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Abstract: Two-step nucleation and subsequent growth processes were investigated in the framework
of the single mode phase-field crystal model combined with diffusive dynamics (corresponding
to colloid suspensions) and hydrodynamical density relaxation (simple liquids). It is found that
independently of dynamics, nucleation starts with the formation of solid precursor clusters that
consist of domains with noncrystalline ordering (ringlike projections are seen from certain angles),
and regions that have amorphous structure. Using the average bond order parameter q6, we dis-
tinguished amorphous, medium range crystallike order (MRCO), and crystalline local orders. We
show that crystallization to the stable body-centered cubic phase is preceded by the formation of
a mixture of amorphous and MRCO structures. We have determined the time dependence of the
phase composition of the forming solid state. We also investigated the time/size dependence of the
growth rate for solidification. The bond order analysis indicates similar structural transitions during
solidification in the case of diffusive and hydrodynamic density relaxation.

Keywords: classical density functional theory; molecular modelling; two-step nucleation; growth
kinetics; hydrodynamic theory of freezing

1. Introduction

Colloid suspensions are considered as model systems for simple molecular liquids [1,2].
A wealth of information is available for the crystallization of colloids including nucleation,
which was obtained via tracing the trajectories of colloid particles via optical methods [2–4].
For example, in colloids, two-step nucleation, assisted by amorphous/liquid precursor,
appears to be a general phenomenon [5–10]. Analogous experimental information is not
accessible for highly undercooled simple liquids. This raises the question, to what extent
the observations made on colloids are applicable to metallic liquids. There appear to be
differences: e.g., crystal growth is usually diffusion controlled for colloid suspensions,
whereas it may be interface controlled for a hypercooled pure liquid. The velocity of a flat
crystal–liquid interface depends on the growth mechanism. In the case of diffusionless pro-
cesses a steady state velocity is established, whereas in the diffusion-controlled processes
the front velocity, v, is proportional to t−1/2, where t is time [11,12]. The growth rate also
depends on the curvature of the interface, as predicted by the classic kinetic model based
on monomer attachment and detachment [13,14]. For spherical particles:

v =
16D
λ2

(
3vat

4π

)1/3
sinh

{
vat

2kBT

(
∆g− 2γ

r

)}
(1)

where D is the self-diffusion coefficient, λ the jump distance of atoms, vat the atomic volume,
kB Boltzmann’s constant, T the temperature, ∆g the volumetric free energy difference
between the liquid and the solid, γ the solid-liquid interfacial free energy, and r the radius
of the crystallite. Note that for the critical size, r* = 2γ/∆g, the deterministic growth rate
is zero, for larger particles it is positive, whereas for smaller particles it is negative. This
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expression is strictly valid only for diffusionless processes, where the velocity of the flat
interface (r → ∞) is independent of time. The behavior of post-nucleation particles in
diffusion-controlled systems is less obvious.

Recent advances made in solidification modeling [15] allow the investigation of both
two-step nucleation and post-nucleation growth. For example, investigations relying on
two versions of a simple dynamical density functional theory, termed the phase-field
crystal (PFC) approach [16–18], have shown steady-state growth when combined with
hydrodynamic density relaxation (a model termed HPFC henceforth [19,20]), and v ∝ t−1/2

for overdamped (diffusion controlled) relaxation dynamics (denoted as DPFC [21–23]), at
small driving forces. The latter model yields diffusionless growth at extreme undercoolings,
where the density of the growing crystal is about the same as that of the liquid [22,23].
These molecular-scale models offer a possibility to study early-stage solidification in three
dimensions (3D), and to compare nucleation and post-nucleation growth for the two types
of dynamics. While structural aspects of crystal nucleation in the DPFC model has been
addressed in some detail in previous work [24–31], similar studies are unavailable for the
hydrodynamic model.

Herein, we address nucleation and post-nucleation growth within the HPFC model,
including the structural aspects, and compare the results to those from the DPFC model.
We are going to investigate whether the two-step nucleation process reported for the DPFC
model [27–31] appears in the hydrodynamic approach, and we compare the time evolution
of the phase content predicted by the two models.

2. Materials and Methods
2.1. Phase-Field Crystal Method
2.1.1. Thermodynamics

The phase-field crystal approach is a simple, dynamic density functional theory of
classic particles [17,30,31]. The free energy functional it relies on can be deduced from the
perturbative density functional theory of Ramakrishnan and Yussouff [32], after expanding
the direct correlation function in Fourier space up to fourth order, providing thus a single
preferred wavelength for the density waves [17,33], hence termed “single-mode PFC” as
opposed to more complex approaches that introduce further preferred wavelengths. The
local state of matter is characterized by the time-averaged particle density, ρ. Introducing
appropriate dimensionless quantities, a Brazowskii/Swift-Hohenberg type expression is
obtained for the dimensionless free energy of the inhomogeneous system relative to a
homogeneous reference fluid (of density ρ0):

∆F =
∫

dr
{

ψ

2

[
−ε +

(
1 +∇2

)2
]

ψ +
ψ4

4

}
(2)

Here ψ ∝ (ρ − ρ0)/ρ0 is the scaled density difference, whereas ε is the reduced temperature
(normalized distance from the critical point). The latter can be connected to such physical
properties as the bulk moduli of the fluid and crystalline phases at a reference density and
temperature. The phase diagram of the 3D system is shown in Figure 1 [27,30,34]. Besides
the homogeneous liquid, stability domains exist for the body-centered cubic (bcc), hexago-
nal close-packed (hcp), and face-centered cubic structures. With appropriate quenching
procedure in the presence of noise representing the thermal fluctuations, amorphous solids
of realistic radial distribution function g(r) can also be obtained in the vicinity of the linear
stability limit of the liquid state [26–30].
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Figure 1. Phase diagram of the single-mode phase-field crystal model in 3D. (Reproduced with
permission from Reference [30]). Besides the 3D crystalline phases, see the presence of 2D periodic
phases such as the triangular rod phase and the lamellar phase.

2.1.2. Equations of Motion (EOMs)

Hydrodynamic PFC models: The HPFC model we proposed to describe crystalline
solidification in simple liquids [19,20] relies on fluctuating nonlinear hydrodynamics [35]
as formulated in [36]. The respective momentum transport and continuity equations are
read as

∂p
∂t

+∇·(v⊗ p) = ∇·[R(ρ) + D(v) + S] (3)

∂ρ

∂t
+∇·p = 0 (4)

Here p(r, t) is the momentum, ρ(r, t) the mass density, v = p/ρ the velocity, while ∇·R
= −ρ∇{δ∆F[ρ]/δρ} ≈ −ρ0∇{δ∆F[ρ]/δρ} is the reversible stress tensor, ρ0 the reference
density, and D = µS{(∇⊗ v)+ (∇⊗ v)T} + [µB − (2/3)µS] (∇·v) the dissipative stress tensor.
S represents stochastic momentum noise, with correlation:

〈Sij(r, t), Skl(r′, t′)〉 =
(2kTµS)

[(
δikδjl − δjkδil

)
+
(

µB
µS
− 2

3

)
δijδkl

]
δ(r− r′)δ(t− t′)

(5)

µS and µB denote the shear and bulk viscosities. To avoid violent interatomic flow in
the crystalline phase that would develop due to steep density gradients, coarse-grained
momentum and density were used when computing the velocity: v = p̂/r̂. (For further
details see References [19,20].) It has been shown that this model recovers steady-state
growth of velocity v ∝ 1/µS, the longitudinal and transversal quasi-phonons of proper
dispersion, and capillary waves of realistic spectrum at the crystal–liquid interface [19].
While there are other hydrodynamic extensions of the PFC model [37–39], they have not
been used for studying nucleation, and the amplitude expansion based model [38] cannot
be easily formulated for detecting competing amorphous and crystalline polymorphs in
the liquid.

Since numerical solution of Equations (2)–(6) in 3D proved computationally rather
demanding, we propose here a simplified HPFC model (sHPFC) that relies on linearized
hydrodynamics. We assume that the velocity and density gradients are small, the advection
term is omitted, and then the time derivative of the continuity equation is inserted into
the divergence of the equation for the momentum transport, which is the way we obtain
a specific form of the DDFT/HI model by Kikkinides and Monson that was successfully
applied for describing capillary waves on the nanoscale [40]:

∂2ρ

∂t2 + α
∂ρ

∂t
= ∇·

{
ρ

m
∇
(

δ∆F
δρ

)
+∇

(
β

∂ρ

∂t

)}
+∇·∇·S, (6)



Crystals 2021, 11, 437 4 of 14

where m is the particle mass, a the damping coefficient, β = {(4/3)µS + µB}/ρ, and the free
energy functional defined by Equation (1) is used in δ∆F[ρ]/δρ, while S is the stochastic
momentum tensor used in Equation (3). Note, assuming β = 0, and omitting the noise term,
we recover the modified PFC (MPFC) model proposed earlier [41,42]. It can be shown that
similarly to the full HPFC, at small undercoolings the sHPFC model recovers steady-state
growth of velocity v ∝ 1/µS, and that longitudinal and transversal quasi-phonons of proper
dispersion occur in the crystal. In the present work we use this simplified hydrodynamic
approach to study crystal nucleation and early stage growth in simple liquids in 3D.

The diffusive PFC model: In the original PFC model [16–18,21–31], the time evolution of
the scaled number density is described using conserved overdamped dynamics, which is
realized by the following dimensionless EOM:

∂ψ

∂t
= ∇·

{
∇ δ∆F

δψ

}
+ ζ. (7)

Here δ∆F[ψ]/δψ stands for the functional derivative of the free energy difference, ∆F, with
respect to the scaled number density difference. ζ is a colored Gaussian flux noise with
correlation 〈ζ(r,t)ζ(r′ t′)〉 = ξ2∇2g(|r − r′|, σ)δ(t − t′), where ξ is the noise strength, and
g(|r − r′|, σ) is a high-frequency cutoff function [27,28], to remove wavelengths shorter
than the interatomic spacing (σ). In this model different growth modes occur at large
and small driving forces for crystallization: (i) at small undercoolings or supersaturations
growth is diffusion controlled and v ∝ t−1/2, whereas (ii) at large driving forces, where diffu-
sion length lD = D/v becomes comparable to the interface thickness, a transition is observed
to a diffusionless fast growth mode displaying steady-state growth (v = const.) [22,23], as
expected for colloids [43].

2.2. Numerical Methods

The dimensionless kinetic equations were solved in three dimensions, using a pseu-
dospectral scheme combined with a second-order Runge-Kutta time stepping, while
employing periodic boundary conditions on uniform rectangular grid. Unless stated
otherwise, the grid size was 5123 that, under the conditions used, corresponds to about
3.6 × 105 atoms. The computations were performed on high-end Graphics Processing Units.

2.3. Materials Parameters

The computations we present were performed at a scaled density of ψ0 = −0.2720 and
different constant reduced temperatures chosen between the values corresponding to the
liquidus line εL = 0.1548 and the linear stability limit εc = 0.2220. The time and spatial steps
used in the numerical computations were ∆t = 0.01 and ∆x = 1. Note that the single PFC
model can be fitted to iron [44,45], yielding realistic structural properties for the amorphous
state [26–28], and combined with the sHPFC dynamics it can be viewed as a model for bcc
metals. A noise strength of ξ = 0.005 was used in all three models. When transforming
the results to dimensional form, the diffusion coefficient (DPFC) or the viscosity/damping
coefficient (sHPFC and DPFC) sets the physical time scale of the process.

2.4. Structural Analysis

The structure of the solid phases was analyzed in terms of the average bond order
parameters ql

k introduced by Lechner and Dellago [46], which incorporates structural
information from the first and second neighbor shells:

qk
l =

{
4π

2l + 1 ∑l
m=−l

⌊
qk

lm

⌋2
}1/2

, where qk
lm =

1
Nk

b + 1 ∑Nk
b

i=0 qi
lm and qi

lm =
1
ni

b
∑ni

b
j=1 Ylm

(
rij

)
(8)

Here Nb
k is the number of neighbors of the particle k, nb

i is the number of the first neighbors
of the ith neighbor or particle k, whereas Ylm is the spherical harmonics of degree l and
order m, while rij is the vector between the first neighbor atom i and its jth first neighbor.
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For reference, the q4–q6 map evaluated for bulk bcc, hcp, fcc and liquid phases from
molecular dynamics simulations performed for the Lennard-Jones (LJ) system is shown in
Figure 2 [46]. This order parameter map distinguishes the bulk crystal and liquid structures
reasonably well.
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Figure 2. q4–q6 map evaluated from molecular dynamics simulations performed using the Lennard-
Jones potential for the bulk bcc, hcp, fcc, and liquid structures. (Reproduced with permission from
Reference [46]).

3. Results and Discussion
3.1. Two-Step Nucleation

First, we investigate whether the amorphous-precursor-assisted crystal
nucleation [26–30] observed in the DPFC model prevails in the sHPFC model. We have
performed isothermal simulations for scaled density of ψ0 = −0.2720 at reduced under-
coolings of ε = 0.200, 0.202, and 0.204. Snapshots of these simulations taken at different
instances are shown in Figure 3, showing nucleation and post-nucleation growth.

We adopted a q6-based coloring scheme, introduced by Kawasaki and Tanaka [47], to
characterize the pre-nucleation local ordering in the liquid: q6 > 0.4 (green)—crystalline
(bcc in our case); 0.4 > q6 > 0.28 (red)—MRCO; which we complemented with the white
color for solid peaks of 0.28 > q6, indicating amorphous solid.
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As expected, with increasing undercooling, increasing number of solid nuclei formed.
Coloring according to the value of q6 indicates that in all the cases studied, nucleation of
the solid started with the formation of an amorphous structure, which was followed by
the appearance of MRCO structure, whereas the stable bcc phase formed slightly later
but almost together with the MRCO, indicating an essentially two-step process mediated
by the amorphous precursor and MRCO structures, akin to that reported in previous
work for diffusive dynamics [27–30]. This sequence is clearly displayed by the time
dependence of the phase fractions presented in Figure 3d,h,l. One may conclude that
under the conditions investigated, the kinetic preference that determines the sequence by
which the different structures appear is similar for diffusion controlled and hydrodynamic
solidification mechanisms.

Snapshots of the q4–q6 map displaying the transition from the initial amorphous state
to the bcc crystal is shown in Figure 4 for the simulation depicted in Figure 3a–d. The
position of the initial amorphous domain agreed well with the liquid domain in the q4–q6
map for the LJ system (see Figure 2), suggesting structural similarity between the sHPFC
amorphous phase and the LJ liquid. This behavior is very similar to the one reported
for DPFC [29]. Unfortunately, the q4–q6 map does not give a detailed characterization of
the structure. Therefore, we further investigated the structures appearing during early-
stage solidification.
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Figure 4. Snapshots of the q4–q6 map during solidification in the sHPFC system for the simulation
shown in the upper row of Figure 3. The time elapses from left to right. Maps corresponding to
dimensionless times t = (a) 800, (b) 1400, (c) 2000, and (d) 5900 are presented. The transparent, green,
red, and yellow circles indicate the ideal bcc, hcp, fcc, and icosahedral neighborhoods, respectively.
Note the gradual transition from the liquidlike initial amorphous state towards the bcc structure.
The “bridge” between the liquidlike and bcc domains indicates transition states corresponding to
the MRCO.

3.2. Structure Evolution during Nucleation

An intriguing question is what solid structures form first from the uniform liquid. In
the classic density functional theories, the local state is characterized by a time-averaged
particle density, which is uniform (apart from fluctuations) in the liquid due to the motions
of atoms/molecules during time averaging. An important question is, what indeed is this
timescale. It is longer than the timescale of thermal vibrations of the particles, and it is so
long that it smoothens the particle density in the liquid. It is interesting, therefore, to have
a closer look at the first forming structures these models predict. A state appears “solid”
on this time scale, when its particles become localized, i.e., move slowly on this time scale.
To understand the microscopic processes governing solidification, it may be interesting to
find out what type of structures become localized first according to these theories. In the
single-mode PFC model, the geometrical constraint exerted by the preferred wavelength
of density changes (provided by the approximate two-particle direct correlation function)
will determine these structures. Further natural questions are: Is this the dominant factor,
or are there others? To what extent can one rely on such predictions?

In this section, we study the structures that form during early stages of solidification
in the DPFC and sHPFC simulations. This may offer us hints on how particle “localization”
happens, a process that may be more difficult to capture in molecular dynamics simulations.

Sequences of snapshots of atom assemblies formed preceding crystallization are shown
in Figures 5–7. Apparently, non-crystalline structures formed first; however, with some
degree of ordering, there were directions from which concentric ring-like arrangements of
atoms could be seen, while viewing from some other directions, definite ordering could
not be recognized. This structure occurred frequently in the DPFC, MPFC, and sHPFC
simulations. During further evolution of the solid cluster, a mixture of non-crystalline
order and liquid-like disorder appeared. Coloring according to the magnitude of q6 did
not separate these two types of solid structures. We have employed other structural charac-
terization methods such as polyhedral template matching; however, besides a somewhat
higher fraction of icosahedral-like neighborhoods than in the LJ liquid, no conclusive
results were obtained for such mixture. Finally, it is worth mentioning that a DFT study
indicates “onion” structures [48] as possible initial perturbations in the pre-solidification
liquid; however, it does not seem to be related to the ring-like structure observed here,
which might indicate ordering in a lower dimension (2D). A couple of different views of
the same early-stage cluster are presented in Figure 8. Remarkably, a mixture of order
and disorder is present. Whether these structures are akin to the icosahedral aggregates
predicted by Dzugutov and coworkers [49,50], using a potential similar to the effective
pair-potential we derived for the PFC model [28], is unclear at present. Work is underway
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to clarify further the nature of the non-crystalline ordering observed during the early stage
of solidification.
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Figure 6. Snapshots of a solid cluster forming in an MPFC simulation performed under the same conditions as the simulation shown 

in Figure 5. In the left three panels, small spheres are used to indicate the position of the density peaks, which allows us to see the 
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Figure 5. Snapshots of a solid cluster forming in a DPFC simulation performed at ε = 0.2 and ψ0 = −0.2720. The snapshots
were taken at dimensionless times t = 520, 600, 700, 1000, and 1400. Coloring indicates the magnitude of q6. White
(amorphous): q6 < 0.28; red (MRCO): 0.28 < q6 < 0.4; green (bcc): q6 > 0.4. In the upper and central rows atom-size circles
denote the density peaks. In the upper row atoms with all three types of neighborhoods are shown, whereas in the central
row only particles of MRCO and bcc-type neighborhoods. In agreement with previous results for the DPFC model [28–30],
the early stage of solidification is dominated by the formation of an amorphous precursor. In the bottom row, we used
smaller spheres to indicate the position of the density peaks, which then allows us to see the presence of an ordered
but non-crystalline initial structure. The ring-like ordering can only be seen from certain directions. A fraction of a 5123

simulation is shown.
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Figure 6. Snapshots of a solid cluster forming in an MPFC simulation performed under the same conditions as the simulation
shown in Figure 5. In the left three panels, small spheres are used to indicate the position of the density peaks, which allows
us to see the presence of an ordered but non-crystalline initial structure. On the right atom-size spheres are displayed. The
snapshots were taken at dimensionless times t = 460, 500, 600, 900, and 1100. The same coloring is used as in Figure 3. A
fraction of a 5123 simulation is shown.
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Figure 7. Snapshots of a solid cluster forming in an sHPFC simulation performed under the same conditions as the
simulation shown in Figure 5. In the left three panels, small spheres are used to indicate the position of the density peaks,
which allows us to see the presence of an ordered but non-crystalline initial structure. On the right atom-size spheres are
displayed. The snapshots were taken at dimensionless times t = 450, 500, 600, 800, and 950. The same coloring is used as in
Figure 3. A fraction of a 5123 simulation is shown.
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Figure 8. Different views of an early-stage cluster from the sHPFC simulation shown in Figure 7. The snapshots were taken
at a dimensionless time of t = 550. Views in the upper row show some degree of order, combined with disorder, whereas
structural order in the bottom row is less obvious. A fraction of a 5123 simulation is shown.

3.3. Post-Nucleation Growth

An effective linear size (n1/3) was evaluated as a function of time from the number n of
density peaks for the DPFC, MPFC, and sHPFC clusters shown in Figures 5–7, respectively.
The results are shown in Figure 9a, whereas the prediction for pure Fe at 1500 K obtained
by integrating Equation (1) is shown in Figure 9b. It is found that predictions of the three
models for post-nucleation growth were qualitatively similar: after a plateau corresponding
roughly to the critical size, a smooth transition into an apparently steady-state growth was
seen. In the case of the DPFC model this probably indicates that the system entered the fast
diffusionless growth regime. The transition to steady-state growth was somewhat longer
for the sHPFC model than for the other two. The differences in the growth mechanisms,
according to the three models, were perceptible only for longer time scales.
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Figure 9. Post-nucleation growth: (a) effective linear size vs. time for the clusters shown in
Figures 5–7; (b) effective linear size vs. time for an iron cluster nucleated at 1500 K as follows
from integrating Equation (1). Note the similarity of the curves presented in panels (a,b).

3.4. Flat-Front Growth in the sHPFC Model

First, we compared the time dependence of growth in the three models for a reduced
undercooling of ε = 0.1750. Figure 10 shows the number of atoms in the solid (bcc) phase
as a function of time in a slab geometry of aspect ratio 1:32. Remarkably, the MPFC model
obtained by substituting α = 1 and β = 0 into Equation (1), showed a practically identical
behavior to the DPFC model. After a short initial transient, the position of the growth front
varied proportionally to τ1/2 in the whole-time window covered, indicating a dominantly
diffusion-controlled process (see Figure 10a). Deviation from this behavior is expected at
much longer times, when the diffusion field ahead of the front interacts with the boundary
condition. In contrast, the sHPPC model obtained with α = 0 and β = 1 showed a linear
position–time relationship for short times (t < 1000) (Figure 10a), yet for longer times the
growth rate decreased due to flow-controlled depletion of the liquid (Figure 10b) and
converged towards a stationary state. Note the stepwise change of the number of atoms in
all three models, indicating a layerwise growth of the slab.

Next, we evaluated the steady-state growth rate as a function of driving force and
viscosity in the sHPFC model. As in the case of the HPFC model that relies on full fluctu-
ating nonlinear hydrodynamics, it was found that the steady-state velocity vs. reduced
undercooling ∆ε = ε − εL plot was somewhat curved (see Figure 11a) as reported for
the MPFC model [51], which may follow either from a deviation from Turnbull’s linear
relationship for the thermodynamic driving force [52], or may originate from a relaxation
effect Ankudinov and Galenko identified in the case of the MPFC model [53]. The growth
velocity, in turn, is about inversely proportional with the viscosity term β (see Figure 11b).
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Figure 10. Flat-interface slab growth in 3D within the DPFC, MPFC (α = 1 and β = 0), and the sHPFC
model (α = 0 and β = 1). The number of atoms in the crystalline slab is shown as a function of
dimensionless time for (a) short times and (b) long times. A linear function fitted to the sHPFC result
for t < 500, and an Aτ1/2 function fitted to the DPFC result for τ < 5000 are also shown (dotted lines).
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4. Conclusions

We investigated two-step nucleation and post nucleation growth in the framework of
PFC models supplemented with diffusive dynamics (DPFC), and two types of linearized
hydrodynamics that differ in the dissipation term: α = 0 (sHPFC) and β = 0 (MPFC). It has
been shown that
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• In all three models the stable bcc phase appears via two-step nucleation.
• During the early stage of nucleation, a disordered solid of liquid-like structure

(0.28 > q6) appears, followed by the formation of MRCO (0.28 < q6 < 0.4), which
precede the formation of the stable bcc structure.

• The first appearing solid structure is ordered so that it has a concentric ring-like
view from certain directions. The number of icosahedral neighborhoods is higher in
this domain than in the LJ fluid. This structure may coexist with a disordered solid
structure of liquid-like order. Remarkably, these two structures are not distinguished
by the q6-based color scheme of Kawasaki and Tanaka.

• The time dependence of grain size emerging from the post-nucleation growth was eval-
uated from DPFC, MPFC, and sHPFC simulations. At short times the predictions are
rather similar to each other and agree reasonably well with the dependence obtained
by integrating the size-dependent growth rate given by Equation (1). Differences in
the growth mechanism become perceptible only on a longer time scale.

• The steady-state growth velocity the sHPFC predicts increasingly deviates downwards
from a linear relationship with increasing undercooling, and it is roughly inversely
proportional to the viscosity.

• Finally, we note that nucleation and the post nucleation behavior appear to be less
sensitive to the mechanism of density relaxation than the kinetics of crystal growth.
This is so, despite the fact that in the present studies the nucleation that took place via
intermediate states preferred kinetically relative to direct bcc nucleation.
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