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Abstract: New laterally OCH3-substituted optical organic Schiff base/ester series, namely 4-(4-
(hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-alkoxybenzoates, were prepared and charac-
terized with different thermal, mesomorphic, and photoactive techniques. The prepared group
constitutes five homologues that differ from each other in the number of carbons in the terminal
alkoxy chain (n), which varies between n = 6, 8, 10, 12, and 16 carbons. The laterally protruded
methoxy group is attached to the central benzene ring that makes an angle of 120◦ with the molecular
long axis. Molecular structures of all newly prepared homologues were fully elucidated via FT-IR,
1H and 13C NMR spectroscopy. Mesomorphic transitions were determined via differential scanning
calorimetry (DSC) and the phases identified by polarized optical microscopy (POM). Independent of
the length of the terminal alkoxy chain attached to phenyl ester ring, only a monomorphic nematic (N)
phase was observed for all the synthesized compounds. A comparative study was made between the
present lateral methoxy-substituted homologues and their corresponding laterally-neat analogues.
The results revealed that, depending on the length of the alkoxy chain and the presence or absence of
the lateral methoxy group, different mesophases with different thermal stability and temperature
ranges were observed. Finally, UV-vis spectra showed that the present nematogenic series possess
photoactive properties that are of importance for many applications.

Keywords: Schiff base/ester; optical properties; thermal parameters; mesophase stability; photo-
physical

1. Introduction

Optical and mesomorphic characteristics of organic compounds are mainly dependent
on their geometries, in which slight modification in the structure is associated with a consid-
erable change in their mesophase behavior. Large numbers of calamitic thermotropic liquid
crystalline materials, with rigid cores containing two or more aromatic rings and terminal
flexible chains, have been prepared [1–3]. Many of these investigations were based on the
Schiff bases linkage [4–7]. It is worth mentioning that the first room-temperature nemato-
genic material, namely 4-methoxybenzylidene-4′-butylaniline (MBBA), was investigated
by Kelker et al. [8].

The incorporation of a high polar, small size lateral group to the main architecture
of the molecule influences the physical or thermal properties of the forming mesomor-
phic material, such as melting temperature, phase transition temperature, morphology,
dielectric anisotropy and dipole moment [9–13]. In such cases, the intermolecular sepa-
ration increases by the addition of the lateral substituent, which broadens the molecular
core, leading to the depression of the lateral-interactions [14–16]. Furthermore, as the
molecule width increases, the stability of both the smectic and nematic phases will be
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reduced [17]. The small size of the lateral substituent enables its incorporation within
the mesomorphic geometrics without being sterically disrupted and, consequently, their
mesophases are still observed. It was reported that the mesophase type, stability and range
were affected by the protrusion of a lateral-fused ring in the central core of mesogenic part
of the molecule [18]. In another work [19], disruption of the mesophase was observed
in a laterally nitro substituted series due to the increase of the molecular width, which
affected its lateral intermolecular interactions. In addition, the high dipole moment and
steric hindrance of the NO2 group disrupted their mesomorphic properties.

On the other hand, the length of the terminal flexible chain plays a significant role in
mesomorphic behavior, enhancing the twist-bend nematic and heliconical phases [20]. It
has also been reported that the lateral or terminal polar group processes an impact effect
on the mesomorphic properties of a large number of Schiff bases/ester systems [21].

The growing interest of optical organic materials in the last few decades is because of
their photo-physical properties [22] that lead to industrial applications, such as laser dyes
and fluorescent brighteners [23]. Due to their reasonable thermal stabilities, they have been
widely used in photonic and electronic applications, such as solar cells, charge-transfer
agents and non-linear optical (NLO) materials. Most of them are based on chromophores
and constitute one of the highest types of fluorescence sensors [24–26], which accounts
for its exponentially increased application, such as fluorescent probes [27,28]; they are
also broadly used in organic light-emitting diodes [29]. Moreover, the thermal property
causes the nematogenic materials to flow and their optical responses, activated by small
temperature changes, can be used in sensing and photonics applications [30]. It was found
that this effect had essential ramifications for the nematic phases as the optical properties
of thermally induced geometrical changes [30].

Recently, in further structure–property relationship studies of calamitic liquid crystals,
the molecular biaxiality of the rode-like molecules was increased by introducing a lateral
methoxy (–OCH3) group within the molecular skeleton. From this point of view, the first
goal of our present work is to synthesize new geometrical structure of laterally substituted
three rings Schiff base derivatives, bearing terminal alkoxy chains with different lengths (n),
namely, 4-(4-(hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-alkoxybenzoates (Figure 1).
The lateral OCH3 group is attached to the middle ring. The second goal is to investigate
their optical, mesomorphic, and photophysical behaviors as well as to study the impact of
the terminal flexible alkoxy chain on the mesomorphic properties of prepared compounds.
Finally, a comparison will be made between the present laterally substituted derivatives
and their previously reported three rings Schiff base analogues in order to investigate the
effect of the introduction of lateral substituent on their mesophase behavior.
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2. Experimental
Synthesis

Schiff base and hydrazone derivatives are well known as valuable intermediates in the
synthesis of many organic compounds that are used in many applications [31–39]. A series
of new laterally methoxy Schiff base derivatives 3 and In were formed as the following
shown in Scheme 1:
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Synthetic method is attached in the supplementary data. The melting points and
IR data were determined for the prepared imine 3: Yield: 90.1%; mp 101.1 ◦C, FTIR
(ύ, cm−1): 3400 (OH), 2928, 2832 (CH2 stretching), 1733 (C=O), 1609 (C=N), 1566 (C=C),
1466 (C–OAsym), 1251 (C–OSym). 1H-NMR (400 MHz, CDCl3): δ/ppm: 0.85–0.90 (t, 3H,
CH3(CH2)3CH2CH2O–), 1.29–1.31 (m, 6H, CH3(CH2)3CH2CH2O–), 1.71–1.78 (q, 2H, CH3
(CH2)3CH2CH2O–), 3.72 (s, 1H, OH), 3.93 (s, 3H, OCH3), 4.08 (t, 2H, CH3(CH2)3CH2CH2O–),
6.79 (d, 2H, Ar–H), 6.89 (d, 2H, Ar–H), 7.01 (d, 2H, Ar–H), 7.24 (s, 1H, Ar–H), 7.38–7.40 (m, 3H,
Ar–H), 7.84 (d, 2H, Ar–H), 9.76 (s, 1H, CH=N). Anal. Calcd. for C20H25NO3 (327.42): C, 73.37;
H, 7.70; N, 4.28. Found: C, 73.21; H, 7.59; N, 4.13%.

General Procedure for Synthesis of 4-(4-(hexyloxyphenyl)iminomethyl)-3-Methoxyphenyl
4-Alkoxybenzoates

Synthetic method is attached in the supplementary data. The physical data of products
In are listed below:

4-(4-(Hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-hexyloxybenzoate (I6).
Yield: 88.2%; mp 114–116 ◦C, FTIR (ύ, cm−1): 2929, 2869 (CH2 stretching), 1735 (C=O),

1612 (C=N), 1573 (C=C), 1458 (C–OAsym), 1260 (C–OSym). 1H-NMR (400 MHz, CDCl3):
δ/ppm: 0.86–0.97 (m, 6H, 2xCH3(CH2)3CH2CH2O–), 1.23–1.33 (m, 12H, 2xCH3(CH2)3
CH2CH2O–), 1.78–180 (m, 4H, 2xCH3(CH2)3CH2CH2O–), 3.88 (s, 3H, OCH3), 4.01–4.05
(m, 4H, 2xCH3(CH2)3CH2CH2O–), 6.81 (s, 1H, Ar–H), 6.94–6.97 (m, 3H, Ar–H), 7.31–7.33
(d, 2H, Ar–H), 7.51 (d, 2H, Ar–H), 8.12–8.14 (m, 3H, Ar–H), 9.95 (s, 1H, CH=N). 13C-NMR
(100 MHz, CDCl3): δ/ppm: 14.0 (2CH3), 18.3, 22.5, 22.6, 25.6, 29.0, 29.6, 31.5, 31.9 (8CH2),
56.1 (OCH3), 68.3, 68.4 (2CH2–O), 109.5, 114.4, 114.5, 117.5, 123.6, 129.3, 132.4, 132.5, 133.8,
141.2, 143.2, 145.0, 145.4, 152.3, 157.4 (Ar-C and C=N), 164.1 (C=O). Anal. Calcd. for
C33H41NO5 (531.68): C, 74.55; H, 7.77; N, 2.63. Found: C, 74.46; H, 7.63; N, 2.51%.
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4-(4-(Hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-octyloxybenzoate (I8).
Yield: 84.0%; mp 102–104 ◦C, FTIR (ύ, cm−1): 2921, 2871 (CH2 stretching), 1731

(C=O), 1603 (C=N), 1583 (C=C), 1463 (C–OAsym), 1262 (C–OSym). 1H-NMR (400 MHz,
CDCl3): δ/ppm: 0.86–0.91 (m, 6H, CH3(CH2)3CH2CH2O– and CH3(CH2)5CH2CH2O–),
1.23–1.39 (m, 16H, CH3(CH2)3CH2CH2O– and CH3(CH2)5CH2CH2O–), 1.78–1.82 (m, 4H,
CH3(CH2)3CH2CH2O– and CH3(CH2)5CH2CH2O–), 3.88 (s, 3H, OCH3), 4.01–4.05 (m, 4H,
CH3(CH2)3CH2CH2O– and CH3(CH2)5CH2CH2O–), 6.79–6.96 (m, 4H, Ar–H), 7.31–7.35 (d,
2H, Ar–H), 7.48–7.51 (d, 2H, Ar–H), 8.09–8.13 (m, 3H, Ar–H), 9.95 (s, 1H, CH=N) ppm. Anal.
Calcd. for C35H45NO5 (559.74): C, 75.10; H, 8.10; N, 2.50. Found: C, 75.25; H, 8.03; N, 2.38%.

4-(4-(Hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-decyloxybenzoate (I10).
Yield: 87.5%; mp 1099–101 ◦C, FTIR (ύ, cm−1): 2936, 2882 (CH2 stretching), 1728

(C=O), 1609 (C=N), 1575 (C=C), 1455 (C–OAsym), 1254 (C–OSym). 1H-NMR (400 MHz,
CDCl3): δ/ppm: 0.84–0.90 (m, 6H, CH3(CH2)3CH2CH2O– and CH3(CH2)7CH2CH2O–),
1.23–1.45 (m, 20H, CH3(CH2)3CH2CH2O– and CH3(CH2)7CH2CH2O–), 1.78–1.80 (m, 4H,
CH3(CH2)3CH2CH2O– and CH3(CH2)7CH2CH2O–), 3.87 (s, 3H, OCH3), 3.88–3.91 (t, 2H,
CH3(CH2)7CH2CH2O–), 4.01–4.04 (t, 2H, CH3(CH2)3CH2CH2O–), 6.78–6.98 (m, 4H, Ar–
H), 7.31–7.33(d, 2H, Ar–H), 7.49–7.51 (d, 2H, Ar–H), 8.10–8.14 (m, 3H, Ar–H), 9.95 (s, 1H,
CH = N) ppm. 13C-NMR (100 MHz, CDCl3): δ/ppm: 14.02 (CH3), 22.1, 22.6, 26.1, 28.9, 29.3,
31.2, 31.6 (CH2), 56.7 (OCH3), 68.6 (CH2–O), 114.5, 118.1, 121.3, 124.9, 128.1, 132.3, 133.6,
134.0, 135.9, 137.7, 140.8, 146.3 (Ar–C), 150.7 (C=N), 152.4, 157.6 (Ar–C), 164.0 (C=O) ppm.
Anal. Calcd. for C37H49NO5 (587.79): C, 75.60; H, 8.40; N, 2.38. Found: C, 75.49; H, 8.31;
N, 2.27%.

4-(4-(Hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-dodecyloxybenzoate (I12).
Yield: 89.2%; mp 95–97 ◦C, FTIR (ύ, cm−1): 2928, 2871 (CH2 stretching), 1727 (C=O),

1610 (C = N), 1573 (C=C), 1462 (C–OAsym), 1464 (C–OAsym). 1H-NMR (400 MHz, CDCl3):
δ/ppm: 0.69–0.76 (m, 6H, CH3(CH2)3CH2CH2O– and CH3(CH2)9CH2CH2O–), 1.23–1.45
(m, 24H, CH3(CH2)3CH2CH2O– and CH3(CH2)9CH2CH2O–), 1.56–1.67 (m, 4H, CH3(CH2)3
CH2CH2O– and CH3(CH2)9CH2CH2O–), 3.72 (s, 3H, OCH3), 3.74–3.78 (t, 2H, CH3(CH2)
9CH2CH2O–), 3.86–3.93 (t, 2H, CH3(CH2)3CH2CH2O–), 6.69–6.83 (m, 4H, Ar–H), 7.11–7.37
(m, 4H, Ar–H), 7.95–7.98 (m, 3H, Ar–H), 9.82 (s, 1H, CH=N) ppm. 13C-NMR (100 MHz,
CDCl3): δ/ppm: 13.9 (2CH3), 22.1, 22.2, 25.2, 28.6, 28.9, 29.1, 29.2, 31.1, 31.5 (14 CH2), 55.7
(OCH3), 67.9 (2CH2–O), 110.6, 113.9, 114.8, 114.9, 120.3, 123.1, 124.2, 124.3, 129.6, 132.0,
132.1, 145.0, 151.9, 157.2, 158.5 (Ar–C and C=N), 163.5 (C=O) ppm. Anal. Calcd. for
C39H53NO5 (615.84): C, 76.06; H, 8.67; N, 2.27. Found: C, 76.00; H, 8.57; N, 2.14%.

4-(4-(Hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-hexadecyloxybenzoate (I16).
Yield: 90.1%; mp 90–92 ◦C, FTIR (ύ, cm−1): 2923, 2882 (CH2 stretching), 1729 (C=O),

1612 (C=N), 1580 (C=C), 1464 (C–OAsym), 1251 (C–OSym). 1H-NMR (400 MHz, CDCl3):
δ/ppm: 0.84–0.90 (m, 6H, CH3(CH2)3CH2CH2O– and CH3(CH2)7CH2CH2O–), 1.24–1.43
(m, 32H, CH3(CH2)3CH2CH2O– and CH3(CH2)13CH2CH2O–), 1.71–1.84 (m, 4H, -CH3
(CH2)3CH2CH2O– and CH3(CH2)13CH2CH2O–), 3.87 (s, 3H, OCH3), 3.88–3.90 (t, 2H,
CH3(CH2)13CH2CH2O–), 4.00–4.03 (t, 2H, CH3(CH2)3CH2CH2O–), 6.94–6.97 (m, 4H, Ar–
H), 7.30–7.32 (d, 2H, Ar–H), 7.49–7.51 (d, 2H, Ar–H), 8.11–8.14 (m, 3H, Ar–H), 9.95 (s, 1H,
CH=N) ppm. Anal. Calcd. for C43H61NO5 (671.95): C, 76.86; H, 9.15; N, 2.08. Found: C,
76.93; H, 9.01; N, 1.95%.

3. Results and Discussion
3.1. Optical and Mesophase Studies

The mesomorphic and optical characterizations for the synthesized laterally methoxy-
substituted homologous, In, were investigated by differential scanning calorimetry (DSC)
and their textures identified by polarized optical microscopy (POM). DSC thermograms of
designed compounds (In), through heating and cooling cycles, are shown in Figure 2. It is
clearly shown that upon heating, all compounds (Figure 2a) showed two endotherms in-
trinsic peaks ascribed to the crystal–to–nematic and nematic–to–isotropic liquid transitions.
During the cooling cycle, all derivatives were shown to possess only the nematic mesophase
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(Figure 2b). The POM investigations revealed images which confirm the threads/schlieren
nematic mesophase (Figure 3). This means that these materials exhibited the monomorphic
enantiotropic property. Transition temperatures, enthalpies, normalized entropies and the
nematic temperature ranges, recorded by DSC measurements upon heating, were collected
in Table 1. Figure 4 depicts the graphical plot of the transition temperatures of all designed
compounds in order to evaluate the effect of the terminal alkoxy chain length (n) on the
mesomorphic and optical behaviors of the prepared series, In.
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Table 1. Mesophase transition temperatures (◦C), enthalpy ∆H, kJ/mole, and normalized entropy of
transition ∆S/R for compounds In.

Comp. TCr–N ∆HCr–N TN–I ∆HN–I ∆TN ∆SN–I/R

I6 96.9 44.9 149.8 1.5 52.9 0.4

I8 96.3 51.5 138.3 2.8 42.0 0.8

I10 89.9 49.3 129.1 2.2 39.2 0.7

I12 73.8 44.3 122.1 1.0 48.3 0.3

I16 95.3 54.7 119.2 3.0 23.9 0.9
Cr-N = solid to the nematic phase; N–I = nematic to the isotropic liquid phase.
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In series.

Data illustrated in Table 1 and Figure 4 indicate that the melting transitions (TCr–N) of
all of the prepared homologues, independent of the length of the terminal chain, exhibit
irregular trends. In general, the melting point is related with the polarizability of the
compound as well as the packing of crystalline molecules and other factors. Data also show
that all the members of the homologous series are enantiotropic with suitable nematic
thermal stability and nematic temperature range. As usual, the stability of the N mesophase
decreased with increases to the length of terminal chain (n), [40,41]. That descending trend
of the nematic thermal stability with the increase of the flexible-chain length is ascribed to
the dilution of the rigid mesogenic core. TN–I transitions were showed to decrease from
149.8 to 119.2 ◦C as n increased from 6 to 16 carbons. Moreover, the homologue with
the shortest chain (I6) exhibited the highest N temperature range (∆TN = 52.9 ◦C), while
the N phase range for the longest chain (I16) showed the lowest value (∆TN = 23.9 ◦C).
The decline of ∆TN is not regular but obeys the order of I6 > I12 > I8 > I10 > I16. It was
known that the rigidity, aspect ratio, molecular geometry, polarity and polarizability of the
molecule were considered essential factors that are responsible for the thermal stability
of the observed mesophases. The different contribution extents of these factors lead to
differences in the mesophase property. Generally, the thermal stability of a phase of a given
liquid crystalline material is increased by influences of the polarity or polarizability of the
molecule mesogenic core that is actually affected by the polarity of the attached group,
which would consequently affect the polarity of the whole molecule. Furthermore, the
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kind and stability of the formed phase are mainly dependent upon the dipole moment of
the mesogenic group of the molecule which differs according to the position of the polar
substituent too [42].

The normalized transition entropy changes, ∆SN–I/R, of the synthesized lateral
methoxy derivatives (In) are collected in Table 1. The results revealed that the value
of the entropy change was related, independently, to the length of the terminal chains (n).
The small values observed for the entropy change can be attributed to the decrease of the
length–to–breadth ratio resulting from their lower anisotropy in terms of their molecular
geometry and the increment of their molecular biaxiality [42,43]. Moreover, due to the
nematic nature of the mesophase, this exhibits the lowest order mesophase.

3.2. Thermal Properties Studies

Thermal stability of the present homologous set (In) was measured by thermogravimet-
ric analysis (TG). A representative example of TG curve, and its corresponding derivative
(DTG) of the compounds I6, is depicted in Figure 5. Parameters of thermal degradation,
such as Tonset (the start thermal degradation temperature), Tmax (the temperature at which
the thermal degradation rate is maximum), and m% (the mass percentage loss), were
estimated. As can be seen from Figure 5, the decomposition occurs through two degra-
dation steps (the second step is not seen in (DTG)) depending on the molecular structure.
The first step occurs in the temperature range of ≈250–300 ◦C and starts at 280 ◦C with
the maximum degradation rate (Tmax) at 300 ◦C, indicating that the material has high
thermal stability. The second step occurs between 330 and 400 ◦C, with the maximum
degradation rate of ≈350 ◦C. For all prepared homologues series, the first main step occurs
with maximum degradation rates (Tmax) at 350, 353, 358, 361 and 368 ◦C for I6, I8, I10, I12
and I16, respectively, indicating that the thermal stability of materials increases with n (See
Figures S1–S4 in supplementary data). Results revealed that the investigated compounds
exhibited high thermal stabilities up to 350–368 ◦C, which covers the temperature window
of mesophase transition detected thermally and extends over this transition too.
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3.3. Effect of the Lateral Methoxy Group on the Mesomorphic Behaviors

Because of its small size, the incorporation of the lateral methoxy group into the
mesogenic part of the molecule was accompanied by a slight steric effect. Moreover, since
this is an electron donating group, it affected the intermolecular dispersion interactions.
In order to analyze the effect of the special orientation and location of the lateral OCH3
group in the middle ring of the molecule on the mesomorphic and thermal stability of the
compounds, a comparison was established between the present synthesized lateral methoxy
derivatives (In) and the previously documented laterally neat homologues series IIn [44];
graphically represented in Figure 6a for the mesomorphic stability, and their temperature
ranges in Figure 6b. As can be seen from Figure 6a, the type and thermal stability of
the formed mesophase varied according to the impacted molecular dipole moment and
polarizability of the mesogenic moiety, which were dependent upon the orientation and
position of the lateral methoxy group. Moreover, the addition of the lateral OCH3 group
into the ortho-position with respect to the azomethine linkage of In, was shown to disrupt
the smectic A molecular packing and give only N mesophase. The mesomeric interactions
of the lateral methoxy group with the carbonyl ester C=O moiety may be prohibited to the
extent that the present compounds (In) possess lower thermal stability than the laterally
neat homologue (IIn). The mesophase thermal stability was dependent on the enhanced
dipole of the mesogenic portion of the molecule, which was mainly dependent on the
position of the lateral OCH3 group. In addition to the molecular geometry of the molecule,
which varied according to the location of the attached substituent, it also had high effects
on the molecular thermal stability. For the nematic range (Figure 6b) the laterally neat
series, IIn, showed higher N temperature ranges than the laterally methoxy-substituted
analogues, In, in the short terminal chain lengths (n = 6, 8), while for longer terminals
(n ≥ 10) the present laterally substituted series showed wider N temperature ranges than
the previously investigated laterally neat analogues. The comparison revealed that the
mesophase type and stability, as well as the temperature range, depended on the protrusion
of the lateral OCH3 group, which was incorporated within the mesogenic portion of the
molecule. Furthermore, it was found that the introducing of the methoxy group into the
π-system induced a bathochromic shift in the absorption spectrum of the molecule and
improved the light absorption characteristics [45].
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3.4. Photoactive Studies

UV-vis absorption spectra were measured for the present lateral methoxy-substituted
derivatives (In) in dichloromethane solution (C = 1.1 × 10−3 mol L−1) and the results
are represented graphically in Figure 7. As can be seen from Figure 7, the length of
terminal alkoxy chain enhanced the maximum absorbance of the members of homologous
series, In. Figure 7 also showed that the absorption of light within the wavelength range
380–800 nm, and its strong absorption maxima at ~442–453 nm due to the terminal alkoxy
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carbon chain (n), can be attributed to the π–π* transition of the chromophore within the
molecule. Moreover, the intensity of the peak and absorption bands is dependent on the
geometry of the molecule that absorbs the light at a given wavelength. The absorption
spectra of I16 showed the maximum bands at 453 nm, which is also due to the π–π electronic
transitions from the highest occupied molecular orbitals (HOMO) to the lowest unoccupied
molecular orbitals (LUMO) [46–49]. The present nematogenic materials are promising for
use in photoactive organic compounds for many applications.
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Figure 7. UV-vis spectra of present series, In, in CH2Cl2 at 25 °C. 
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4. Conclusions

We have documented the synthesis of new optical lateral-methoxy Schiff base/ester
homologues using different thermal, optical and mesomorphic techniques. Molecular
structures were elucidated by FT-IR and NMR spectroscopy. Mesomorphic, optical and
thermal behaviors were characterized using DSC, POM, TGA as well as UV-vis spec-
troscopy. Results revealed that all members of the homologues series exhibited only the
monomorphic N phase irrespective of the terminal alkoxy-chain length. On the other
hand, their thermal stabilities were shown to be dependent on the length of the terminal
chain. A comparative study was made between the present group of homologues and their
corresponding laterally-neat Schiff base/ester analogues. The study revealed that the type
and thermal mesophase stability were influenced by the incorporated lateral OCH3 group
within the mesogenic portion of the molecule. Finally, the proper choice for new optical
organic materials, which possess nematic temperature range, good thermal stability and
are affected by UV-light, are promising additional factors for industrial applications.
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