction) and the spontaneous deposition of Ca/P phases (chemical reaction) when the
Ca2+ ion reacts with HPO4

2− and PO4
3− and forms CaHPO4 × 2H2O (brushite, calcium

hydrogen phosphate dihydrate) and Ca3(PO4)2 (calcium phosphate, β-TCP). Brushite and
β-TCP are precursors to the formation of stable-phase HAp and Ca10(PO4)6(OH)2. The
second part is chemical conversation via reactions that convert deposited Ca/P phases
into hydroxyapatite (HAp) through alkaline treatment. Scheme 1 presents the process of
deposition under the given experimental conditions.

3.1.2. Atomic Force Microscopy (AFM)

An example optical microscopy image of the surface of each sample and AFM images
of the scanning areas of 10 × 10 µm are shown below in Figure 1. The optical microscopy
images indicate that the surfaces of the tested samples are heterogeneous and not totally
covered. From the microscopic images, it is possible to conclude that part of the GC surface
is unmodified carbon, an uncovered surface, or microcracks with carbon in a small gap,
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probably due to a nonformed nucleus during the electrodeposition step. The formed film
was evaluated with ImageJ software. A cross-sectional view is generated from the optical
image and presented as the ZY or ZX planes. The obtained AFM images characterize
the surface locally, and scans at different locations show noticeable differences in surface
roughness. According to the AFM images, the mean image data plane (Rq) calculated
on 100 µm2 regions for two different positions on the surface varies from 107.3 down to
35.5 nm for different film thicknesses (900.8 and 280.8 nm; Figure 1C,D).
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Figure 1. Optical image of the HAp film at 500×magnification: (A) cross-sectional view generated from the optical image
(B) and film thickness measurements using AFM (C,D).

3.1.3. Scanning Electron Microscopy (SEM)

Figure 2 shows the surface morphologies of HAp on the GC surface with different
magnifications: 35× (Figure 2A), 1000× (Figure 2B), and 8000× (Figure 2C). For the HAp
coating with a magnification of 8000× (Figure 2C), it can be seen that a porous structure
formed on the GC surface with HAp, with a macropore diameter between 0.5 and 3 µm.
The macropores led to the development of a large specific surface area and an “open
structure”, which is of great importance for good electroanalytical performance.
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In our previous study [19], we reported that this method of modifying results in
a relatively uniform topology and almost completely covered surfaces with an average
content of elements derived by energy-dispersive spectroscopy (EDS) analysis corresponds
to the formation of a P-deficient topology (Ca-fortified apatite), with a Ca/P ratio of 2.12,
which was not found to be a biologically relevant Ca/P form. In the natural bone, the Ca/P
ratio is close to 1.67 with an oxygen atomic content of ~62% [24].

3.1.4. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy is a useful method to verify the presence of functional groups in
synthesized compounds or materials in a wide wavenumber region. Figure 3 shows the
FTIR spectra of the bare (blue line) and HAp-modified (red line) GC electrodes prepared as
described in the Materials and Methods section (Section 2).
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The observed peaks on the bare GC electrode are identified as follows. One strong
shoulder peak observed between 2830 and 3050 cm−1 can be connected to the absorption of
C–H stretching that corresponds to the frequency of asymmetric (2919 cm−1) and symmetric
(2848 cm−1) stretching of the C–H bond from the methyl moiety (−CH2), which originated
from organic impurities. The peak at 2330 cm−1 is due to O−H stretching, and the peaks at
1472 and 1400 cm−1 can be associated with the vibration of the traces of organic substances
on the surface, or the vibration of a CO3

2− group, formed as a consequence of anodic or
cathodic pretreatment in nitric acid. After modification, FTIR of the HAp/GC electrode
shows some peaks characteristic of HAp [19,35].

The surface of HAp on the GC electrode showed some characteristic peaks [19,39]:

(1). The strong characteristic band in the 3400–3900 cm−1 frequency range and at 2310 cm−1

is assigned to O−H stretching.
(2). The peaks at 2848 and 2919 cm−1 of C–H stretching from the methyl moiety (−CH2),

which originated from organic impurities, suggest a noncovered GC surface.
(3). The peak at 1623 cm−1 was due to adsorbed atmospheric CO2, and the peaks at

1540 and 1380 cm−1 can be attributed to the vibration of traces of organic substances
on the surface or the vibration of a CO3

2− group.
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(4). The most prominent peaks at 1015 cm−1 are due to the asymmetrical P−O stretching
mode of HAp in phosphate.

(5). The slight shoulders at 961 and 560 cm−1 and the peak at 604 cm−1 are ascribed to
the P−O bending mode from phosphate.

The FTIR results confirm the presence of a HAp film on the GC surface.

3.1.5. Electrochemical Impedance Spectroscopy (EIS) Studies of HAp/GC

Interference properties, as well as the surfaces of modified and nonmodified electrodes
and the absorption of an optimized HAp film on the GC electrode surface, were investigated
using electrochemical impedance spectroscopy (EIS) in 0.2 M KNO3 (pH = 4). Figure 4
shows the impedance data as Nyquist plots, obtained for bare GC and modified HAp/GC
via the electrodeposition process, as described in the Materials and Methods section
(Section 2). Impedance data were fitted by a suitable electrical equivalent circuit (EEC)
model, employing the complex nonlinear least-squares fit analysis [40] offered by Solartron
ZView® software. The fitting quality was evaluated by the chi-squared and relative error
values, which were of the order of 10−3–10−4 and below 5%, respectively, indicating that
the agreement between the proposed EEC model and the experimental data was good.
The total impedance, Z of the investigated electrochemical system is the sum of the ohmic
resistance and the impedance of the electrochemical interface (Zel + ZHF + ZLF) and is
described by the transfer function in Equation (1).
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Figure 4. Nyquist plot of the unmodified and modified GC electrodes recorded at EOCP in 0.2 M KNO3

(pH = 4) solution. Inset: The EEC used to fit the EIS data (EOCP for bare the GC electrode = 0.0505 V
and for the HAp/GC electrode = 0.0727 V).

The Nyquist plots suggest the presence of the diffusion process. EIS data were
modeled by the electrical equivalent circuit (EEC) with three time constants, as shown in
the inset in Figure 4. In the EEC, constant phase element CPE1 is attributed to the double
layer capacitance, R1 to the charge transfer resistance, CPE2 to the capacitance of the species
traveling through the film, and CPE3 to the diffusion processes [41]. The numerical values
of the EEC elements were obtained by the fitting procedure. The presented recorded plots
reveal the diffusion-controlled processes that took place at the HAp/GC interface. The
electrolyte resistance was 6.1 Ω cm2. The numerical values of the EEC elements obtained
by the fitting procedure indicate an increase in charge transfer resistance in the case of the
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modified electrode, suggesting that the adsorbed layer inhibits charge transfer (from 47 to
113 Ω cm2). The EIS results are in agreement with the FTIR results.

ZTOTAL(jω) = Rel +

{
Q1(jω)n1 +

{
R1 +

[
Q2(jω)n2 + Q3(jω)n3

]−1
}−1

}−1

(1)

3.1.6. Electrochemical Methods

As the main inorganic constituents of biological hard tissues such as bones or teeth,
HAp has a hexagonal structure, which can be self-polymerized during alkaline treatment.
The sorption mechanisms of the heavy metals on HAp are diverse and mainly include ion
exchange, dissolution/precipitation, and the spontaneous formation of surface complexes
due to its unique channel structure [38]. The possible exchange of calcium ions with the
target metal can be present as follows (Scheme 2).
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Prior to the investigation of the possibilities for the application of a prepared HAp/GC
electrode for an electroanalytical purpose, the electrochemical properties of the prepared
HAp/GC electrode were examined. Cyclic voltammograms obtained at the HAp/GC
electrode are presented in Figure 5.
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These measurements were carried out without oxygen removed from the solution. The
overpotential of hydrogen reduction on the HAp/GC electrode was very low. The presence
of O2 affects the background. The obtained voltammograms revealed an intensive reduction
signal at −0.5 V and an oxidation signal at −0.2 V, corresponding to the full reduction of
oxygen. The oxygen reduction reaction ideally takes the four-electron pathway (O2 + 4H+

+ 4e− ↔ 2H2O). The potential of this reaction is similar to that reported for the oxygen
reduction reaction at a bare glassy carbon electrode [42]. Afterward, the modification of the
electrode reduction/oxidation peak that corresponds to oxygen is significantly reduced,
which suggests a low sensitivity of the electrode to the oxygen present in the solution. The
overpotential of hydrogen reduction at the HAp/GC electrode was very low. The presence
of dissolved O2 could also reduce the potential window of the bare GC electrode, but the
modified electrode could be used in a wider potential window with regard to the bare GC
electrode.

4. Discussion
4.1. Analytical Applicability

A methodology for the determination of Cu, Pb, and Cd by square wave anodic
stripping voltammetry (SWASV) at proposed electrodes in honey and sugar samples
was proposed.

Such modified electrodes were subsequently used for the determination of heavy
metal cations individually with optimized parameters. The SWCSV procedure was estab-
lished by monitoring the influence of the applied potential increment (∆Es), frequency (f ),
pulse height (∆Ep), accumulation potential (Eacc), and accumulation time (tacc) on peak
currents (Ip), and the obtained results are shown in Table 2. The SWCS voltammograms
were obtained by the standard addition method (Figure 6). The calibration plots of the
HAp/GC electrode towards copper, lead, and cadmium were derived from the obtained
voltammograms, and the results are shown as insets of Figure 6.

Table 2. Optimization parameters for the individual determination of copper, lead, and cadmium.

Cu2+ Pb2+ Cd2+

Supporting electrolyte 0.2 M KNO3 0.2 M KNO3 0.2 M KNO3
pH 4 4 4

Accumulation potential −500 mV −1000 mV −1200 mV
Accumulation time 300 s 240 s 120 s

Frequency 50 Hz 50 Hz 50 Hz
Potential increment 5 mV 5 mV 5 mV

Pulse height 50 mV 50 mV 20 mV
Stripping potential ~100 mV ~400 mV ~700 mV

Concentration region with linear responses 10 µg L−1–100 µg
100–1000 µg L−1

10 µg L−1–100 µg
100–1000 µg L−1

1.0 µg L−1–10 µg
10–100 µg L−1

Correlation coefficient, R2 0.998
0.994

0.989
0.993

0.986
0.994

Sensitivity 0.03 µA µg L−1

0.04 µA µg L−1
0.09 µA µg L−1

0.19 µA µg L−1
0.11 µA µg L−1

0.03 µA µg L−1

During accumulation, selected potential from the adsorbed metal–apatite-targeting
metal ion is reduced and then “stripped” from the surface. The change in slope, with
linearity preserved, can be attributed to the increased amount of target metal accumulated
at the electrode surface, resulting in saturation of the electrode surface. However, this will
not take effect on the analytical performances of the modified electrode, as these ranges are
well defined and reproducible. For higher metal concentrations, some authors suggest a
shorter accumulation time.
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Figure 6. SWCSVs (baseline corrected), recorded at the HAp/GC electrode in 0.2 M KNO3 (pH = 4), with corresponding
calibration plots derived by subtracting the background current from the corresponding voltammograms of copper, lead,
and cadmium.

4.2. Analytical Application of HAp/GC Electrode in Real Samples

In order to evaluate the analytical applicability of the prepared modified electrode,
the proposed method was applied for the detection of Cu, Pb, and Cd in the real sample
(honey and sugar) purchased from a local store, and the results are presented in Table 3,
with examples of the SWCSVs of the prepared real sample showed presented in Figure 7.
The concentrations of metals were obtained using the standard addition method. Besides
being able to overcome the sample’s matrix interference, this method can also be used
to determine low concentrations of analytes with excellent linearity. The results of the
proposed method were compared with the results obtained by the standard analytical
method (not shown). The method showed good agreement for copper and cadmium. Large
deviations appear in the case of lead, suggestive of potential metal interferences in the
determination of lead. For lead determination in sugar, another method must be performed.

Table 3. Obtained concentrations of Cu, Pb, and Cd in sweeteners (honey and sugar).

Real Sample Honey 1 Honey 2 Sugar

Cu Pb Cd Cu Pb Cd Cu Pb Cd

µg kg−1 1775 ± 47 587.5 ± 22.1 64.3 ± 1.7 373.0 ± 12.0 4410 ± 66 287.4 ± 12.6 693.7 ± 23.5 823.7 ± 13.5 360.0 ± 2.7

Maximum
Qty Allowed 2000 300 300 2000 300 300 1000 500 500
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5. Conclusions

In the current work, a chronoamperometric procedure for the preparation of the open-
channel structure of HAp was presented, and a possible coordination structure (HAp/GC
electrode) with heavy metals was introduced.

High porosity, a film with an open structure, good mechanical characteristics, and
reproducibility in terms of the deposited film are achieved with the combined electrochem-
ical and chemical steps for deposition and conversion. The FTIR study confirmed the
existence of functional groups, characteristics of the HAp film, and the possibility of the
adsorption/accumulation of heavy metals on the electrode surface. The developed method
for controlled HAp deposition results in the HAp morphology of a nanosized material
with a uniform pore size distribution, which was confirmed with numerous methods for
surface analysis, suitable for selective adsorption.

Under the optimized conditions, a linear response between 10 and 1000 µg/L for
Cu and Pb and 1 and 100 µg/L for Cd with an estimated detection limit of 2.0, 10.0 and
0.9 µg/L, respectively, were obtained. The development method was applied in complex
matrices such as honey and sugar samples. In conclusion, commercial honey and sugar are
safe as the amount of daily allowance without any harmful contamination of heavy metals.

Surface modification of the GC electrode with the HAp film significantly increased its
sensitivity toward metal determination. However, the future prospects of this preparation
and procedure can provide easy-to-handle, rapid, low-cost, highly sensitive, stable, and,
with appropriate modification, even highly selective biosensors.
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