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Abstract: Adding rare earth elements to magnesium alloys is an effective way to improve their
wear resistance. However, the effect achieved is closely related to the friction condition. In this
paper, two different types of welding wires, AZ91 magnesium alloy and AZ91 + gadolinium (Gd),
were used for surface welding. Dry sliding friction and wear experiments were performed on the
surfacing alloys using the pin-on-disc test. The effects of Gd addition on the wear resistance and
wear mechanism of the alloy were systematically studied under low to high loads. The results show
that as the load increases, the friction coefficient of the surfacing AZ91 alloy gradually decreases as
the wear rate increases. A mild–severe wear transition occurred at 100 N. The addition of Gd only
slightly increased the wear rate under a load of 15 N. The wear rate was significantly decreased with
loads in the range of 30 to 100 N and mild–severe wear transition was avoided. The influence of both
Gd addition and load on the wear mechanism were considered. The overall wear resistance of the
surfacing magnesium alloy was determined.

Keywords: surface welding; wear behavior; magnesium alloy; AZ91; gadolinium

1. Introduction

Magnesium alloys offer several advantages associated with their low density, high
specific strength, and high damping capacities. In addition to their use as lightweight
construction materials, magnesium alloys have been widely used in aerospace, digital
communications, and other industries [1]. During operation, local damage such as wear
and scratches will inevitably occur on the surface of structural parts or components. If wear
is not managed in a timely manner, local damage accumulation can lead to failure of the
whole structure. Replacing damaged parts is costly in terms of both energy and resources.
As a traditional surface cladding technology, surface welding can be used to effectively and
rapidly repair local damage on the surface of magnesium alloy structures. This can signifi-
cantly reduce maintenance costs, conserve material resources, and strengthen the surface of
the material [2–4]. Owing to their flexibility, simple operation, and high efficiency, surface
welding technologies are highly valuable in certain applications. For example, fast repair of
weapons and equipment on the battlefield and rapid prototyping of parts or components
for urgent repair work. Local properties of welded parts have an important influence on
the overall properties of equipment. Nonetheless, very little research has been carried
out on the friction and wear behavior of surface-welded magnesium alloys. Wear is an
important failure mechanism that can seriously affect the service life of magnesium alloys
and other metals. This is particularly relevant for those used in tribological applications,
such as artificial joints, gears, and pistons, and limits their potential range of application [5].
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In recent years, the tribological behavior of magnesium alloys has gradually become a hot
topic of research [6–8]. The addition of rare earth (RE) elements can significantly improve
the friction and wear properties of magnesium and its alloys [9,10]. In most cases, RE
elements improve the wear resistance of magnesium alloys. However, the approach is
not suitable for all tribological applications. For example, Meshinchi et al. [11] found that
under low loads, the wear rate of RE-containing magnesium alloy was slightly higher than
the wear rate of the undoped alloy. Zafari et al. [12] compared the wear resistance of as-cast
AZ91 magnesium alloy and AZ91 + 3 wt% RE at different temperatures. The addition of RE
elements had a negative impact on the wear resistance of the magnesium alloy under a load
of 20 N and temperatures of less than 100 ◦C. A similar phenomenon was observed with
cerium-doped AZ91 alloy [13]. However, reduced wear resistance typically causes only
slight wear and the mass loss generated by this additional wear is also small. Therefore, this
phenomenon is often regarded as experimental error and ignored. Nonetheless, the effects
of RE elements on the tribological behavior and wear mechanism of magnesium alloys
under various tribological conditions should be systematically and thoroughly explored.
In this study, the RE element gadolinium (Gd) was added to traditional AZ91 magnesium
alloy welding wire and used for surface welding of AZ91. The effects of normal loading
and Gd addition on the dry sliding friction and wear properties of the surface welded
magnesium alloy were studied. In addition, the subsurface deformation behavior induced
by friction and mechanisms of influence on wear resistance were analyzed. This study
has direct applications in the field of surface repair and modification of magnesium alloy
components. The results also contribute to our understanding of the wear mechanism of
magnesium alloys. Furthermore, this work provides some theoretical basis for the design
and development of new wear-resistant magnesium alloys.

2. Materials and Methods

A schematic illustration of the surface welding process is presented in Figure 1a.
Magnesium alloy wire with a diameter of 3 mm was used as the filler material, which was
prepared by ingot casting, extrusion, and drawing. As-cast magnesium alloy sheets with a
thickness of 10 mm were used as the welding base. Chemical compositions of the welding
wire and the welding substrate are summarized in Table 1. To remove impurities and the
oxide layer on the surface of the welding wire and the welding substrate, the surfaces
were mechanically polished then cleaned with an organic solvent. Surface welding of the
magnesium alloy sheet surface was performed using tungsten inert gas welding (Invertec
V160-T, Lincoln Electric Company, Cleveland, The United States). The welding voltage
was 15 V and the welding current was 130 A. The shielding gas was argon (99.99% purity)
with a flow rate of 16 L/min. After surfacing, the size of the sample was approximately
ϕ = 20 mm × 30 mm. Linear cutting was used to produce surface-welded samples and
the samples were mechanically polished along the longitudinal plane. Then, the polished
surfaces were corroded with mixed acid (5 g picric acid, 5 mL acetic acid, 12 mL water,
and 80 mL alcohol). The microstructures of the samples were observed using optical mi-
croscopy (OM; DMI5000M, Leica Microsystems, Weitzlar, Germany) and scanning electron
microscopy (SEM; SSX-550, Shimadzu, Kyoto, Japan) with energy dispersive spectroscopy
(EDS). The phase compositions of surface-welded alloys with various concentrations of
Gd were analyzed by X-ray diffractometry (XRD; Empyrean, PANalytical, Alemlo, Nether-
lands). The accelerating voltage was 40 kV and the current was 40 mA. The XRD data
were fitted and quantitatively analyzed using the Rietveld method to calculate the volume
percentage of each phase [14,15]. Hardness of samples were tested using a macro hardness
tester (452 SVD, Wolpert, Norwood, the United States). Each sample was tested five times
and the average was taken as the final hardness.
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Figure 1. Schematic diagrams of (a) surface welding process and (b) sampling location.

Table 1. Chemical composition of welding wires and basic metal (wt%).

Alloy Al Zn Mn Gd Fe Si Ni Cu Mg

AZ91 9.30 0.82 0.64 — 0.0051 0.0140 0.0057 ≤0.0020 Bal.
AZ91 + 0.5Gd 9.28 0.79 0.21 0.56 0.0018 0.0980 0.0050 ≤0.0020 Bal.

Welding substrate 8.95 0.71 0.33 — 0.0169 0.0107 0.0051 ≤0.0020 Bal.

The friction and wear experiments were carried out on a vertical universal friction and
wear testing machine (MMU-5G, Shandong Baohang Machine Equipment Manufacturing
Co., Ltd., Jinan, China), as shown in Figure 2a. The load ranged from 15–120 N and the
sliding speed was 0.75 m/s. The sliding distance was 1.5 km and the ambient temperature
was 25 ◦C. The pin-on-disc test was conducted with a ϕ = 4 mm × 12.8 mm friction pin.
The paired disc was made of ASTM1045 steel with about 45 HRC. To avoid the influence of
uneven microstructural distribution of the samples on the experimental results, the friction
pins were cut from the center of the samples (Figure 1b). The detailed shape parameters of
the disc and wear pin are shown in Figure 2b. To ensure dimensional accuracy, the pins and
disks were machined using a high-precision vertical computer numerical control (CNC)
milling machine (VMC850B; Yunnan CY Group Co., Ltd., Kunming, China). To ensure
full contact between the pin and the disc, the same parameters were used to pre-grind
the surface of the samples for 1 min before the test. At the end of the test, the mass of
the friction pin was measured using an electronic analytical balance (FA2104, SOPTOP,
Shanghai, China). The average of three measurements of each sample was taken as the
final weight. The ratio of mass loss to density of the magnesium alloy was used to calculate
the wear volume. In addition, the wear rate per unit distance was calculated by dividing
the wear volume by the sliding distance (mm3/m). After the experiment, the morphologies
of the wear surface and debris were observed using SEM and the wear mechanism was
analyzed. The friction pin was cut parallel to the sliding direction and the microstructure
of the subsurface layer was observed using OM. Friction-induced deformation of the
subsurface layer of the alloy was analyzed.
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Figure 2. Schematic representation of experimental setup: (a) pin-on-disc configuration, (b) surface
topography parameters of disc and pin surfaces.

3. Results
3.1. Microstructure of Surfacing Magnesium Alloy

The microstructures of surfacing AZ91 magnesium alloys with and without Gd are
shown in Figure 3. Figure 3a,c show that the microstructure of the surfacing AZ91 alloy
is composed of α-Mg matrix and coarse net-like β-Mg17Al12 phase, which precipitate
in the form of a divorced eutectic structure at grain boundaries. A small amount of α-
Mg can be observed in the pores of the β-phase. A large quantity of lamellar eutectic
structures with alternating α-Mg and β-Mg17Al12 adhere to the edges of the β-phase.
Optical microstructures of the alloy with 0.5% Gd are shown in Figure 3b, respectively.
With the addition of Gd, the amount of β phase decreases significantly and separates from
the network to form irregular strips and blocks. The SEM (Figure 3d) and EDS (Figure 4)
results show that the Gd is mainly distributed throughout the magnesium matrix in the
form of fine spherical Al–Gd phases with a diameter of approximately 1 µm.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Schematic representation of experimental setup: (a) pin-on-disc configuration, (b) surface 
topography parameters of disc and pin surfaces. 

3. Results 
3.1. Microstructure of Surfacing Magnesium Alloy 

The microstructures of surfacing AZ91 magnesium alloys with and without Gd are 
shown in Figure 3. Figure 3a,c show that the microstructure of the surfacing AZ91 alloy is 
composed of α-Mg matrix and coarse net-like β-Mg17Al12 phase, which precipitate in the 
form of a divorced eutectic structure at grain boundaries. A small amount of α-Mg can be 
observed in the pores of the β-phase. A large quantity of lamellar eutectic structures with 
alternating α-Mg and β-Mg17Al12 adhere to the edges of the β-phase. Optical microstruc-
tures of the alloy with 0.5% Gd are shown in Figure 3b, respectively. With the addition of 
Gd, the amount of β phase decreases significantly and separates from the network to form 
irregular strips and blocks. The SEM (Figure 3d) and EDS (Figure 4) results show that the 
Gd is mainly distributed throughout the magnesium matrix in the form of fine spherical 
Al–Gd phases with a diameter of approximately 1 μm. 

 
Figure 3. Microstructures of surfacing magnesium alloys: (a,c) AZ91 alloy, (b,d) AZ91 + 0.5 Gd 
alloy. 

Figure 3. Microstructures of surfacing magnesium alloys: (a,c) AZ91 alloy, (b,d) AZ91 + 0.5 Gd alloy.



Crystals 2021, 11, 554 5 of 16
Crystals 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 4. Results of EDS analysis performed at: (a) arrow 1 in Figure 3a, (b) arrow 2 in Figure 3d.  

The XRD analysis results and fitted curves obtained using the Rietveld method are 
presented in Figure 5. The quantitative phase analysis results are summarized in Table 2. 
Without Gd, the surfacing alloy is mainly composed of two phases: α-Mg and β-Mg17Al12. 
The volume percentage of β-phase is approximately 5.7%. When 0.5% Gd is added, Gd 
and Al atoms combine to form Al2Gd phases with a volume fraction of about 0.5%, which 
reduces the volume percentage of β-phase to 4.5%. 

 
Figure 5. X-ray diffractograms of surfacing alloys: (a) AZ91 alloy, (b) AZ91 + 0.5 Gd alloy. 

Table 2. Calculated phase content of surfacing magnesium alloys in volume percentage. 

Alloy Mg17Al12 Al2Gd Mg 
AZ91 5.7 0 94.3 

AZ91 + 0.5 Gd 4.5 0.5 95.0 

3.2. Tribological Behavior of Surfacing Magnesium Alloys 
3.2.1. Wear Rate and Friction Coefficient 

A relatively large experimental load of 120 N generated obvious jitter in the experi-
mental equipment, which affected data accuracy. Therefore, only data for loads between 
15–100 N were retained, as shown in Figure 6. For loads from 15 to 60 N, the wear rate of 
the surfacing AZ91 alloy without Gd gradually increased linearly with the increasing 
load. When the load reached 100 N, the wear rate of the AZ91 alloy increased sharply, 
approaching 1.5 times 60 N, indicating transition from a stable mildly worn state to an 
unstable severely worn state. With 0.5% Gd, the wear rate of the alloy increased slightly 
under the 15 N load. However, within the range of 30–100 N, the wear rate of the AZ91 + 
Gd alloy was significantly lower compared to the AZ91 alloy. In addition, as the load 
increased, the wear rate of the surfacing AZ91 + Gd alloy showed a trend of stable, linear 

Figure 4. Results of EDS analysis performed at: (a) arrow 1 in Figure 3a, (b) arrow 2 in Figure 3d.

The XRD analysis results and fitted curves obtained using the Rietveld method are
presented in Figure 5. The quantitative phase analysis results are summarized in Table 2.
Without Gd, the surfacing alloy is mainly composed of two phases: α-Mg and β-Mg17Al12.
The volume percentage of β-phase is approximately 5.7%. When 0.5% Gd is added, Gd
and Al atoms combine to form Al2Gd phases with a volume fraction of about 0.5%, which
reduces the volume percentage of β-phase to 4.5%.
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Table 2. Calculated phase content of surfacing magnesium alloys in volume percentage.

Alloy Mg17Al12 Al2Gd Mg

AZ91 5.7 0 94.3
AZ91 + 0.5 Gd 4.5 0.5 95.0

3.2. Tribological Behavior of Surfacing Magnesium Alloys
3.2.1. Wear Rate and Friction Coefficient

A relatively large experimental load of 120 N generated obvious jitter in the experi-
mental equipment, which affected data accuracy. Therefore, only data for loads between
15–100 N were retained, as shown in Figure 6. For loads from 15 to 60 N, the wear rate of
the surfacing AZ91 alloy without Gd gradually increased linearly with the increasing load.
When the load reached 100 N, the wear rate of the AZ91 alloy increased sharply, approach-
ing 1.5 times 60 N, indicating transition from a stable mildly worn state to an unstable
severely worn state. With 0.5% Gd, the wear rate of the alloy increased slightly under the
15 N load. However, within the range of 30–100 N, the wear rate of the AZ91 + Gd alloy
was significantly lower compared to the AZ91 alloy. In addition, as the load increased, the
wear rate of the surfacing AZ91 + Gd alloy showed a trend of stable, linear growth within
the scope of the experiment and no obvious inflection point. Friction coefficients of the two



Crystals 2021, 11, 554 6 of 16

alloys with and without the addition of the RE element are shown in Figure 6b. When the
normal load was 15 N, the friction coefficients of both alloys was around 0.4. Moreover, as
the experimental load increased, the friction coefficients of the surfacing alloys exhibited a
gradual downward trend.

Crystals 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

growth within the scope of the experiment and no obvious inflection point. Friction coef-
ficients of the two alloys with and without the addition of the RE element are shown in 
Figure 6b. When the normal load was 15 N, the friction coefficients of both alloys was 
around 0.4. Moreover, as the experimental load increased, the friction coefficients of the 
surfacing alloys exhibited a gradual downward trend. 

 
Figure 6. Results of friction and wear tests of surfacing magnesium alloys under different loads: 
(a) wear rate, (b) friction coefficient. 

3.2.2. Wear Mechanism 
The influence of tribological parameters on the wear resistance of magnesium alloys 

is mainly related to changes in the wear mechanism. To determine the wear mechanisms 
of the surfacing magnesium alloys under different experimental loads, the wear surface 
and wear debris morphologies were analyzed with SEM. Four wear mechanisms were 
observed, as shown in Figure 7: abrasive wear, oxidative wear, delamination wear, and 
severe plastic deformation. For a load of 15 N, many grooves and scratches were observed 
parallel to the sliding direction on the surface of the surfacing AZ91 alloy (Figure 7a), 
which are the main features of abrasive wear. Hard-microscopic protrusions generated on 
the surface of the friction material and shedding of abrasive particles during the friction 
process can have a violent cutting and plowing effect on the alloy. It is worth noting that 
under this low load, scratches on the surface of the AZ91 alloy were relatively shallow 
compared with those on the AZ91 + Gd alloy (Figure 7d). In addition, discontinuities were 
found in some positions, indicating a relatively small amount of abrasive wear. The ele-
ment content was analyzed by EDS and the results are shown in Figure 8a. The surface of 
the alloy contained a large amount of oxygen (O), indicating significant oxidative wear. 
When the normal load was increased to 60 N, short cracks perpendicular to the slip direc-
tion appeared on the surface of the surfacing AZ91 alloy, as well as relatively large spall-
ing pits (Figure 7b), which are the main features of delamination wear. When the load was 
increased to 100 N, the degree of delamination on the surface of the magnesium alloy 
significantly increased and serious plastic deformation occurred. Through the plastic de-
formation mechanism, scratches and grooves on the worn surface disappeared and were 
replaced by a large smooth area (Figure 7c). At the same time, metal on the surface was 
gradually extruded from the metal edge and a layered structure formed at the edge of the 
sample (Figure 9a). A large amount of flake-like wear debris was also observed (Figure 
9c). These morphological changes indicate that under a 100 N load, the wear mechanism 
was dominated by severe plastic deformation and delamination wear. Changes in the 
wear mechanism normally indicate that the metal has entered the severe wear state, which 
is consistent with changes in the wear rate described above (Figure 6). Furthermore, the 

Figure 6. Results of friction and wear tests of surfacing magnesium alloys under different loads:
(a) wear rate, (b) friction coefficient.

3.2.2. Wear Mechanism

The influence of tribological parameters on the wear resistance of magnesium alloys is
mainly related to changes in the wear mechanism. To determine the wear mechanisms of
the surfacing magnesium alloys under different experimental loads, the wear surface and
wear debris morphologies were analyzed with SEM. Four wear mechanisms were observed,
as shown in Figure 7: abrasive wear, oxidative wear, delamination wear, and severe plastic
deformation. For a load of 15 N, many grooves and scratches were observed parallel to
the sliding direction on the surface of the surfacing AZ91 alloy (Figure 7a), which are the
main features of abrasive wear. Hard-microscopic protrusions generated on the surface
of the friction material and shedding of abrasive particles during the friction process can
have a violent cutting and plowing effect on the alloy. It is worth noting that under this
low load, scratches on the surface of the AZ91 alloy were relatively shallow compared with
those on the AZ91 + Gd alloy (Figure 7d). In addition, discontinuities were found in some
positions, indicating a relatively small amount of abrasive wear. The element content was
analyzed by EDS and the results are shown in Figure 8a. The surface of the alloy contained
a large amount of oxygen (O), indicating significant oxidative wear. When the normal
load was increased to 60 N, short cracks perpendicular to the slip direction appeared on
the surface of the surfacing AZ91 alloy, as well as relatively large spalling pits (Figure 7b),
which are the main features of delamination wear. When the load was increased to 100 N,
the degree of delamination on the surface of the magnesium alloy significantly increased
and serious plastic deformation occurred. Through the plastic deformation mechanism,
scratches and grooves on the worn surface disappeared and were replaced by a large
smooth area (Figure 7c). At the same time, metal on the surface was gradually extruded
from the metal edge and a layered structure formed at the edge of the sample (Figure 9a). A
large amount of flake-like wear debris was also observed (Figure 9c). These morphological
changes indicate that under a 100 N load, the wear mechanism was dominated by severe
plastic deformation and delamination wear. Changes in the wear mechanism normally
indicate that the metal has entered the severe wear state, which is consistent with changes
in the wear rate described above (Figure 6). Furthermore, the results of the EDS analysis
show that the O content in the worn surface was extremely low under the load of 100 N,
suggesting almost no oxidative wear (Figure 8b).
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Under different loads, the effect of Gd addition on the wear mechanism of the alloy
varied slightly. When a load of 15 N was applied, the scratches and furrows that appeared
on the wear surface of the AZ91 + Gd alloy were deeper and straighter (Figure 7d) than
those observed on the AZ91 alloy. This suggests that there was a greater degree of abrasive
wear for the AZ91 alloy. However, under the same 60 N load, although the AZ91 alloy
underwent severe delamination wear, the wear mechanism of the AZ91 + Gd alloy was still
dominated by abrasive wear, as shown in Figure 7e. Increasing the load to 100 N slightly
increased the degree of delamination wear of the AZ91 + 0.5 Gd alloy, but not to more than
that of the AZ91 alloy, as shown in Figure 7f. Meanwhile, it can be seen from the edge
morphologies and wear debris morphologies in Figure 9 that severe plastic deformation
had a much smaller impact on the AZ91 + Gd alloy than on the AZ91 alloy. Under the
100 N load, the wear process of the surfacing alloy containing Gd was dominated by two
mechanisms: abrasive wear and delamination wear. Whereas severe plastic deformation
only had a minor impact.
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3.2.3. Effect of Friction on Deformation Behavior of the Subsurface Layer

During the friction and wear processes, energy dissipation and material loss mainly
occur in the surface and subsurface layers of frictional contact areas. Understanding
changes in the microstructure of the subsurface layer during friction-induced deforma-
tion is fundamental to understanding the wear mechanism of the surfacing magnesium
alloy. Microstructures of the subsurface layers of alloys with different Gd contents and
under different loads were characterized, as shown in Figure 10. When the load was
60 N, the shear stress generated by frictional contact caused obvious plastic deformation
of the surfacing AZ91 alloy. The thickness of the deformed layer was approximately
71 µm (Figure 10a). As the load was increased to 100 N, the amount of subsurface layer
deformation increased significantly, and the thickness of the deformed layer increased
to about 130 µm (Figure 10b). Depending on the amount of deformation, the subsurface
layer of the AZ91 alloy can be divided into two distinct areas: mechanical mixing zone
(about 0–45 µm from the surface) and plastic deformation zone (about 45–130 µm from the
surface). High-density twins were observed in the plastic deformation zone. Most of the
twin lines were generated at the interface between the β-phase and the α-Mg matrix, as
well as at grain boundaries and expanding into the grains, as shown in Figure 10b,c. In
the mechanical mixing zone, the metal underwent severe plastic deformation and some
mechanical agitation under the action of the shearing force. The large amount of β-phase
was shifted towards the sliding direction, resulting in large deformation of the surrounding
matrix. Related literature has also indicated that metal in the mechanical mixing zone
undergoes dynamic recrystallization under the combined action of frictional stress and
frictional heat [16,17]. In addition, cracks spreading to the surface and spalling pits can be
observed in Figure 10b. When spalling pits form, metal located in the mechanical mixing
zone falls off and becomes wear debris. This exposes the metal to a relatively low degree
of deformation in the plastic deformation zone and bulk Mg17Al12 phase. In subsequent
friction processes, the bulk Mg17Al12 phase may detach and hinder relative sliding be-
tween the magnesium alloy and the friction disc resulting in three-body abrasive wear.
The addition of Gd significantly decreased the thickness of the deformed layer, as shown
in Figure 10d–f. Due to the reduced amount of coarse β-phase, the number and density
of twinning lines were also significantly decreased, indicating less plastic deformation
occurred in the alloy subsurface layer. Meanwhile, almost no pits formed by cracks and
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spalling were observed in the subsurface layer of the surfacing AZ91 + Gd alloy. Therefore,
the distribution in the mechanical mixing zone was relatively continuous.
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3.3. Macro Hardness of Surfacing Magnesium Alloys

In most wear models, hardness of the material has a significant influence on wear
resistance [18–20]. Hardness values of the four alloys were measured. The results are
presented in Table 3. The surfacing AZ91 alloy without Gd has the highest macroscopic
hardness value of 69.2 HV. After adding Gd, the hardness of the surfacing alloy decreased
to 63.3 HV.

Table 3. Macro hardness of surfacing magnesium alloys.

Material Macrohardness/HV

AZ91 69.2
AZ91 + 0.5Gd 63.3

The relationship between hardness and wear rate of the surfacing-welding magnesium
alloys under different friction loads is shown in Figure 11. When the experimental load was
15 N, higher hardness was associated with a lower wear rate and better wear resistance.
However, when the 100 N load was applied, the relationship between hardness and wear
rate was no longer linear. Although the hardness of surfacing AZ91 alloy was highest, the
wear resistance was poorest under the 100 N load.
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4. Discussion
4.1. Influence of Load on the Wear Mechanism of Surfacing Magnesium Alloys

From Section 3.2.2, four wear mechanisms in the surfacing AZ91 magnesium alloy can
be defined: oxidative wear, abrasive wear, delamination wear, and severe plastic deforma-
tion. Under the low load (15 N), the main wear mechanism was abrasive wear, followed by
oxidative wear; under medium loads (30–60 N), the main wear mechanisms were abrasive
wear and delamination wear; under the high load (100 N), the main wear mechanisms
became delamination wear and severe plastic deformation. The wear mechanisms and
wear distributions observed in our study are consistent with those previously observed in
as-cast Mg-Al alloys [17,21,22].

4.1.1. Influence of Load on Oxidative Wear Mechanism

Oxidative wear is a common wear mechanism of magnesium alloys during friction
processes because magnesium alloys are easily oxidized. An oxidation layer quickly forms
in the contact gap as surface metal is rapidly oxidized under the action of frictional heat in
the presence of oxygen [23]. The oxide layer begins to break and peel off under the action
of microscopic convex plowing, and a new oxide layer forms on the newly exposed surface.
Repetition of this process leads to wear. Three conditions are required for oxidative wear:
(1) The oxidation rate of the friction surface must be larger than the rate at which the oxide
layer is worn; (2) The thickness of the oxide layer must be larger than the depth of surface
wear damage; (3) The strength of the bond between the oxide layer and the substrate must
be higher than the shear stress on the friction surface [24,25]. In our experiment, oxidative
wear mainly occurred under the low and medium load conditions. When the load is
relatively high, the contact surface gap is rapidly compressed, leading to less interaction
between the magnesium alloy and oxygen and the rate and degree of oxidation decreases.
Delamination wear and severe plastic deformation lead to a rapid increase in surface wear,
which exceeds the rate of formation of the oxide layer. In addition, the relatively high
normal load rapidly increases shear stress on the metal surface, which can be much higher
than the strength of the bond between the oxide layer and the substrate. Therefore, high
loads do not facilitate oxidative wear and only a small amount of O content can be detected
on the worn surface (Figure 8).

4.1.2. Influence of Load on Abrasive Wear Mechanism

Under medium and low loads, abrasive wear is the most important wear mechanism.
To estimate the contribution of abrasive wear to the wear rate of the surfacing alloys, two
simple scenarios were considered: contact of conical hard micro-protrusions with pure
Mg matrix (Figure 12a) and contact of conical hard micro-protrusions with hard β-phase
(Figure 12b).

When the hard, cone-shaped micro-protrusions are in contact with a pure magnesium
matrix, as shown in Figure 12a, the cone is pressed into the softer magnesium under the
action of normal force FN . The projected area of the cone on the vertical plane is S0 and the
volume dV0 plowed off after the cone is displaced by dx is

dV0 = S0dx = r0hdx = r2
0 tan θdx (1)

where r0 is the diameter of the cone embedded in the α-Mg matrix. This volume is
approximately equal to the volume of debris produced by abrasive wear. According to the
definition of hardness H0, we obtain

r2
0 =

∆FN
H0π

(2)
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In this paper, the volume of material loss per unit sliding length is used as the wear
rate, so wear rate W0 is

W0 =
dV0

dx
= r2

0 tan θ =
tan θ

H0π
∆FN (3)
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In addition to magnesium matrix, the surfacing AZ91 alloy also contains many net-like
β-phases. A nanoindentation experiment conducted by Gupta et al. [26] showed that the
hardness of the β-phase is about four-times that of the magnesium matrix, 3.8 ± 0.3 GPa
versus 1.4 ± 0.1 GPa, respectively. Therefore, during the wear process, coarse hard net-like
β-phases can effectively prevent hard microscopic protrusions from being pressed into the
matrix. This can protect the matrix to a certain extent, as shown in Figure 12b. The volume
of debris produced by the plowing action is

dV1 = r2
1 tan θdx (4)

For the situation depicted in Figure 12b, the wear rate W1 is

W1 =
dV1

dx
= r2

1 tan θ =
tan θ

H1π
∆FN (5)

where tan θ and ∆FN are the weighted averages of tan θ and ∆FN of all micro-contacts,
respectively; constant k is defined as the area occupied by the β-phase. Then, the total wear
rate is

W = (1 − k)W0 +kW1 = (1 − k) tan θ
H0π ∆FN + k tan θ

H1π ∆FN

= ∆FN · tan θ
π

(
1−k
H0

+ k
H1

) (6)

Thus, for surfacing AZ91 alloy, the wear rate is W ∝ ∆FN . According to the microscopic
contact model proposed by Zhao et al. [27], ∆FN is approximately proportional to the
applied normal load FN . Therefore, the total wear rate W is approximately proportional
to the normal load FN . This is the main reason the wear rate of the surfacing AZ91 alloy
increases approximately linearly in the range 15–60 N (Figure 6).



Crystals 2021, 11, 554 12 of 16

4.1.3. Influence of Load on Delamination Wear Mechanism

In this experiment, the delamination wear mechanism appeared in the load range
30–100 N. When the experimental load is higher than 30 N, normal stress and shear stress
generated by frictional contact will continue to cyclically act on the surface metal of the
magnesium alloy as the sliding process continues. This eventually causes surface and
subsurface areas close to the contact surface to undergo significant plastic deformation
and even, mechanical flow, as shown in Figure 13a,c. According to Hertz contact theory,
maximum shear stress occurs at a certain depth below the surface, where deformation
behavior induces many dislocations and other defects [28]. As the surfacing AZ91 alloy
contains a large quantity of sizeable and irregular β-phases, defects such as dislocations
easily accumulate, resulting in stress concentrations. Relevant studies on the localized
strain behavior of magnesium alloys have shown that dislocation plugging occurs during
the deformation process due to differences in the degree of deformation of β-phase and
matrix. This increases the strain incompatibility between matrix grains and β-phase, which
can initiate twinning between β-phase and α-Mg matrix at the interface [29], as shown in
Figure 13a. Therefore, within the metallographic structure of the subsurface layer of the
alloys after friction, many twins are observed around the β phase (Figure 10a,b). However,
as the friction test progresses, the degree of deformation continues to increase. Once the
critical value is exceeded, the accumulated energy is released in the form of holes and
microcracks at the interface between the matrix and β-phase. Microcracks continue to be
initiated and expand, eventually intersecting with or extending to the surface (Figure 13c).
Peeling of large areas of surface metal occurs. Cracks and spalling pits unique to the
delamination wear mechanism are formed (Figure 7). An increase in the normal load
rapidly increases the normal stress and shear stress induced by the frictional contact.
Finally, the degree of plastic deformation of the subsurface metal is further increased
(Figure 10), which ultimately, increases the degree of delamination wear (Figure 7b,c).
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of surfacing magnesium alloys: (a,c) AZ91 alloy, (b,d) AZ91 + Gd alloy.

4.1.4. Influence of Load on Severe Plastic Deformation Mechanism

When the normal load is increased to 100 N, the microscopic contact area between
the friction pair and the heat generated by friction both rapidly increase [27,30]. Thermal
softening or even partial melting of the surface layer of the surfacing AZ91 alloy occur.
Normal and shear stresses are generated, causing severe plastic deformation in the sliding
direction (Figure 10). Metal is gradually squeezed out at the metal edge (Figure 9). Severe
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plastic deformation further increases the degree of delamination wear, causing severe
flaking on the surface (Figure 7c). Finally, the quality of the surfacing AZ91 alloy is quickly
degraded under the combined action of delamination wear and severe plastic deformation.
The alloy enters the severe wear stage, and the wear rate rapidly increases (Figure 6).

4.2. Effect of Gd Addition on the Wear Mechanism of Surfacing Magnesium Alloys

The Archard model is a wear model frequently adopted in the literature [19]. Ac-
cording to the model, a higher material hardness increases wear resistance, according
to the formula W = K·FN/H. This law has been verified by numerous experiments. In
the present study, the addition of Gd was found to decrease the hardness of the surfac-
ing Mg-Al-Zn alloy while improving its wear resistance under medium and high loads
(Figures 6 and 11), which does not conform to the Archard model. Friction and wear are
extremely complex processes, and the important influencing factors are incorporated in
the wear coefficient K, except for load FN , sliding distance L, and hardness σ of the softer
material. Wear coefficient K is uncertain and highly variable, and its true meaning has not
yet been determined. The only certainty is that wear coefficient K contains information
about the probability of wear debris breaking away from the tribological system and the
size distribution of wear debris. The addition of RE elements changes the wear coefficient
K while altering the hardness H of the surfacing magnesium alloy. In addition, varying the
load changes the wear mechanism, which also affects the wear coefficient K. Therefore, un-
der different normal loads, the Archard formula cannot be directly applied. The influence
of the addition of the RE element on the wear resistance of the surfacing magnesium alloy
must be analyzed according to the type of wear.

4.2.1. Effect of Gd Addition on Oxidative Wear Mechanism

Numerous theoretical models have been proposed to describe the oxidative wear
process of metals [31,32]. Although the morphologies and formation mechanisms of the
oxide layer are not the same for different materials and different operating conditions, the
models have one thing in common: they assume that the oxide layer plays a decisive role
in oxidative wear. The thick and dense oxide layer inhibits direct contact between the two
metals, which plays a protective role. Quinn derived a mathematical model of oxidative
wear under slight wear [33], expressed as

W =
Aexp(−Q/RT)

ρ2vξ2 ·d∆FN
σs

(7)

where A is the Arrhenius constant, Q is the activation energy of the oxidation reaction, R
is the universal gas constant, T is the contact temperature of the asperity surface, ρ is the
oxide layer density, v is the sliding velocity, ξ is the maximum thickness of the oxide layer
that the metal matrix can withstand, d is the distance moved by the microwear contact
point, and σs is the yield strength of the material. The formula shows that the wear rate is
inversely proportional to the square of the oxide layer thickness and density. The higher
the thickness and density of the oxide layer, the lower the wear rate. However, it is well
known that the oxide layer formed by the oxidation of magnesium is loose and porous and
can easily break off [34]. Although the tribochemical reaction may increase the density of
the oxide layer, it remains unknown whether the magnesium alloy oxide layer can continue
to grow, accumulate, and be compacted to provide sufficient protection during the friction
process. On the other hand, many studies on the oxidation behavior of the RE magnesium
alloys show that the oxidation products of RE elements including Gd and yttrium (Y), such
as Gd2O3, increase the thickness and density of the oxide layer. The RE elements not only
form an additional dense oxide layer but also fill in the gaps of MgO [35,36]. According
to Equation (7), an increase in density ρ and thickness ξ can reduce the wear rate of the
surfacing alloy, thereby improving the oxidative wear resistance of the alloy.
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4.2.2. Effect of Gd Addition on Abrasive Wear Mechanism

After the addition of Gd, the β-phase content decreases greatly. Area k occupied by the
second phase in Equation (6) is no longer a constant and the equation can be rewritten as

W = −k
(

1
H0

− 1
H1

)
∆FN ·tan θ

π
+

∆FN ·tan θ

H0π
(8)

Since 1
H0

− 1
H1

> 0, when the experimental load is constant, ∆FN can be regarded as a
constant. Thus, Equation (8) can be simplified as

W = −ak + b (9)

That is, the wear rate is inversely proportional to the percentage of β-phase in the
worn surface. The results of the quantitative XRD analysis show that the addition of Gd
decreases the β-phase content (Table 2), which decreases the area k of the wear surface
occupied by β-phase during the friction process. This weakens the protective effect of the
net-like β-phase to the relatively soft magnesium matrix and improves the abrasive wear
rate W. For surfacing magnesium alloys, although the analysis in Section 4.2.1 suggests
that the addition of RE elements can improve the oxidative wear resistance of the alloy,
under a load of 15 N, the contribution of oxidative wear to the overall wear is small. The
main wear mechanism is abrasive wear. Therefore, the addition of Gd ultimately increases
the wear rate of the alloy (Figure 2).

4.2.3. Effect of Gd Addition on Delamination Wear Mechanism

From the analysis in Section 4.1.3, it can be seen that coarse β-phase in the surfacing
alloy easily generates stress concentrations during friction-induced subsurface plastic
deformation, thereby increasing the degree of delamination wear. With the addition of
Gd, the size and quantity of the coarse and irregularly shaped β-phases are significantly
reduced (Figure 3). Thus, the number of stress concentrations in the surface of the metal
decreases, as shown in Figure 13. However, related studies [37,38] have suggested that the
addition of Gd leads to the formation of a high-temperature-resistant Al2Gd phase in the
alloy with much higher thermal stability than the Mg17Al12 phase. In the process of sliding,
the Al2Gd phase may block the dislocation movement and have a strengthening effect. As
a result, the thickness and degree of plastic deformation of the plastic deformation layer
of AZ91 + Gd alloy are significantly lower than those of AZ91 alloy after sliding friction
(Figure 10). The addition of Gd decreases the negative effects of delamination wear on
the wear resistance of the alloy. In addition, during the delamination wear process of the
surfacing AZ91 alloy, bulk β-phases with much higher hardness than the matrix hardness
may peel off and become trapped between the material and the friction disc (Figure 13c).
Therefore, relative sliding of the friction pair and three-body wear are hindered. This can be
reduced by the addition of Gd. Thus, the addition of Gd can significantly reduce the effect
of the delamination wear mechanism on the wear resistance of the surfacing magnesium
alloy. Although the addition of Gd reduces the abrasive wear resistance of the surfacing
alloy to a certain extent, when the load is greater than 30 N, the positive effect of Gd on
delamination wear is more prominent. Eventually, the overall wear rate of the AZ91 + Gd
alloy decreases.

4.2.4. Effect of Gd Addition on Severe Plastic Deformation Mechanism

When the load is increased to 100 N, differences in the deformation degree of the sub-
surface layer of the surfacing alloy with and without Gd become more obvious compared
with the load of 60 N, (Figure 10b,e). The effect of friction on the plastic deformation be-
havior is clearly inhibited by the addition of the RE element. Under this load, Gd addition
not only reduces the degree of delamination wear, but also effectively prevents the metal
from being squeezed out at the edges due to severe plastic deformation (Figure 9). Finally,
the wear rate decreases, and mild–severe wear transition of the alloy is prevented.
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5. Conclusions

In this study, the wear behavior of surfacing AZ91 and AZ91 + Gd alloys were
systematically analyzed using pin-on-disc sliding dry friction and wear tests. The influence
of normal load and Gd addition on the wear mechanism were investigated. The main
conclusions can be summarized as follows:

(1) Within the scope of the experiment, the friction coefficient of the surfacing AZ91
alloy gradually decreased with increasing normal load and the wear rate gradually
increased. The mild–severe wear transition occurred under a load of 100 N. The
addition of Gd slightly increased the wear rate of the alloy under the 15 N load.
The wear rate significantly decreased under loads between 30–100 N. Moreover, a
mild–severe wear transition was avoided.

(2) Four wear mechanisms can be defined for the surfacing AZ91 magnesium alloy:
oxidative wear, abrasive wear, delamination wear, and severe plastic deformation.
Among them, the main wear mechanism under the low load (15 N) was abrasive wear,
followed by oxidative wear; under medium loads (30–60 N), the main wear mecha-
nisms were abrasive wear and delamination wear; under the high load (100 N), the
main wear mechanisms became delamination wear and severe plastic deformation.

(3) The effect of Gd on the wear mechanism of the surfacing magnesium alloy can be
mainly attributed to the evolution behavior of the subsurface microstructure during
friction. Under medium and high loads (30–100 N), the addition of Gd reduces the
size and amount of coarse irregular-shaped β-phase, thereby reducing the adverse
effects of the delamination processes. However, the decrease in net-like β-phase also
weakens the abrasive wear resistance of the alloy, which negatively affects its overall
wear resistance under low loads (15 N).
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