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Abstract: Fibonacci-spaced defect resonators were analytically investigated by cavity coupling, which
exhibited a series of well-defined optical modes in fractals. The analytic model can be used to predict
the output performance of microcavity lasers based on Fibonacci-spaced defect resonators, such as
the mode number, resonant frequency, and Q factor. All results obtained by the analytical solution are
in good consistency with that obtained by the finite-difference time-domain method. The simulation
result shows that the Q factor of the resonant modes would increase dramatically with the appearance
of narrower optical modes. The proposed theoretical model can be used to inversely design high
performance polymer lasers based on the Fibonacci-spaced defect resonators.

Keywords: quasicrystal resonator; analytic model; cavity coupling

1. Introduction

The discovery of quasicrystals in condensed matter has revolutionized solid-state
physics [1–3]. During the last few decades, photonic quasicrystals have been extensively
discussed and studied [4–9]. Quasiperiodic structures are natural intermediate cases
between periodicity and randomness, which provide more optical design possibilities and
richness in the engineering performance of the optical devices. The design of optical devices
based on the quasiperiodic structures can achieve a better performance than periodic ones
for some specific optical applications, which opens new avenues in the quest for high
performance optical devices [10–16].

One-dimensional (1D) optical quasicrystal lattices composed of multilayer stacks have
two different dielectrics of permittivity, ε1 and ε2, arranged in deterministic generation rule,
which exhibit long-range order but lack of translational symmetry. All these structures
exhibit self-similar properties.

In the case of 1D optical quasicrystals the quasicrystalline long-range order results in
a pseudogap similar to the bandgap of photonic crystals, while the lack of periodicity in
the quasicrystal results in critically localized optical modes similar to the localization in
the random systems; in other words, it can be considered as a defect effect. This leads to
the appearance of allowed optical modes inside the forbidden 1D pseudogap. The optical
modes exhibit fractal self-similar patterns in the transmission spectra that stem from the
self-similarity of the underlying structure [17–19]. High Q-factor resonators can be attained
due to the splitting and sharpness of the previous modes from the well-defined self-similar
feature [20]. Moreover, the progressive fragmentation of the frequency spectrum gives
rise to a series of optical modes, which means that in the limit of a large sample size their
spectra become singular continuous, which provide many additional Bragg resonances for
feedback, leading to a multicolor laser at arbitrarily chosen frequencies within the gain
bandwidth [21,22].
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The optical modes inside quasicrystals are confined in space but decay weakly rather
than exponentially [23–25], which leads to the crosstalk between modes in the energy
spectra and it is difficult to realize single-mode control. This is commonly referred to as
the “non-resonant” case [4,5,26]. Resonant quasiperiodic multi-quantum-well stacks were
proposed [27–29], which show a shorter emission lifetime and higher photoluminescence
emission intensity than that in non-resonant conditions.

How are resonator properties such as wavelength, number of modes and output
controlled by the quasiperiodicity? Many important concepts that are related to crystals,
such as band structure, Bloch theorem, Brillouin zone, etc., are invalid in quasicrystals.
The optical behavior of 1D optical quasicrystal lattices can be investigated numerically
using the transfer matrix method [26,30–32] and the plane wave method [33]. However,
the numerical solutions are not intuitive.

In this paper, we proposed a resonant Fibonacci-spaced multiple-defect-cavity struc-
tures, which exhibits properties of self-similar optical modes with a series of well-separated
peaks. At the resonant condition, the system is resonant and strongly coupled. When
there is an increase in the generation order, very narrow optical modes would appear
and the Q factor of the resonant modes would increase exponentially with mode splitting.
We developed a general theoretical model of the 1D quasicrystal resonator based on the
coupled mode theory. The mode splitting, number and frequency of the resonant modes
were explained qualitatively by an analytical solution. The theoretical model is completely
consistent with the finite difference time domain (FDTD) simulation. We also demonstrate
the inverse design of 1D Fibonacci-spaced resonators for the desired wavelength and
amplitude of optical modes which can realize the broad color gamut laser display.

2. Theoretical Analysis
2.1. Theoretical Model of 1D Fibonacci-Spaced Defect Resonators

One dimensional resonant Fibonacci quasicrystals systems based on multiple defect
cavities with two different interdefect distances satisfy the Fibonacci-chain rule between
the long and short interdefect distances, as shown in Figure 1. The separations between
the defect cavities are denoted by short(S) and long(L), respectively. The Fibonacci chain
(LSLLSLSL . . . ) follows the construction rule that the next complete sequence is the present
sequence plus the previous sequence, marking the first sequence as S and the second as L.
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Figure 1. Scheme of 1D Fibonacci-spaced defect resonators. The PPV layers are inserted in the period
stacks of SiO2/TiO2 structures, in which the PPV acts as both the defect cavity and the gain medium.

In the defect cavity, light is confined in a small volume, which enhances light–matter
interactions and favors the laser behavior. The high-Q resonance and wavelength size
of defect cavity make it extremely suitable for creating the coupled microcavity arrays.
The widths of the interdefect cavity were determined from the resonant Bragg conditions,
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specifying the constructive interference of the waves reflected from the multiple defect
cavities at the excitonic resonance.

The resonant electric field of each defect microcavity could enter into the other’s
field with a coupling constant κ. Similarly, the amount of the coupling can be defined
by taking the overlap integral of the modes from the electric field as it enters into the
other’s field with a coupling strength. We have developed our theoretical model based
on the coupled-wave theory. When the coupling effect between the cavities is ignored,
there will be one resonant mode in the above system under the resonant condition. The
field amplitude in the microcavity evolves over time as exp(−iωt), therefore, the dynamic
equations for resonance amplitudes can be written as: da

dt = −iωa, where a is the field
amplitude in the microcavity, and ω is the resonant frequency [34]. Let us consider the
cavity mode coupling effect between the cavities, as shown in Figure 1. We ignore the
coupling between the non-adjacent cavities. According to the coupled-wave theory, the
dynamic equations for the nth resonant cavity can be written in the following form [35]:

dan

dt
= −iωnan + iκn−1 nan−1 + iκn+1 nan+1 (1)

where an is the mode amplitude of the nth resonator, κn−1 n and κn+1 n present the coupling
coefficients of the modes n− 1 and n + 1 coupled to the mode n, respectively. The Fourier
transform of an is

an(t) =
∫

An(ω)exp(−iωt)dω (2)

Inserting the value of Equation (2) into Equation (1) and considering all N resonators,
after solving, the coupling equations in the frequency domain for the given system can be
expressed as:

ω1 −ω0 −κ21 0 · · · 0
−κ12 ω2 −ω0 −κ32 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ωN−1 −ω0 −κNN−1
0 0 · · · −κN−1N ωN −ω0




A1
A2
· · ·

AN−1
AN

 = 0 (3)

where A1, A2 · · · AN are the complex amplitude of the N resonant cavities and ω0 is the
unperturbed Bragg frequency. Therefore, the above equations will lead a nonzero solutions
when the determinant of the coefficient of equations DN equals zero. Considering the
coupling coefficient between the two cavities is irrelevant to the direction of coupling. In
the two opposite directions, we suppose κij = κji = κi, DN can be expressed as:

DN =

∣∣∣∣∣∣∣∣∣∣

ω1 −ω0 −κ1 0 · · · 0
−κ1 ω2 −ω0 −κ2 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ωN−1 −ω0 −κN−1
0 0 · · · −κN−1 ωN −ω0

∣∣∣∣∣∣∣∣∣∣
= 0 (4)

According to Equation (4), we construct the coupling matrix as follows:

CN =

∣∣∣∣∣∣∣∣∣∣

0 κ1 0 · · · 0
κ1 0 κ2 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 κN−1
0 0 · · · κN−1 0

∣∣∣∣∣∣∣∣∣∣
(5)

Equation (5) implies that diagonal elements are zero because the mode of the one
cavity is not coupled to itself for the off diagonal elements κij = 0, except j = i± 1, because
coupling between the non-adjacent cavities should not be considered.
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By comparing Equation (4) and Equation (5), we can obtain DN = |(ω−ω0)E− CN |,
where E is the unit matrix. Therefore, ω − ω0 is the eigenvalue of CN . As described
in Equation (5), CN is a real symmetric matrix, (CN)

T = CN . For N we can obtain the
eigenvalue ω1 − ω0, ω2 − ω0 . . . ωN − ω0 from the symmetry of CN . It can be further
proved by the matrix theory that these N eigenvalues are different. (The detailed derivation
process is described in Appendix A). Thus, the cavity coupled modes split into the N
resonance modes.

Based on the well-known matrix theory, we can obtain the resonance frequencies
for the N defect microcavities arranged following the Fibonacci sequence as described in
Figure 1. The coupling coefficients between the cavities with short and long separations
are denoted by κS and κL, respectively. Therefore, Equation (4) can be written as:

DN =

∣∣∣∣∣∣∣∣∣∣

ω1 −ω0 −κL 0 · · · 0
−κL ω2 −ω0 −κS · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ωN−1 −ω0 −κN−1
0 0 · · · −κN−1 ωN −ω0

∣∣∣∣∣∣∣∣∣∣
= 0 (6)

After solving the linear equations, the resonant frequencies can be obtained. DN can
be expressed as the following recursive relation (See Appendix B for detailed derivation).
Note that κN−1 depends on the parity of N.

DN = (ω−ω0)DN−1 − κ2
N−1DN−2 (7)

Once we know both D2 and D3, DN can be extracted step by step using Equation (7).

2.2. Analytical Results and Discussion

We can figure out all the resultant resonant frequencies from the solution of Equation (6)
and some results are described in Table 1.

Table 1. The frequencies of the coupled defect mode for N = 1, 2, 3, 5, respectively.

The Defect Numbers The Frequencies of the Coupled Defect Modes

1 ω = ω0

2 ω = ω0 ± ∆ω = ω0 ± κL

3 ω = ω0, ω = ω0 ± ∆ω = ω0 ±
√

κ2
S + κ2

L

5 ω = ω0, ω = ω0 ± ∆ω = ω0 ± κL, ω = ω0 ± ∆ω = ω0 ±
√

κ2
S + 2κ2

L

We noticed in the analytical solution that the resonant frequencies are distributed
symmetrically about ω0 and can be evaluated from the coupling coefficient κS and κL. If
κS = κL, it is referred to a as periodic defect cavities chain, which has been studied in
our previous work [36]. Similarly, the Fibonacci-spaced defect resonators exhibit unusual
properties, which are very different from those of periodic and random systems, as we
can see in Figure 2a, where we plot the evolution of resonant modes as generation order
increase, which show self-similar properties of typical Cantor sets.

It could be proved by the matrix theory there exist a limit value for the maximum
and minimum resonant frequencies in the above analytical solution. This means that in
a limited spectral region the spectra are highly fragmented. For large generation order, the
line width of the resonant modes decreases dramatically, which results in resonators with
high Q-factors.
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Figure 2. (a) Comparison of resonant frequencies of the Fibonacci-spaced defect resonators obtained
from the theoretical model developed (the red line) and the simulation using FDTD (the black line)
with different generation order for κS = 0.42, κL = 0.27. The results agree well, and the discrepancies
are expected to vanish if the first and last coupling coefficients are modified due to external losses.
(b) Q factor increases exponentially with mode splitting.

Due to their highly fragmented frequency spectra, a Fibonacci-spaced chain of defect
cavities offers more resonant frequencies than periodic ones in a given frequency range
for a given system length, which provides a higher degree of design and tuning flexibility.
The analytical solution of the proposed theoretical model can be used to customize high
performance microcavity resonators and it can be made via inverse design. The theoretical
mode can also be extended to predict the characteristics of 2D quasiperiodic structures.

3. Simulation and Validation

To validate the theoretical analysis, we compare the theoretical results to the FDTD
simulations. In the simulation, the refractive indices of SiO2 and TiO2 were chosen as
1.54 and 2.5, respectively, which were measured by a spectroscopic ellipsometer (ESNano,
Ellitop). The thickness of the SiO2/TiO2 layer was 90/70 nm. The refractive index and the
thickness of the MDMO-PPV (defect/gain layer) were about 1.67 and 94 nm, respectively.
The important parameters were optimized by FDTD, so that the photonic band gap over-
lapped almost completely with the emission spectrum of MEMO-PPV, and the unperturbed
defect mode frequency is exactly at the center of band-gap of the 1D photonic structure.

We found an excellent agreement in the resonant frequencies by comparing the results
of the analytical model based on the coupling mode effect with FDTD simulation, as shown
in Figure 2a. The deviations between the theory and the simulation are from the coupling
of two cavities on both sides to the outside world. We expect this discrepancy vanish if the
external losses are modified in the first and last coupling coefficients.

It can be observed from Figure 2a that every mode of any hierarchy will split into
submodes to form the Cantor spectrum. In the third hierarchy there are three modes: the
mode on the both sides will further split into submode for the global structure, and the
middle mode will also split in the same manner for next stage. Thus, it turns out that the
Fibonacci-spaced defect resonators have a perfect self-similar spectrum. The Q factor of
the resonant modes would increase exponentially with the appearance of narrower optical
modes, as shown in Figure 2b. Considering only the resonant modes in the center of the
band, the Q value increases from 480 for N = 1 to 23,960 for N = 13, where the size of the
device increases from 1.694 to 5.862 µm.
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4. Inverse Design of Laser Resonators Based on the Fibonacci-Spaced Defect Resonators

Some features of the regular quasicrystals are not required for the operation of mi-
crocavity lasers. According to the analytical model, the regular quasicrystals can be
modified to be an ideal resonator for microcavity lasers. For example, the mode splitting
provides a simple, flexible and versatile approach for the design of high performance
resonators [36–40]. It would allow us to engineer the behavior of the cavity mode simply
by tailoring the separation and size of the defects. Here, the ratio α = L

S is arbitrary. For
L = S the structure becomes periodic and for τ equal to the golden mean 1.618, it becomes
the canonical Fibonacci chain [41]. The simulation results show that ∆ω, which refers to
frequency detuning from ω0 due to coupling, decreases exponentially with increasing the
ratio α, as shown in Figure 3.
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According the relation between ∆ω and α and the analytical solutions mentioned
above, we can optimize 1D quasicrystal resonators to obtain target optical modes at
arbitrary positions in a broad spectral range.

In this section, we have studied inverse design of the 1D quasicrystals resonators to
obtain desired laser emission, as shown in Figure 4. By adjusting the separation of the
defects in above model, the optical modes can be fine-tuned across a broad-spectrum range,
as shown in Figure 4a. Organic polymers have broad emission spectrum, which demon-
strates excellent features in flexible spectrum modulation. It has been reported [42,43] that
the intensity of the band-gap modes can be adjusted by controlling the phase shift of both
reflecting facets. In Figure 4b, we have demonstrated the effect on the intensity of optical
modes in the band-gap by changing the number of boundary layers. Based on the analytic
model, the number of optical modes can be predicted, which corresponds to the number of
defects, as shown in Figure 4c. The wavelength and intensity of the output emissions are
calculated as points located in the CIE chromaticity diagram in Figure 4d. Thus, the CIE
chromaticity demonstrates the output of the laser with broad color gamut.

Note that there is a slight difference between the resonant frequency of Fibonacci-
spaced defect resonators obtained from the theoretical model and that obtained from FDTD,
especially for high generation orders. It can be attributed to the fact that the coupling
between non-adjacent cavities is not considered in the proposed method. Even so, the
developed analytical model can be extended to a more general case of aperiodic plasmonic
systems, which provides a simple and efficient route towards designing real systems with
flexible, multispectral optical responses. It opens a new avenue in the quest for high
performance optical devices.
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5. Conclusions

In conclusion, we have presented 1D quasicrystal resonators which exhibit progressive
fragmentation of the frequency spectrum as generation order increases and gives rise to
quasicontinuous but well-defined optical modes in the limit of large sample size. The
analytical solution of the proposed theoretical model provides precise control on single-
or multifrequency across a broad spectral range, which can be used in the polymer laser-
based display with broad color gamut and also can meet the operating requirements of
high-resolution spectroscopy.
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Appendix A

In the first step, keeping in view the concept of matrix theory, if CN is a real symmetric
matrix, it can be deduced that CN has N real eigenvalues. In the second step, if we
have DN = (ω − ω0)E − CN =

(
dij
)
, then the cofactor of dN1 can be arranged in the

following form:∣∣∣∣∣∣∣∣∣∣

−κ1 0 · · · 0 0
ω−ω0 −κ2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · −κN−2 0
0 0 · · · ω−ω0 −κN−1

∣∣∣∣∣∣∣∣∣∣
N−1

= (−1)N−1κ1κ2 · · · κN−1 6= 0 (A1)

Thus, the rank of DN is greater than or equal to 1, that is R(DN) ≥ N − 1. On the
other hand, R(DN) ≤ N − 1 because ω − ω0 is the eigenvalue of CN . Therefore, we can
obtain R(DN) = N − 1 for any eigenvalue of CN . From R(DN) = N − 1, we can derive
that N real eigenvalues of CN are different. In summary, it can be concluded that CN has N
different real eigenvalues.

Appendix B

DN is the determinant of tridiagonal matrix in Equation (6). It can be written as:

DN =

∣∣∣∣∣∣∣∣∣∣

ω−ω0 −κL 0 · · · 0
−κL ω−ω0 −κS · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ω−ω0 −κN−1
0 0 · · · −κN−1 ω−ω0

∣∣∣∣∣∣∣∣∣∣
=

(ω−ω0)

∣∣∣∣∣∣∣∣∣∣

ω−ω0 −κL 0 · · · 0
−κL ω−ω0 −κS · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ω−ω0 −κN−2
0 0 · · · −κN−2 ω−ω0

∣∣∣∣∣∣∣∣∣∣
N−1

−κ2
N−1

∣∣∣∣∣∣∣∣∣∣

ω−ω0 −κL 0 · · · 0
−κL ω−ω0 −κS · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · ω−ω0 −κN−3
0 0 · · · −κN−3 ω−ω0

∣∣∣∣∣∣∣∣∣∣
N−2

(A2)

Thus, from Equation (A2), DN can be expressed as the following recursive relation:

DN = (ω−ω0)DN−1 − κ2
N−1DN−2

where DN−1 and DN−2 are the determinant of the bottom-right (N − 1)× (N − 1) and
(N − 2)× (N − 2) submatrix of DN respectively.
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