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����������
�������

Citation: Uran, E.; Fotović, L.;
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Abstract: In order to study the proclivity of primary amine groups to act as halogen bond acceptors,
three aromatic diamines (p-phenylenediamine (pphda), benzidine (bnzd) and o-tolidine (otol)) were
cocrystallised with three perfluorinated iodobenzenes (1,4-tetrafluorodiiodobenzene (14tfib), 1,3-
tetrafluorodiiodobenzene (13tfib) and 1,3,5-trifluorotriiodobenzene (135tfib)) as halogen bond donors.
Five cocrystals were obtained: (pphda)(14tfib), (bnzd)(13tfib)2, (bnzd)(135tfib)4, (otol)(14tfib) and
(otol)(135tfib)2. In spite of the variability of both stoichiometries and structures of the cocrystals,
in all the prepared cocrystals the amine groups form exclusively I···N halogen bonds, while the
amine hydrogen atoms participate mostly in N–H· · · F contacts. The preference of the amine nitrogen
atom toward the halogen bond, as opposed to the hydrogen bond (with amine as a donor), is
rationalised by means of computed hydrogen and halogen bond energies, indicating that the halogen
bond energy between a simple primary amine (methylamine) and a perfluorinated iodobenzene
(pentafluoroiodobenze ne) is ca. 15 kJ mol−1 higher than the energy of the (H)NH···NH2 hydrogen
bond between two amine molecules.

Keywords: halogen bonding; aromatic diamines; perfluorinated iodobenzenes; amine group

1. Introduction

From the beginning of the intensive research into halogen bonding at the turn of the
millennium [1–5], one of the main areas of interest (apart from the fundamental studies of
the nature and properties of the halogen bond) has been to utilize the halogen bond as a
reliable non-covalent molecular interaction in supramolecular chemistry in general [6–9],
and particularly in crystal engineering [10–14], as a means of the deliberate design of
multi-component organic [15,16] and metal-organic [17–20] materials, both comprising
ionic species (salts) [21–26] and neutral molecules (cocrystals) [27–36].

The most commonly employed neutral halogen bond donors in crystal engineering
to date have been perfluorinated iodobenzenes, namely, 1,2-tetrafluorodiiodobenzene
(12tfib), 1,4-tetrafluorodiiodobenzene (14tfib), 1,3-tetrafluorodiiodobenzene (13tfib) and
1,3,5-trifluorotriiodobenzene (135tfib) [37–42]. These substances are stable in ambient con-
ditions, soluble in most organic solvents, easy to handle and commercially available. The
presence of the electron-withdrawing fluorine atoms in the molecule increases the positive
electrostatic potential of the σ-holes of the iodine atoms, making them reliable halogen
bond donors for a wide range of organic and metal-organic Lewis bases [43,44]. However,
their reliability as halogen bond donors can be severely reduced by the formation of com-
peting hydrogen bonds. The balance between halogen and hydrogen bonds in systems
where the two can compete is often quite delicate, and can be influenced by various factors,
such as weak interactions and overall crystal packing [45,46], the choice of crystallisation
solvent [47] and even the amount of solvent used in the cocrystal synthesis [48]. For these
reasons, the result of a supramolecular synthesis in systems where there is competition
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between halogen and hydrogen donors for the (same) acceptor sites generally cannot be
unequivocally predicted.

A typical acceptor group where the reliability of halogen bond fails is the primary
amine group (-NH2). Normally, the nitrogen atom is one of the most reliable bases for the
formation of halogen bonds in general, and with perfluorinated iodobenzenes in particular.
According to the data deposited with the Cambridge Structural Database (CSD) [49], there
have been 686 crystal structures containing a perfluorinated iodobenzene and a nitrogen
atom reported to date; of these, 430 (63%) feature the C−I···N halogen bond. However, out
of the (only) 50 structures containing perfluorinated iodobenzene and a primary amine
group, only in 5 of them (a mere 10%) is a C−I···N(amino) halogen bond present. It is
tempting to attribute this to the ability of the primary amine nitrogen to also act as both
a hydrogen bond donor and an acceptor. However, the amine group is a rather poor
hydrogen bond donor—the R-N(H)-H···NH2 hydrogen bond can be found to be present
in only about 5% of all the structures containing (either aromatic or aliphatic) a primary
amine group (1965 out of 42,021), while generally in the presence of NH or OH hydrogen
bond donors it acts as a hydrogen bond acceptor in about 13% of cases (4434 out of 33,964).
Therefore, the more probable reason for the low occurrence of halogen bonds involving
the primary amine group is the presence of better halogen bond acceptor sites in the
molecule (such as heterocyclic aromatic nitrogen atoms). This conclusion is also borne
out by an earlier study of aromatic amines as halogen bond acceptors performed within
our group [50], which has demonstrated that the primary amine group acted as a halogen
bond acceptor only if no stronger halogen bond acceptors (such as heterocyclic nitrogen,
carboxylic and even nitro groups) were present.

In this work, we endeavoured to study the halogen bonding proclivity of the aro-
matic primary amino group in the absence of other electronegative atoms or functional
groups which might compete with the primary amine nitrogen as halogen bond accep-
tors. For this purpose, we selected three aromatic primary diamines (p-phenylenediamine
(benzene-1,4-diamine, pphda), benzidine (1,1’-biphenyl-4,4’-diamine, bnzd) and o-tolidine
(3,3’-dimethyl-[1,1’-biphenyl]-4,4’-diamine, otol); Scheme 1) as (potential) halogen bond
acceptors. The crystal structures of all three have been previously reported [51–53], demon-
strating that almost every nitrogen atom in each of the structures of the pure diamines
does act as a hydrogen bond acceptor (the exception being two out of the four polymorphs
in bnzd—each with multiple molecules of bnzd in the asymmetric unit—where some of
the NH2 nitrogen atoms do not). This makes them an excellent platform for a study of the
competition of—R-N(H)-H···NH2 hydrogen bonds and C−I···NH2 halogen bonds. The
competition was studied by attempting to cocrystallise each of the three selected diamines
with three selected perfluorinated iodobenzenes (14tfib, 13tfib and 135tfib) as halogen
bond donors (Scheme 1). The cocrystallisation screening was performed mechanochemi-
cally by liquid-assisted grinding (LAG) in order to determine in how many instances the
cocrystals would be formed. The cocrystallisation experiments were also performed from
solution in order to produce single crystals of halogen-bonded cocrystals, to be studied
by single-crystal X-ray diffraction in order to determine which intermolecular interactions
govern their assembly.
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2. Materials and Methods

All the solvents used (ethanol, acetone, acetonitrile) were procured from Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany. Benzidine (Sigma-Aldrich Chemie GmbH
(Merck Reagents), Taufkirchen, Germany), p-phenylendiamine (Fisher Scientific UK Ltd.,
Leicestershire, UK) and o-tolidine (Kemika, Zagreb, Croatia) were purified by recrystal-
lization from water, while 14tfib (Manchester Organics Ltd., Cheshire, UK), 13tfib (Apollo
Scientific Ltd., Cheshire, UK) and 135tfib (Apollo Scientific Ltd., Cheshire, UK), as well as
the organic solvents, were used without additional purification.

2.1. Solution and Single-Crystal Synthesis of Cocrystals

The corresponding halogen bond donor and diamine were dissolved in 5.0 mL of a
solvent (ethanol or ethanol/acetone mixture), whereupon the solutions were left to cool and
slowly evaporate (experimental details are given in the Supplementary Materials, Table S1).
The obtained products were characterized by powder X-ray diffraction (PXRD) in order
to examine their phase purity. Single crystals suitable for single-crystal X-ray diffraction
(SCXRD) experiments were prepared by crystallization from ethanol and appeared after
three to seven days. ORTEP plots of the obtained compounds are shown in Figures S1–S5
in the Supplementary Materials.

2.2. Powder X-ray Diffraction Measurements

Powder X-ray diffraction experiments on the samples were performed on an Aeris
X-ray diffractometer (Malvern Panalytical, Malvern Worcestershire, UK) with CuKα1 (λ =
1.54056 Å) radiation. The scattered intensities were measured with a PIXcel-1D-Medipix3
detector. The angular range was from 5◦ to 40◦ (2θ) with a continuous step size of 0.02◦

and measuring a time of 0.5 s per step.
Data collection methods were created using the program package START XRDMP CRE-

ATOR (Malvern Panalytical, Malvern Worcestershire, UK) while the data were analysed us-
ing X’Pert HighScore Plus (Version 2.2, Malvern Panalytical, Malvern Worcestershire, UK) [54].
The comparison of measured and calculated PXRD patterns of the prepared compounds
are shown in Figures S6–S10 in the Supplementary Materials.

2.3. Single-Crystal X-ray Diffraction Measurements

Single-crystal X-ray diffraction experiments were performed using an Oxford Diffrac-
tion Xcalibur Kappa CCD X-ray diffractometer (Oxford Diffraction Ltd., Abingdon, UK)
with graphite-monochromated MoKα (λ = 0.71073 Å) radiation. The data sets were col-
lected using the ω-scan mode over the 2θ—Range up to 54◦. The programs CrysAlis
PRO CCD and CrysAlis PRO RED were employed for data collection, cell refinement and
data reduction [55,56]. The structures were solved and refined using SHELXS (Version
2013, Göttingen, Germany), SHELXL programs (Version 2013, Göttingen, Germany) and
SHELXT programs (Version 2013, Göttingen, Germany) respectively [57–59]. The struc-
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tural refinement was performed on F2 using all data. The hydrogen atoms were placed
in calculated positions and treated as riding on their parent atoms [C–H = 0.93 Å and
Uiso(H) = 1.2 Ueq(C) for aromatic hydrogen atoms; C–H = 0.97 Å and Uiso(H) = 1.2 Ueq(C)
for methyl hydrogen atoms]. The amino group hydrogen atoms were located from the
electron difference map and then refined with the following restraints, where necessary:
d(N–H) = 0.920 Å, d(H···H) = 1.500 Å, Uiso(H) = 1.5 Ueq(N). All calculations were performed
using the WinGX crystallographic suite of programs [60]. The figures were prepared using
Mercury 2020.2.0 (CCDC, Cambridge, UK) [61]. Crystallographic data of the prepared
compounds are shown in Table S2 in the Supplementary Materials.

2.4. Thermal Analysis

Differential scanning calorimetry (DSC) and thermogravimetric (TG) measurements
were performed simultaneously on a Mettler-Toledo TGA/DSC 3+ module (Mettler Toledo,
Greifensee, Switzerland). Samples were placed in alumina crucibles (40 µL) and heated in
the temperature range 25 to 300 ◦C, at a heating rate of 10 ◦C min−1 under a nitrogen flow
of 150 mL min−1.

Data collection and analysis were performed using the program package STARe
Software (Version 15.00, Mettler Toledo, Greifensee, Switzerland) [62]. TG and DSC curves
of the prepared compounds are shown in Figures S11–S15 in the Supplementary Materials.

2.5. Calculations

All calculations were performed using the Gaussian 09 (Revision D.01) software pack-
age [63]. Geometry optimizations were performed using the B3LYP/def2-TZVP [64–66]
level of theory with the D3 version of Grimme’s dispersion [67] and an ultrafine integration
grid (99 radial shells and 590 points per shell). This method was shown to reproduce ex-
perimental halogen bond lengths, complexation energies and vibrational frequencies in the
gas phase with good accuracy [68]. The harmonic frequency calculations were performed
on the optimized geometries to ensure that they correspond to minima on the potential
energy surface.

3. Results and Discussion

The crystallisation from solution of the selected diamines and the halogen bond donors
yielded five cocrystals, whereas in four cases only the starting materials were isolated. An
overview of the obtained cocrystals is given in Table 1.

Table 1. An overview of the obtained cocrystals of aromatic diamines and perfluorinated iodoben-
zenes.

pphda bnzd otol

14tfib (pphda)(14tfib) - (otol)(14tfib)
13tfib - (bnzd)(13tfib)2 -
135tfib - (bnzd)(135tfib)4 (otol)(135tfib)2,

p-Phenylenediamine was found to form only one cocrystal, (pphda)(14tfib). In the struc-
ture of the cocrystal, each diamine molecule is connected to two neighbouring 14tfib molecules
by a pair of I···NH2 halogen bonds (d(I1···N1) = 2.958(6) Å, ∠ (C4–I1···N1) = 179.0(2)◦) so that
both amine nitrogen atoms act as halogen bond acceptors. This leads to the formation of
halogen bonded chains (Figure 1) in which the amine hydrogen atoms remain free to form
hydrogen bonds with fluorine atoms of the 14tfib molecules from neighbouring chains,
thus interconnecting the chains through N–H· · · F contacts (d(N1···F2) = 3.375(6) Å) into
layers (Figure 1).
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hydrogen atoms here also interact with fluorine atoms from the surrounding 14tfib mol-
ecules, through a series of bifurcated N–H⋯F contacts (d(N1···F1) = 3.334(5) Å, d(N1···F2) 
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which interconnect the layers into a 3D structure. 

 
Figure 2. In the structure of (otol)(14tfib), layers are formed by the linking of halogen-bonded 
(yellow) chains through N−H⋯F hydrogen bonds (green) in the structure of (otol)(14tfib). 

Unlike pphda, otol also formed a cocrystal with the tritopic halogen bond donor, 
135tfib. Unlike the cocrystals with 14tfib which were of the expected 1:1 stoichiometry 
(resulting from a ditopic donor binding with a ditopic acceptor), this was found to present 
a somewhat unexpected 1:2 stoichiometry with the formula (otol)(135tfib)2, significantly 
deviating from the 3:2 stoichiometry which might be expected based on the respective 
topicities of the acceptor and the donor. In the crystal structure of (otol)(135tfib)2 cocrys-
tal, again both otol amino groups participate in I···NH2 halogen bonds (d(I1···N1) = 3.035(8) 
Å, ∠ (C7–I1···N1) = 176.9(2)°). Besides this main supramolecular interaction, both the π-

Figure 1. In the structure of (pphda)(14tfib), layers are formed by the linking of halogen bonded
(yellow) chains through N−H· · · F hydrogen bonds (green) in the structure of (pphda)(14tfib).

o-Tolidine was found to form two cocrystals: (otol)(14tfib) and (otol)(135tfib)2. The
halogen bonding in the crystal structure of the former is analogous to that in (pphda)(14tfib)
—each diamine is connected to the neighbouring donor molecules by a pair of I···NH2 halogen
bonds, although these are somewhat longer than in (pphda)(14tfib) (d(I1···N1) = 2.977(4) Å,
∠ (C8–I1···N1) = 176.8(1)◦) (Figure 2). The amine hydrogen atoms here also interact with
fluorine atoms from the surrounding 14tfib molecules, through a series of bifurcated N–
H· · · F contacts (d(N1···F1) = 3.334(5) Å, d(N1···F2) = 3.273(4) Å), again interconnecting
the halogen-bonded chains into layers (Figure 2). Additionally, the otol methyl groups
participate in C–H· · ·π contacts (d(C7···C4) = 3.607(6) Å) which interconnect the layers into
a 3D structure.
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Figure 2. In the structure of (otol)(14tfib), layers are formed by the linking of halogen-bonded
(yellow) chains through N−H· · · F hydrogen bonds (green) in the structure of (otol)(14tfib).

Unlike pphda, otol also formed a cocrystal with the tritopic halogen bond donor,
135tfib. Unlike the cocrystals with 14tfib which were of the expected 1:1 stoichiometry
(resulting from a ditopic donor binding with a ditopic acceptor), this was found to present
a somewhat unexpected 1:2 stoichiometry with the formula (otol)(135tfib)2, significantly
deviating from the 3:2 stoichiometry which might be expected based on the respective
topicities of the acceptor and the donor. In the crystal structure of (otol)(135tfib)2 cocrystal,
again both otol amino groups participate in I···NH2 halogen bonds (d(I1···N1) = 3.035(8) Å,
∠ (C7–I1···N1) = 176.9(2)◦). Besides this main supramolecular interaction, both the π-
systems of the aromatic diamine act as halogen bond acceptors, forming I· · ·Cπ halogen
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bonds [69] with 135tfib molecules (d(I3· · ·C5) = 3.423(5) Å, ∠ (C11–I3· · ·C5 = 166.9(2)◦)
(Figure 3a). Each 135tfib molecule bridges between two molecules of otol, binding to
the amino group of one and to the aromatic π-system of the other. Each otol molecule
binds to four 135tfib molecules, two via the amine groups and two via the aromatic rings,
thus forming halogen-bonded layers of 1:2 stoichiometry, comprising 8-molecular rings
(comprising four otol and four 135tfib molecules, with each otol molecule belonging to four
rings and each 135tfib molecule to two; Figure 3b). The third 135tfib iodine atom does not
bind to otol, but rather forms type II halogen···halogen contacts (d(I2· · · I1) = 3.817(1) Å,
∠ (C9–I2· · · I1) = 163.4(1)◦), with the iodine atom participating in an I···NH2 interaction in
a neighbouring layer, thus leading to a 3D halogen-bonded structure (Figure 3c).
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The last diamine, bnzd, yielded cocrystals with 13tfib and 135tfib, exhibiting stoi-
chiometry 1:2 and 1:4, respectively. In the structure of the (bnzd)(13tfib)2 cocrystal, the ar-
rangement of the donor and acceptor molecules is very similar to that in the (otol)(135tfib)2
cocrystal, with 13tfib molecule binding between two bnzd molecules (forming a halogen
bond with the amino group of one and the aromatic π-system of the other (d(I1···N1) =
3.014(5) Å, ∠ (C7–I1···N1) = 175.4(2)◦; d(I2· · ·C3) = 3.518(6) Å, ∠ (C9–I2· · ·C3) = 156.8(2)◦),
and each bnzd molecule binding overall four molecules of 13tfib, forming a 2D network
of 8-molecular rings (Figure 4a). In the absence of the third iodine atom on the donor
molecule, the halogen-bonded layers are interconnected into a 3D structure dominantly
through N–H· · · F hydrogen bonding contacts (d(N1···F2) = 3.370(7) Å) (Figure 4b).
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Interestingly, although bnzd does form a cocrystal with the tritopic 135tfib, its struc-
ture and stoichiometry are markedly different from both (bnzd)(13tfib)2 and (otol)(135tfib)2
cocrystals. The (bnzd)(135tfib)4 cocrystal was found to be of 1:4 stoichiometry with four (a
pair of two crystallographically independent) molecules of 135tfib bound to a single bnzd
molecule, again two binding to the amino groups (d(I1···N1) = 3.05(1) Å, ∠ (C7–I1···N1)
= 175.8(4)◦) and two to the aromatic rings (d(I5· · ·C4) = 3.48(1) Å, ∠ (C15–I5· · ·C4) =
157.3(3)◦) (Figure 5a). Here, however, they do not bridge between the diamine molecules,
but rather participate in an array of type II iodine···iodine contacts (d(I2· · · I1) = 3.983(1)
Å, ∠ (C9–I2· · · I1) = 168.1(3)◦; d(I4· · · I1) = 3.878(2) Å, ∠ (C13–I4· · · I1) = 174.9(3)◦) with
neighbouring 135tfib molecules leading to highly corrugated layers (Figure 5b). These
layers are again interconnected into a 3D structure via long N–H· · · F hydrogen-bonding
contacts (d(N1···F6) = 3.17(2) Å).

As can be seen from the above structure descriptions, in all of the five obtained
cocrystals, the N–H· · ·N hydrogen bond (which is the dominant interaction in the crystal
structures of the amines) is entirely replaced by I···N halogen bonds in the cocrystals, with
amine hydrogen atoms participating mostly only in rather ephemeral N–H· · · F contacts.
In order to investigate whether this coincides with a corresponding difference in the R-
N(H)-H···NH2 hydrogen bond and the C−I···NH2 halogen bond energies, we attempted
to calculate the binding energies of chosen amine molecules in hydrogen-bonded dimers
and halogen-bonded complexes with iodopentafluorobenzene (ipfb), and thus determined
the relative strength of these interactions in vacuo. To avoid the presence of other acceptor
sites in the molecules, we chose simple primary amines: aniline (PhNH2) and methylamine
(MeNH2). From the results (Table 2), it can be noticed that the obtained binding energy
for the aniline acceptor in hydrogen-bonded dimers is slightly higher (0.8 kJ mol−1) than
for the complex with ipfb, indicating marginally larger stabilization of the hydrogen-
bonded complexes. However, the optimised structure of the hydrogen-bonded (PhNH2)2
complex reveals the presence of a C-H· · ·π contact (approximately the orthogonal position
of the two aromatic rings), which almost certainly further stabilizes the aniline dimer
(Figure 6a) [70]. In the optimized structure of (PhNH2)(ipfb), such additional interactions
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are absent (Figure 6b), the only interaction between the molecules being a single I···N
halogen bond almost perpendicular (∠ (I···N–C) = 106.6◦) to the plane of the aniline
ring (which closely corresponds to the conformation of halogen-bonded complexes also
observed in the cocrystal structures). Therefore, the calculated difference in binding
energies for (PhNH2)2 and (PhNH2)(ipfb) does not pose a reliable representation of the
difference in hydrogen- and halogen-bond energies with the primary amine as an acceptor
(and donor of the former). In order to avoid the additional stabilisation of the hydrogen-
bonded complex by a C-H· · ·π interaction, we opted for an additional set of computations
using methylamine as the model primary amine molecule. In the (MeNH2)2 dimer, the
(H)NH···NH2 hydrogen bond is indeed the only contact within the dimer (Figure 6c).
Significantly, here the binding energy in the halogen-bonded (ipfb)(MeNH2) complex
(Figure 6d) is ca. 15 kJ mol−1 higher than the one for the hydrogen-bonded (MeNH2)2
dimer. There is a difference in the basicities of the aliphatic and the aromatic primary
amine groups—the aromatic amines being weaker bases—which makes the halogen bond
in the (ipfb)(MeNH2) complex stronger by ca. 8.4 kJ mol−1 than the corresponding bond
in the (PhNH2)(ipfb) complex. As this reduction in the basicity of the acceptor should also
proportionally influence the hydrogen bond energy, it can therefore be expected that the
contribution of the R-N(H)-H···NH2 hydrogen bond to the overall binding energy of the
(PhNH2)2 dimer is ca. 10 kJ mol−1 less than the overall energy itself, the rest being due
to the C-H· · ·π bond. Therefore, the computational results do indicate that the halogen
bond between the primary amine group and a perfluorinated iodobenzene as a halogen
bond donor is indeed more favourable than the (H)NH···NH2 hydrogen bond between
the amine groups, even in the case of aromatic amines, which is in line with the observed
total absence of the said hydrogen bonds in the obtained cocrystals. However, they also
indicate that weak interactions (e.g., C-H· · ·π contacts) can have a sufficient contribution
to the overall energy to alter this preference, which might explain our failure to prepare
cocrystals of pphda with 13tfib and 135tfib; bnzd with 14tfib; and otol with 13tfib.
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Figure 5. (a) Halogen bonding between bnzd and 135tfib molecules in the structure of
(bnzd)(135tfib)4; (b) a layer formed by linking bnzd and 135tfib molecules via I···NH2, I· · ·Cπ

and I···I halogen bonds in the structure of (bnzd)(135tfib)4.
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Table 2. Binding energies of (amine)2 dimers and (amine)(ipfb) complexes in vacuo.

Complex E/kJ mol−1

(PhNH2)2 −28.4
(PhNH2)(ipfb) −27.6

(MeNH2)2 −20.9
(MeNH2)(ipfb) −36.0

Crystals 2021, 11, x FOR PEER REVIEW 9 of 12 
 

Table 2. Binding energies of (amine)2 dimers and (amine)(ipfb) complexes in vacuo. 

Complex E/kJ mol−1 
(PhNH2)2 −28.4 

(PhNH2)(ipfb) −27.6 
(MeNH2)2 −20.9 

(MeNH2)(ipfb) −36.0 

 
Figure 6. Optimized structures of (a) (PhNH2)2; (b) (PhNH2)(ipfb); (c) (MeNH2)2; (d) (MeNH2)(ipfb). 

4. Conclusions 
In the absence of competing halogen acceptors, the amine group has proven to be a 

reliable halogen bond acceptor, forming I···N halogen bonds up to the total exclusion of 
N–H⋯N hydrogen bonds, leaving the amine hydrogen atoms participating only in 
weakly bonding contacts. This is in line with the difference in the corresponding calcu-
lated bond energies with methylamine as the halogen/hydrogen bond acceptor. However, 
as only in 5 out of the 9 tested donor/acceptor combinations yielded cocrystals, it seems 
that this difference in halogen- and hydrogen-bond energies is not always sufficient to 
lead to the formation of a cocrystal. It is therefore probable that the deciding factors as to 
whether or not a halogen-bonded cocrystal of a primary (di)amine will be obtainable, will 
in many cases be from other contributions, such as the overall crystal packing of the reac-
tants and the products. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1. 
Molecular structure of (pphda)(14tfib) showing the atom-labelling scheme. Displacement ellipsoids 
are drawn at the 50% probability level, and H atoms are shown as small spheres of arbitrary radius.; 
Figure S2. Molecular structure of (bnzd)(13tfib)2 showing the atom-labelling scheme. Displacement 
ellipsoids are drawn at the 50% probability level, and H atoms are shown as small spheres of arbi-
trary radius.; Figure S3. Molecular structure of (bnzd)(135tfib)4 showing the atom-labelling scheme. 
Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as small 
spheres of arbitrary radius.; Figure S4. Molecular structure of (otol)(14tfib) showing the atom-label-
ling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown 
as small spheres of arbitrary radius.; Figure S5. Molecular structure of (otol)(135tfib)2 showing the 
atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms 
are shown as small spheres of arbitrary radius.; Figure S6. Measured (black) and calculated (blue) 
PXRD patterns of (pphda)(14tfib).; Figure S7. Measured (black) and calculated (blue) PXRD patterns 
of (bnzd)(13tfib)2.; Figure S8. Measured (black) and calculated (blue) PXRD patterns of 
(bnzd)(135tfib)4.; Figure S9. Measured (black) and calculated (blue) PXRD patterns of (otol)(14tfib).; 
Figure S10. Measured (black) and calculated (blue) PXRD patterns of (otol)(135tfib)2.; Figure S11. 
DSC thermogram of product of solution synthesis of (pphda)(14tfib).; Figure S12. DSC thermogram 

Figure 6. Optimized structures of (a) (PhNH2)2; (b) (PhNH2)(ipfb); (c) (MeNH2)2; (d)
(MeNH2)(ipfb).

4. Conclusions

In the absence of competing halogen acceptors, the amine group has proven to be
a reliable halogen bond acceptor, forming I···N halogen bonds up to the total exclusion
of N–H· · ·N hydrogen bonds, leaving the amine hydrogen atoms participating only in
weakly bonding contacts. This is in line with the difference in the corresponding calculated
bond energies with methylamine as the halogen/hydrogen bond acceptor. However, as
only in 5 out of the 9 tested donor/acceptor combinations yielded cocrystals, it seems that
this difference in halogen- and hydrogen-bond energies is not always sufficient to lead to
the formation of a cocrystal. It is therefore probable that the deciding factors as to whether
or not a halogen-bonded cocrystal of a primary (di)amine will be obtainable, will in many
cases be from other contributions, such as the overall crystal packing of the reactants and
the products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11050529/s1. Figure S1. Molecular structure of (pphda)(14tfib) showing the atom-
labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms
are shown as small spheres of arbitrary radius; Figure S2. Molecular structure of (bnzd)(13tfib)2
showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level,
and H atoms are shown as small spheres of arbitrary radius; Figure S3. Molecular structure of
(bnzd)(135tfib)4 showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50%
probability level, and H atoms are shown as small spheres of arbitrary radius; Figure S4. Molecular
structure of (otol)(14tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn
at the 50% probability level, and H atoms are shown as small spheres of arbitrary radius; Figure
S5. Molecular structure of (otol)(135tfib)2 showing the atom-labelling scheme. Displacement ellip-
soids are drawn at the 50% probability level, and H atoms are shown as small spheres of arbitrary
radius; Figure S6. Measured (black) and calculated (blue) PXRD patterns of (pphda)(14tfib); Figure
S7. Measured (black) and calculated (blue) PXRD patterns of (bnzd)(13tfib)2; Figure S8. Measured
(black) and calculated (blue) PXRD patterns of (bnzd)(135tfib)4; Figure S9. Measured (black) and
calculated (blue) PXRD patterns of (otol)(14tfib); Figure S10. Measured (black) and calculated (blue)

https://www.mdpi.com/article/10.3390/cryst11050529/s1
https://www.mdpi.com/article/10.3390/cryst11050529/s1
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PXRD patterns of (otol)(135tfib)2; Figure S11. DSC thermogram of product of solution synthesis of
(pphda)(14tfib); Figure S12. DSC thermogram of product of solution synthesis of (bnzd)(13tfib)2;
Figure S13. DSC thermogram of product of solution synthesis of (bnzd)(135tfib)4; Figure S14. DSC
thermogram of product of solution synthesis of (otol)(14tfib); Figure S15. DSC thermogram of
(otol)(135tfib)2; Table S1. Masses of reactants and volumes of solvents for successful crystallization
experiments; Table S2. An overview and crystallographic data of the prepared compounds; Total elec-
tron energies and Cartesian coordinates for optimised structures; An overview and crystallographic
data of the prepared compounds. CCDC 2077218–2077222 contain crystallographic data for this paper.
These data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CBZ
1EZ, UK (Fax: +44-12-2333-6033; email: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).
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