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Abstract: Optical parametric oscillation can convert the input laser into a couple of coherent optical
output with signal and idler frequencies. It is an important method for the realization of the
broadband middle infrared tunable lasers. The optical parametric oscillation process depends on the
ultra-fast non-linear response of matter to light with a certain pump power. Therefore, reducing the
pump threshold of the optical parametric oscillation process and improving the energy conversion
efficiency are of great significance to the study of non-linear optics. In this paper, we construct a dimer
system that couples a passive non-linear resonator to an active resonator. Based on the dimer system,
an ultra-low threshold optical parametric oscillation generation method is proposed. By coupling
the gain pump mode, the non-linear effect is effectively enhanced, the pump power threshold is
reduced to half of when there is no gain, and the energy conversion efficiency is increased. We believe
this research provides a feasible method for a low-threshold tunable and easy-to-integrate optical
parametric oscillation laser source.

Keywords: optical parametric oscillation; optical dimer; threshold

1. Introduction

The optical parametric oscillator converts the input pump laser light into two output
lights with lower frequency (usually called signal light and idler light) through the second-
order nonlinear optical interaction. Specifically, the optical parametric oscillations (OPO)
describes the non-linear process that occurs when the pump light passes through the
χ(2) material in the optical resonator, which converts a pump photon with frequency ωp
into a signal photon with frequency ωs and an idler photon with frequency ωi under the
phase matching conditions [1–6]. In the field of quantum optics and quantum information
science, the OPOs are often used as the coherent light source to generate the optical
squeezed states [7], entangled photon pairs [8–12], or the correlated optical network [13].

Similarly to other non-linear optical effects, the OPOs process also has a power
threshold due to the optical loss and modal phase matching condition of the materials [14].
For example, OPO thresholds have been observed in bulk lithium niobate whispering
gallery resonators with 6 µW [15], milliwatt-level OPOs thresholds have been observed in
the planar periodically polarized Ti:LiNbO3 waveguide [16]. Additionally, the thresholds
of OPOs were observed in GaAs [17] and GaAs/AlGaAs [18] ridge waveguides are of 5.7 W
and 210 mW, respectively. In order to improve the performance of the OPOs, the method by
reducing the optical loss of the material is always considered as an important and efficient
way. Relying on the specific optical device with low optical loss and field enhancement,
such as the optical microcavities, the threshold of the optical non-linear effects could be
improved [19,20]. Here in this study, we intend to propose a novel platform based on the
whispering gallery mode (WGM) optical microcavities to show the better performance of
OPOs. The WGM optical microcavity describes the optical dielectric resonator under the
rotational symmetry which is the optical analogue of whispering gallery in acoustics [21].
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Due to the special structure, the optical field could be totally reflected by the inner surface
and the WGM microcavity usually shows a high quality factor, as the fields are resonantly
enhanced in it. Recently, the studies of optical microcavities with ultra-high quality factor
have been made remarkable progress in the field of light-matter interaction [22,23]. Due
to the ultra-high quality factor and a small mode volume, it can greatly enhance the non-
linear interaction. During the past few decades, various studies have been made based on
WGM microcavities in the field of non-linear effects, such as the second harmonics [24–26],
the OPOs [15,27], the photon blockade [28–30], and optical frequency combs [31,32].

In addition, the photonic molecule structure could be realized by coupling the two
WGM microcavities [33]. Moreover, if we choose an active microcavity with optical gain
provided to a dissipative microcavity, by properly choosing the optical gain and loss,
the optical dimer with parity-time (PT) symmetry could be obtained [34,35]. Employing
the parity-time symmetry, the low threshold PT-symmetric lasers could be realized [36–40].
Additionally, in the field of non-linear optics, the low optical loss may significantly enhance
the non-linear effect and improve the performances of high-order sideband generation [41]
and the second harmonic generation [42]. As the field distribution in the PT-symmetric
structure is sensitive to the environment, it can also be used as the ultra-sensitive detector
for nanoparticles [43–46].

Here in this paper, we propose a dimer system in which a passive WGM resonator
made by the material with second-order non-linear coefficient χ(2) is coupled with an active
resonator with optical gains. The system works in the OPOs regime by a visible light pump-
ing to produce infrared signal and idler photon pairs. The OPOs process is theoretically
studied, the threshold power and the spectrum are both obtained numerically. We find
that by tuning the coupling strength between the resonators, due to the energy exchange
between the gain cavity and the dissipative cavity, the pump power threshold can be
effectively reduced and the energy conversion efficiency can be increased. Compared with
previous results, our research has greatly improved the non-linear conversion efficiency.

2. The Theoretical Model

The model for optical parametric oscillation generation is a dimer configuration of
coupled passive-active microresonators, as shown in Figure 1. The second-order non-
linearity in the optical passive (loss) resonator is denoted as χ(2), a visible pump laser
(represented by â) at an angular frequency ωa pumps the microresonator. We consider the
degenerate OPOs process which produces a degenerate signal photon pair (represented by
b̂) with frequency ωb = ωa/2, and this process satisfies the energy-conservation and phase
matching condition. Here, the coupling strength between the pump photon and signal
photon under the second-order non-linearity is denoted by g. Meanwhile, an additional
single-mode active micro-resonator (denoted as mode ĉ, with frequency ωc ' ωa) is used to
evanescently coupled to the pump mode â of the passive micro-resonator via their spectral
mode overlap, with the coupling strength J.

The system with the pump laser driving under the frequency ωp ' ωa can be de-
scribed by the Hamiltonian:

Ĥ = Ĥ0 + Ĥab + Ĥac + Ĥd. (1)

Here, Ĥ0 is the energy of the total three cavity modes without considering the coupling
between modes, it can be expressed as

Ĥ0 = h̄ωa â† â + h̄ωb b̂† b̂ + h̄ωc ĉ† ĉ, (2)

where â†(â), b̂†(b̂), and ĉ†(ĉ) are the bosonic creation (annihilation) operators of the pump,
signal, and active optical modes, respectively.
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Figure 1. Schematic of a dimer with two active-passive micro-resonators to enhance the OPOs
process. An optical passive (loss) micro-resonator with the second-order non-linearity χ(2) (the red
one), which has an input pump mode (frequency ωa) and a signal mode (frequency ωb ' ωa/2)
generated by the pump laser through the optical parametric oscillation process. Meanwhile, the pump
laser in the passive micro-resonator is coupled into the active micro-resonator (the blue one) with
coupling strength J. The pump laser (ωp ' ωa) drives the passive micro-resonator through the two
fiber tapers.

And Ĥab represents the interaction between the pump photon and the signal photons
in the lossy micro-resonator which can be expressed as

Ĥab = h̄g(â† b̂2 + â(b̂†)2), (3)

where g is the coupling strength between mode â and b̂ due to the non-linearity χ(2) which
can be expressed as:

g =
h̄ω3

aχ(2)2

8πε0Rn6
e f f

ζ2, (4)

where ne f f is the refractive index of the phase-matched pump and signal modes, χ(2) is the
intensity of second-order non-linear coefficient of the materials, ε0 is vacuum permittivity,
and R is the radius of the passive micro-resonator. ζ denotes the effective mode overlap
factor on the cross-section of the micro-resonator.

The third item Ĥac describes the mutual coupling between the pump photons in
the passive micro-resonator and the single mode photons of the active micro-resonator,
in the form

Ĥac = h̄J(â† ĉ + âĉ†), (5)

where J represents the coupling strength which can be controlled by tuning the distance
between the two micro-resonators.

Finally, the last item Ĥd = h̄√κa,1(εp â†e−iωpt + ε∗p âeiωpt) describes the external driving
field, in which the pump frequency ωp, the pump amplitude εp, and the pump power Pp

satisfy the relationship εp =
√

Pp/(h̄ωa). The loss of the micro-resonator can be described
by κa(b,c) = κ(a(b,c),0) + κ(a(b,c),1), κ(a(b,c),0) represents the inherent dissipation of the micro-
resonator and κ(a(b,c),1) represents the coupling dissipation between the micro-resonator
and the fiber taper, in which κ(a(b),0) > 0 for the lossy cavity and κ(c,0) < 0 for the gain
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cavity. By applying the unitary evolution operation Û(t) = exp[−iωp(2â† â + b̂† b̂ + ĉ† ĉ)t]
and regarding h̄ as 1, the total Hamiltonian of the system becomes

Ĥrot = δa â† â + δb b̂† b̂ + δc ĉ† ĉ + g[â(b̂†)2 + â†(b̂)2]

+J(â† ĉ + âĉ†) +
√

κa,1(εp â† + ε∗p â). (6)

where δa = ωa −ωp, δb = ωb − 2ωp, and δc = ωc −ωp represents the frequency detunings
of the input modes, signal modes, and active cavity modes from the pump laser, respec-
tively. By considering the addition of dissipation and neglecting the quantum noise term,
the dynamics of the bosonic operators can be expressed as:

d
dt

a = (−iδa − κa)a− igb2 − i Jc− iεp , (7)

d
dt

b = (−iδb − κb)b− 2igab∗ , (8)

d
dt

c = (−iδc − κc)c− i Ja , (9)

where κa, κb, and κc are the decay rates of the input modes, signal modes, and active cavity
modes, respectively. Under the non-depletion and omit the weaker signal modes effects
terms, we solve the equations under the steady-state approximations as

c =
i Ja

−iδc − κc
, (10)

a = α =
−iδc − κc

(−iδc − κc)(−iδa − κa) + J2

√
2κa,1Pp

h̄ωp
. (11)

Then, the dynamics of b can be expressed as

d
dt

b = (−iδb − κb)b− 2igαb∗ − i
√

2κbbin , (12)

d
dt

b∗ = (iδb − κb)b− 2igαb + i
√

2κbb∗in , (13)

where bin describes the vacuum noise. By performing the Fourier transformation, the oper-
ators in time domain can be transformed into the frequency domain as

d
dt

b(ω) =
i
√

2κb[−i(δb −ω)− κb]bin(ω) + 2gα
√

2κbb∗(−ω)

[−i(δb + ω)− κb][i(δb −ω)− κb]− 4g2α2 , (14)

d
dt

b∗(ω) =
i
√

2κb[−i(δb −ω)− κb]b∗in(ω) + 2gα
√

2κbb(−ω)

[−i(δb −ω)− κb][i(δb + ω)− κb]− 4g2α2 . (15)

As the spectrum density around mode b satisfies Sb(ω, ω′) = 2κb,1
〈
b†(ω)b(ω′)

〉
, we

finally obtain:

Sb(ω, ω′) =
1

2π
· 2κb,1

· 2gα
√

2κa

[−i(δb −ω)− κb][i(δb + ω)− κb]− 4g2α2

· 2gα
√

2κa

[−i(δb + ω′)− κb][i(δb + ω′)− κb]− 4g2α2 . (16)
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We choose the condition where the input pump power falls below the threshold of
the OPOs: (δ2

b + κ2
b) � 4g2α. By neglecting the 4g2α term in the denominator, the signal

spectrum density Sb(ω) becomes

Sb(ω) '
κb,1(2gα

√
2κb)

2

π{[−i(δb −ω)− κb][i(δb + ω)− κb]}2 . (17)

and the total generation rate of the signal photons could be expressed as:

R =
∫

dωSb(ω)

=
4g2κb

δ2
b + κ2

b

2κa,1Pa

h̄ωp
[

iδc + κc

(iδc + κc)(iδa + κa) + J2 ]
2 . (18)

The pump threshold for OPOs satisfies the relation that the signal photon generation
rate is larger than the loss of the signal mode, so the pump threshold could be expressed as

Pth =
h̄ωa(δ2

b + κ2
b)[(iδc + κc)(iδa + κa) + J2]2

8g2κa,1κ2
c

. (19)

When the system meets the resonant condition as (δa(b,c) = 0), we have

Pth =
(κaκb + κb J2/κc)2

8κa,1g2 h̄ωa . (20)

Meanwhile, according to Equations (8) and (9), we can obtain

b =
2igab∗

−iδb − κb
, (21)

a =
−iδb − κb

2ig
e2iθ . (22)

By substituting the Equations (21) and (22) into Equation (9), under resonance condi-
tions (δa(b,c) = 0) we can get

|b|2 =

√
2κa,1ain

g
− κb J2 + κaκbκc

2g2κc
. (23)

If we define the single-photon cooperativity as

1
C0

=
κb J2/κc + κaκb

2g2 =
4κa,1Pth

h̄ωa(κb J2/κc + κaκb)
. (24)

Then, Equation (23) can be re-written as

|b|2 =
1

C0

(√
Pp

Pth
− 1

)
. (25)

Therefore, the power of the signal photons could be solved as:

Ps = 2κb,1h̄ωb|b|2 =
2κb,1h̄ωb

C0

(√
Pp

Pth
− 1

)

=
4κa,1κb,1

κb(J2/κc + κa)
(
√

PpPth − Pth) . (26)
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3. Results and Discussion for Enhanced Opos

OPOs has been experimentally studied in various materials, such as in periodically po-
larized lithium niobate waveguide (PPLN) [15], aluminum nitride (AlN) microcavities [27],
and photonic crystals. For example, in Reference [27], a dual-resonant phase-matched
AlN micro-ring resonator is used to demonstrate low-threshold parametric oscillations in
the telecom infrared band, where the χ(2) non-linearity and the coupling strength (g) of
dual-band can be precisely controlled by nano-manufacturing technology.

According to the results in the previous studies, the dissipation of the pump mode
is often larger than that of the signal light mode. Therefore, we assist an active micro-
resonator in the system to increase the pump mode in the passive micro-resonator through
the optical field coupling, to improve the performance of non-linear effects. Here we choose
the parameters in our numerical simulation as, the non-linear coupling strength g produced
by the χ(2) non-linearity is g/2π = 80 kHz refers to the parameters obtained from the
experiment in Reference [27], the pump laser mode wavelength is λa = 780 nm, the signal
mode wavelength generated by the optical parameter oscillation process is λb = 1560 nm,
the intrinsic optical factors Q0 of the pump mode and the signal mode are 1.0 × 105

and 2.0× 105, respectively. The total quality factor Q of the pump mode and the signal
mode are 2.0× 105 and 4.0× 105 (corresponding to the total loss rate κa/2π = 1.92 GHz,
κb/2π = 480 MHz, the coupling loss rate κa,1/2π = 960 MHz, κb,1/2π = 240 MHz).

The material of the passive micro-resonator is AlN [27]. The active micro-resonator
can use a thulium ion (or zirconium) doped silica resonator, and can be excited by a pump
laser doped with rare earth ions to generate a gain mode, based on a micro-resonator made
of Ti : Al2O3, or a tunable droplet micro-resonator based on electro-wetting [47–51]. Here
we set the coupling strength as J/2π = 0.8 GHz, which can be controlled by tuning the
gap distance between two micro-resonators [52]. The phase matching between the input
mode a and the signal mode b in the micro-resonator can be controlled by the width of the
micro-resonator roughly meet the phase matching, and fine-tuned by thermal tuning [27].
Besides, the gain modes of the active micro-resonator is to detune the signal modes of the
passive micro-resonator.

To show the influence of the active (gain) micro-resonator on the OPOs process of
the system. We first study the relationship between the coupling strength J and the pump
power threshold (Pth) of OPO, based on Equation (20), and the result is shown in Figure 2.

Obviously, when J = 0, it is the original system without gain. Mathematically,
the Equation (20) will also become the form of the OPOs pump power threshold in Refer-
ence [27], and the pump power threshold of the system without gain is about 26.3 mW.
After the active cavity is coupled with the coupling strength J = 800 MHz and the gain
mode κc = −1 GHz, the pump power threshold is reduced to about 11.7 mW. We found
that the introduction of gain significantly reduced the OPOs threshold. In Figure 2, we find
that as the coupling strength (J) increases, the pump power threshold for OPOs decreases
significantly. This can be understood as the gain of the active (gain) cavity coupled to
the passive (dissipative) cavity compensates for part of the dissipation and enhances the
χ(2) non-linear process. When we choose a larger coupling strength J, that is, by reducing
the coupling distance between the two micro-resonators, we can reduce the pump power
threshold for OPOs generation reduced to half of when there is no gain.
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Figure 2. The pump threshold (Pth) of the optical parametric oscillation as a function of the coupling
strength (J) between the micro-resonators, and the parameter are chosen to be δa/2π = 0, δb/2π = 0,
δc/2π = 0, κa = 1.92 GHz, κb = 480 MHz, κa,1 = 960 MHz, and g = 80 kHz. The dark blue line, blue
line, and light blue line represent the gain rate of mode c is κc = −1.2,−1,−0.8 GHz, respectively.
The red line represents the dissipation rate of mode c is κc = 1 GHz.
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Figure 3. (a) Energy conversion efficiency η as a function of pump power Pp. The parameter J = 800 MHz. The dotted line
is the maximum energy conversion efficiency η = 37%, which is located at Pp = 4Pth. (b) Energy conversion efficiency η as
a function of the coupling strength J. The pump power is at Pp = 4Pth. The other parameters in (a,b) are the same as in
Figure 2.

By calculation of the signal light power, we found in Equation (26) that in order to
generate the signal light more effectively, it is not required to increase the power of the
pump source. In order to study the relationship between coupling strength and energy
conversion efficiency in the OPOs process, we introduce energy conversion efficiency as

η =
Ps

Pp
=

4κa,1κb,1

κb(J2/κc + κa)
(
√

Pth/Pp − Pth/Pp) . (27)

We present the relationship between energy efficiency and pump power, which is
shown in Figure 3a.
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We find that energy conversion efficiency η is related to the pump power Pp, the mode
dissipation rate (κa(b,c), κa,1(b,1)), and the coupling strength J. Different from the second
harmonic generation process by increasing the pump power to increase the energy con-
version efficiency (J = 0, η = 25% corresponding to Figure 3b when there is no coupling),
when the pump power 4P = Pth, we can obtain the maximal energy conversion efficiency
η = 37% which is much higher than the case of no gain cavity. From Equation (27), we find
that it is very effective to increase energy conversion efficiency by increasing κa(b),1 and
the coupling strength J. This is of great significance to our modulate system. For example,
over-coupling will not only increase the energy conversion efficiency but also increase
the pump power threshold. Meanwhile, we can increase the energy conversion efficiency
by increasing the coupling strength between the resonators and reduce the pump power
threshold. As shown in Figure 3b, we can change the energy efficiency η by tuning the
gap distance between the micro-resonators. The reason is that as the coupling strength
between the resonators increases, the gain cavity compensates for the loss of mode a of
the dissipative cavity. The coupling gain of the pump light field enhances the non-linear
process in the dissipative cavity and improves the energy conversion efficiency of the
OPOs process.

Here we only consider the case that the system is under the resonant condition in
the above, and we did not consider the impact of the detuning between the pump power
and modes a, b, and c on the pump power threshold. In the following, we will discuss
the impact of detuning on the pump power for the system to produce the OPOs process.
Equation (19) is used to calculate the pump power threshold changes in the presence of
various detunings, as shown in Figure 4.
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Figure 4. (a) Contour plot of power threshold as a function of the detuning δa between the input mode a and pump field,
as well as the detuning δb between the signal mode b and the pump field, δa = ωa − ωp, δb = ωb − 2ωp, and δc = 0.
(b) Contour plot of power threshold as a function of the detuning δc between the gain mode c and the pump field as
well as the detuning δa, δc = ωc − ωp, and δb = 0. Other parameters are κa = 1.92 GHz, κb = 480 MHz, κc = −1 GHz,
κa,1 = 960 MHz, and g = 80 kHz.

We find that the pump power threshold increases with the detuning, regardless of
the detuning direction. This is because the interaction induced by the second-order non-
linearity is weakened in the non-resonant case, and the non-resonant coupling with the
gain cavity prevents the decrease in the optical field intensity in the loss cavity. These will
inhibit the generation of the optical parametric oscillation process and increase the pump
threshold. Therefore, in order to obtain a lower pump power threshold, it is required to
put the system in resonance as much as possible.
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4. Summary

In summary, we proposed a dimer system consists of a passive (dissipative) micro-
resonator with χ(2) non-linearity coupled with an active (gain) micro-resonator, in which
the optical parametric oscillation is theoretically studied. By tuning the coupling strength
between resonators, the pump power threshold that generates the OPOs process could
be reduced and its energy conversion efficiency could be improved. Within the range
of adjustable coupling strength, we can reduce the pump power threshold to half of the
power without gain and increase its energy conversion efficiency to 37%. This work
has adopted feasible technologies which greatly improve the performance of the single
resonator to generate the OPOs, and it also provides a feasible way for the development of
high efficiency and low threshold tunable OPOs laser source.
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