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Abstract: The electronic structure and band offsets of blue phosphorus/WSe2 van der Waals (vdW)
heterostructure are investigated via performing first-principles calculations. Blue phosphorus/WSe2

vdW heterostructure exhibits modulation of bandgaps by the applied vertical compressive strain,
and a large compressive strain of more than 23% leads to a semiconductor-to-metal transition. Blue
phosphorus/WSe2 vdW heterostructure is demonstrated to have a type-II band alignment, which pro-
motes the spontaneous spatial separation of photo-excited electrons and holes. Furthermore, electrons
concentrating in BlueP and holes in WSe2 can be enhanced by applied compressive strain, resulting
in an increase of carrier concentration. Therefore, these properties make blue phosphorus/WSe2

vdW heterostructure a good candidate for future applications in photodetection.

Keywords: BlueP/WSe2 vdW heterostructure; external strain; band gap tailoring; first-principles
calculations

1. Introduction

Layered two-dimensional (2D) transition metal dichalcogenides (TMDs) and TMD-
based vdW heterostructures have drawn tremendous attention and shown broad appli-
cation prospects in next-generation electronic and optoelectronic devices because of their
tunable electronic, optical, spintronic, and transport properties [1–6]. In recent years, 2D
black phosphorus has received considerable attention for its unique properties includ-
ing thickness-tunable direct band gap, high hole mobility, and other particular physical
properties [7–14]. Meanwhile, blue phosphorus (BlueP), an allotrope of black phospho-
rus, has been successfully fabricated by mechanical exfoliation from its bulk form and
even epitaxial growth methods [15–19]. The novel properties of BlueP and its vdW het-
erostructures have also been widely studied [20–24]. Li et al. designed a BlueP/borophene
heterostructure and explored its performance as an anode material in lithium-ion batteries
via first-principles calculations [25]. They found that the BlueP/borophene heterostructure
possessed excellent structural stability and a specific capacity of 1019 mAh/g. Luo et al.
theoretically predicted the hydrogen storage properties of Li-decorated single-layer BlueP
from the view of its electronic and crystal structures [26]. It is demonstrated that hydrogen
storage capacity was further improved by Li decoration due to enhanced adsorption of H
to the Li atoms. Due to the promising performance of 2D vdW heterostructures [27–31],
strain-induced properties of BlueP/GaN [32], BlueP/C3N [33], BlueP/Mg(OH)2 [34], and
BlueP/black phosphorus [35] vdW heterostructures have been studied. However, strain-
tunable electronic and optoelectronic properties of BlueP/TMDs vdW heterostructures
have not been well-explored. It is of importance to explore the strain effect on the properties
of BlueP/TMDs vdW heterostructures.

Therefore, in this work, a BlueP/WSe2 vdW heterostructure is constructed. The elec-
tronic structure and band offsets are investigated via utilizing first-principles calculations.
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It is illustrated that BlueP/WSe2 vdW heterostructure exhibits modulation of bandgaps by
applying vertical compressive strain, which is accompanied by a semiconductor-to-metal
transition under a large compressive strain more than 23%. A type-II band alignment of
BlueP/WSe2 vdW heterostructure is demonstrated, since the band positions of BlueP and
WSe2 straddle each other. In other words, the CBM and the VBM are contributed by BlueP
and WSe2, respectively. Compared with other types of band alignments, the type-II band
alignment is beneficial to the spatial separation of excited electrons and holes. Furthermore,
the compressive strain can facilitate electrons in BlueP and holes in WSe2, resulting in an
increase of carrier concentration.

2. Computational Model and Methods

The first-principles calculations are performed by using the projector-augmented
plane-wave (PAW) method with the framework of density functional theory (DFT) in the
VASP code. The GGA of PBE is adopted to describe the electron exchange and correlation.
The pairwise force field in DFT-D2 method is used to describe the vdW interlayer interac-
tions. The vacuum layer, the cutoff energy, the force tolerance, and the first Brillouin zone
are 12 Å, 500 eV, 0.01 eV/Å and (9 × 9 × 1) Monkhorst–Pack grid. Figure 1a,b shows the
top and side views of the 4 × 4 supercell structure of BlueP/WSe2 vdW heterostructure.
The optimized lattice constants of BlueP and WSe2 are 3.28 and 3.29 Å [33,36], respectively,
which indicates a very good lattice matching in this system. The effect of applied verti-
cal strain on the electronic and optical properties of BlueP/WSe2 vdW heterostructure is
study. The strain is calculated as ε = (d − d0)/d0, where d and d0 are the instantaneous and
equilibrium distances between the bottom phosphorus atom layer and the tungsten atom
layer, as shown in Figure 1b. So, a negative ε represents compressive strain and a positive
one represents tensile strain. Figure 1c exhibits the Brillouin zone of hexagonal cell with
high-symmetry points (M, K, and Γ) labeled, and the point between M and Γ is defined
as Λ.
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Figure 1. (a) The top and (b) the side view of BlueP/WSe2 vdW heterostructure. (c) The Brillouin zone
with high-symmetry points (M, K, and Γ) and the point Λ (between M and Γ) labeled. (d) Evolution
of the total energy of BlueP/WSe2 vdW heterostructure as a function of vertical strain.
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3. Results and Discussion

To determine the stable structure of BlueP/WSe2 vdW heterostructure, a variation
of the total energy with the applied vertical strains is calculated in Figure 1d. The curve
indicates the minimum under zero strain, and the equilibrium distance is d0 = 4.79 Å.
Figure 1d also illustrates that the total energy of BlueP/WSe2 vdW heterostructure is
sensitively tuned by compressive strain rather than tensile strain.

Band structures of monolayer BlueP, monolayer WSe2, and BlueP/WSe2 vdW het-
erostructure are exhibited in Figure 2. To explore the optoelectronic properties of BlueP/WSe2
vdW heterostructure, its band alignment is also calculated in Figure 2b. In the projected
band structure in Figure 2a, lines in blue and red dots are the electronic bands dominated
by BlueP and WSe2, respectively. Our results show that monolayer BlueP has an indirect
bandgap of 1.94 eV, and monolayer WSe2 shows a direct bandgap of 1.55 eV. After combina-
tion, the indirect band gap of BlueP/WSe2 vdW heterostructure is reduced to 1.11 eV, with
the conduction band minimum (CBM) and the valence band maximum (VBM) localizing
at the Λ and K points, respectively. More importantly, the CBM and the VBM are mainly
contributed by BlueP and WSe2, respectively, which indicates that BlueP/WSe2 vdW het-
erostructure is type-II heterostructure. As a result, spontaneous spatial separation of the
lowest energy electron-hole pairs will occur in the vdW heterostructure with electrons
and holes concentrating in BlueP and WSe2, respectively, as shown in Figure 2b. Further
insight can be obtained from the band decomposed charge density of CBM and VBM of the
BlueP/WSe2 vdW heterostructure in Figure 2c. It can be seen that the wavefunctions of the
CBM and the VBM are localized on BlueP and WSe2, respectively. These results are also
supported by the projected density of states (DOS) of BlueP/WSe2 vdW heterostructure,
as displayed in Figure 2d. According to our results, the spatially separated photoexcited
electrons and holes can effectively improve the carrier concentrations and photocurrent in
the vdW heterostructure and further improve the optoelectronic property of BlueP/WSe2
vdW heterostructure.
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Figure 2. (a) Band structures of monolayer BlueP, monolayer WSe2, and BlueP/WSe2 vdW heterostructure. (b) The band
alignment, (c) the band decomposed charge density of CBM and VBM, and (d) the DOS of BlueP/WSe2 vdW heterostructure.
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Projected band structures of BlueP/WSe2 vdW heterostructure under different vertical
strains are illustrated in Figure 3. The bands contributed by BlueP and WSe2 are plotted
by blue and red balls, respectively. The CBM is found to localize on the Λ and the VBM is
found to localize on the K when BlueP/WSe2 vdW heterostructure is under a tensile strain
of 0.08, as shown in Figure 3a. However, the VBM is changed from K to Γ when the strain is
changed to a compressive strain of 0.08, but the CBM remains on Λ, as shown in Figure 3c.
Interestingly, Figure 3d displays that the CBM is localized on both Λ and K, when continue
increasing the compressive strain to 0.12. And after that, the CBM is changed to K, while
the VBM remains on Γ, as displayed in Figure 3e. It is also proved that both the CBM and
VBM move towards the Fermi level under applying vertical compressive strain, leading to
a decreasing bandgap.
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Figure 3. (a–f) Projected band structures of BlueP/WSe2 vdW heterostructure under different vertical strain. The bands
dominated by BlueP and WSe2 are plotted by blue and red balls, respectively.

The corresponding evolution of the bandgap of BlueP/WSe2 vdW heterostructure
with the applied vertical strain is exhibited in Figure 4a. The bandgap reaches its maximum
at the equilibrium state, and it decreases under tensile or compressive strain. Interestingly,
compared with the tensile strain, the compressive strain shows much more remarkable
tunability on the bandgap of BlueP/WSe2 heterostructure. Results in Figure 3 show that
both the CBM and VBM move towards the Fermi level under applying vertical compressive
strain, leading to a decreasing bandgap. When the compressive strain increases to more
than 0.23, BlueP/WSe2 vdW heterostructure experiences a transition from semiconductor
to metal, which can result in improved conductivity and enhanced transport properties.
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Figure 4. (a) Evolution of the bandgap of BlueP/WSe2 vdW heterostructure as a function of the vertical strain. (b) The
difference between the integrated charge density of BlueP/WSe2 vdW heterostructure under different compressive strain
and that of isolated monolayers. (c) Band alignments of BlueP/WSe2 vdW heterostructure at the equilibrium state and
under a compressive strain of 0.18, respectively.

The integrated charge density difference of BlueP/WSe2 vdW heterostructure under
compressive strains is calculated in Figure 4b. The integrated charge density difference is
calculated as:

∆ρ(z) =
∫

ρBlueP/WSe2(x, y, z)dxdy −
∫

ρBlueP(x, y, z)dxdy −
∫

ρWSe2(x, y, z)dxdy (1)

where ρBlueP/WSe2(x, y, z), ρBlueP(x, y, z), and ρWSe2(x, y, z) are the charge density at the
point of (x, y, z) in BlueP/WSe2, BlueP, and WSe2, respectively. It can be seen that the charge
exchange at the interface of BlueP/WSe2 vdW heterostructure is weak at the equilibrium
state. Then, more charge exchange appears with the increase of compressive strain. To
quantify interlayer charge transfer in the vdW heterostructure, Bader charge analysis is
employed to determine the resulted charge density of BlueP/WSe2 vdW heterostructure.
The results indicated that the number of electrons transferred from WSe2 to BlueP is 0.0068,
0.008, and 0.0091 under the compressive strain of 0, 0.08, and 0.18, respectively. Therefore,
it suggests that the compressive strain can facilitate electrons in BlueP and holes in WSe2,
resulting in an increase of carrier concentration, as shown in Figure 4c.

Calculated optical properties of absorption coefficient and reflectivity of BlueP/WSe2
vdW heterostructure under different compressive strain are exhibited in Figure 5. The
same optical properties are observed in x and y directions, due to the isotropy of the
hexagonal lattice, as shown in Figure 5a,b. From the absorption spectrum, it can be found
that BlueP/WSe2 vdW heterostructure would have excellent application in ultraviolet
light (above 5 eV) detecting. Furthermore, Figure 5c indicates that the applied vertical
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compressive strain shows obvious influence on the optical properties in the z direction,
while exerts little influence in x and y directions. The reason is that the applied vertical
compressive strain only enhances the interlayer interaction while having a negligible effect
on the in-plane interaction.
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Figure 5. Absorption coefficient and reflectivity in the (a) x direction, (b) y direction, and (c) z direction of BlueP/WSe2 vdW
heterostructure under different compressive strains.

4. Conclusions

In summary, we have constructed a BlueP/WSe2 vdw heterostructure and investigated
its electronic structure and band offsets via first-principles calculations. BlueP/WSe2 vdW
heterostructure exhibits tunable bandgap by applied vertical compressive strain and even a
semiconductor-to-metal transition is observed, which suggests a great application potential
in future nano-electronics. Moreover, the type-II band alignment of BlueP/WSe2 vdW
heterostructure facilitates the spatial separation of the photo-excited electron-hole pairs.
The compressive strain facilitates electrons in BlueP and holes in WSe2, which results
in an increase of carrier concentration. According to these results, BlueP/WSe2 vdW
heterostructure presents a variety of opportunities for applications in future nano- and
optoelectronic devices such as photodetectors and solar cells.
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L.H. and Y.Y.; validation, L.Z. and T.Y.; formal analysis, L.Z. and T.Y.; investigation, L.H. and Y.Y.;
resources, L.H. and Y.Y.; data curation, Y.Y.; writing—original draft preparation, Y.Y.; writing—review
and editing, L.Z. and T.Y.; visualization, Y.Y.; supervision, L.Z. and T.Y.; project administration, L.Z.
and T.Y.; funding acquisition, L.Z. All authors have read and agreed to the published version of
the manuscript.
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