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Abstract: Whispering gallery resonators made out of lithium niobate allow for optical parametric
oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical
properties of this material. An important knob to tune and control these processes is, e.g., the linear
electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the
resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial.
Here, we study the average strength of the electric field in z-direction in the region of the optical
mode for different configurations and geometries of lithium niobate whispering gallery resonators
with the help of the finite element method. We find that in some configurations almost 100% is
present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a
few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design
considerations for future arrangements that may benefit from the strong electro-optic effect in bulk
whispering gallery resonators made out of lithium niobate.

Keywords: electro-optics; whispering gallery resonators; lithium niobate

1. Introduction

Non-centrosymmetric materials offer second-order non-linearities that allow for,
e.g., second harmonic generation, optical parametric oscillation and difference frequency
generation. Furthermore, such materials bear the linear electro-optic effect, the so-called
Pockels effect and the piezo-electric effect [1]. Due to this, non-centrosymmetric materials
are the centerpiece of many setups for optical frequency conversion, e.g., for optical para-
metric oscillators for mid-infrared spectroscopy and frequency comb conversion into the
molecular footprint region [2,3], as a single photon source for quantum imaging [4] and in-
frared spectroscopy [5], to generate terahertz radiation [6] and to generate tunable continu-
ous wave light in the visible spectrum [7]. One of the most prominent non-centrosymmetric
materials is lithium niobate. Due to high second-order nonlinear-optical coefficients, high
transparency in the visible and infrared optical wavelengths and large Pockels coefficients
lithium niobate is an excellently suited optical material.

In the last two decades whispering gallery resonators (WGRs) have developed to a
well established and powerful platform employing non-centrosymmetric materials for
frequency conversion. The WGRs are monolithic resonators with spheroidal geometry
manufactured from the bulk material or chip-integrated on wafers. They provide a high
quality factor making them particularly interesting for non-linear optical applications.
Moreover the mirror-less, monolithic devices reduce the footprint drastically compared
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with other resonator design schemes. The remarkable features of this platform are demon-
strated in many experiments such as frequency comb generation based on third-order [8,9],
and second-order optical non-linearity [10,11], electro-optically generated combs [12,13],
optical parametric oscillation, second harmonic generation [14] and as a platform for quan-
tum optics [15]. All applications can benefit from the Pockels effect. In the simplest case,
the resonance frequency of the WGR can be stabilized to the pump laser frequency. In
Figure 1a we illustrate a typical setup used in experiments recently that involve the linear
electro-optic effect in bulk WGRs, e.g., electro-optic combs [13], second-order-non-linearity-
based frequency combs [10], efficient microwave-to-optical photon conversion [16] and
adiabatic frequency conversion [17]. The main principle can be summarized as follows: By
generating an electric field in the resonator, the refractive index is changed and hence the
resonance frequency due to the Pockels effect according to [18]:

∆ν0 =
n2

2
ν0riEz (1)

there n is the refractive index, ν0 the WGR resonance frequency, Ez the electric field and ri
the electro-optic coefficient. This way, for example, the second harmonic generation light
can be maximized [19]. Furthermore, the frequency comb threshold via second harmonic
generation can be minimized [20]. For the Pockels-effect-based adiabatic frequency con-
version the resonance frequency is changed with a voltage pulse faster than the photon
life time. This allows to generate frequency shifts of several GHz within nanoseconds [17].
Also an electro-optically tunable higher-order optical filter made out of lithium niobate
WGRs has made use of the linear electro-optic effect [18]. Knowledge of the electric field
strength at the position of the light field and its homogeneity are needed to be able to
compare the experimental data and theoretical predictions [15]. In the case of a cylindrical
WGR, as illustrated in Figure 1b, estimating the electric field strength Ez would be simple.
According to the plate capacitor formula, we obtain

E0 =
U
∆z

(2)

with the thickness ∆z and the electric potential difference U. A straight sidewall would
lead to an optical mode extended in z-direction up to the electrodes of the resonators,
which would cause a damping of the light field. A WGR possesses a spheroidal geometry
as shown in Figure 1. This makes the prediction of the electric field at the location of the
optical mode non-trivial. The optical mode is not located between the electrodes of the
resonator, the light traveling around the rim experiences in general a weaker externally
generated electric field Ez < E0. Furthermore, the electric field can become inhomogeneous
through the cross section of the mode.

The aim of our work is to analyze the electric field strength Ez in the area of the
optical mode and its homogeneity. The strength of Ez addresses the two commonly used
Pockels-coefficients of LN, r31 and r33 [17,19,20]. They change the refractive index for
light polarized perpendicularly to and parallel to the symmetry axis for z-cut lithium
niobate. Furthermore, due to symmetry properties of lithium niobate this orientation
is the best suited for most applications in bulk WGRs. We analyze the electric field
distribution in two common mm-sized WGR configurations, for conventional geometries
as well as the so called few- or single mode geometry [21,22] made out of z-cut bulk
lithium niobate. By introducing a small bulge, single mode operation in bulk WGRs is
possible [21,22]. Furthermore we analyze the effect of introducing a distance between the
rim of the resonator and the beginning of the electrode to prevent electric breakdowns
in air when applying high voltages to the electrodes of the resonator. Additionally, we
consider two different dielectric constants, for the unclamped εUC and for the clamped
εC case. In the experiments mentioned before different frequencies of the external electric
fields were used. For external electric fields with a frequency well below 1 MHz we
assume the unclamped case with εUC. But for example in the Pockels-based adiabatic
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frequency conversion frequencies of the external electric field are significantly higher,
and the resonator is effectively clamped, partially or fully making εC applicable in the latter
case. Due to this we simulate with εC. Although the dielectric constant for the unclamped
and clamped case in z-direction is ε33 ≈ 30, the radial component ε11 changes from 84 to
43. This will influence the electric field strength at the optical mode.

Figure 1. (a) Artist drawing of a setup used in recent experiments of frequency conversion schemes involving bulk lithium
niobate whispering gallery resonators involving the electro-optic effect. The laser light is coupled into the WGR via a
coupling prism. The resonator is coated with a metal electrode. (b,c) The electric field distribution indicated by the green
lines for a cylindrical resonator with an idealized homogeneous field and for a commonly used resonator geometry. The red
area indicates the size and position of the optical mode, not to scale.

2. Materials and Methods

The simulations in this paper were performed using the finite element method [23]. We
used the commercially available software COMSOL Multiphysics to calculate the external
electric field and the spatial distribution of the optical mode. Since the WGRs show rotation
symmetry with respect to the z-axis we can reduce the computational effort drastically by
solving the problem in a 2D section. As illustrated in Figure 2 both geometries considered
in this work include a lithium niobate WGR coated at the +z-side and −z-side with metal
electrodes to allow the application of an external electrical field. The WGR is surrounded by
air. For the permittivity of lithium niobate we consider two different cases. The unclamped
case with εUC with a radial component εUC

11 = 84 and for the z-axis direction εUC
33 = 30.

For the clamped case εC
11 = 43 and εC

33 = 29.6 [24]. We furthermore assume that no space
charge fields are present in the crystals. One needs to be aware that all lithium niobate
crystals exhibit some photo-refractive sensitivity that stems from light induced space charge
fields. Thus for intense and blue/ultraviolet light space charges may modify the electric
fields in the regions of the optical modes, most likely reducing the fields because of the
generated photoconductivity.

We perform calculations using two different types of geometries. The first one is
shown in Figure 2a and very typical [11,16,17,20]. Here most resonators are mm-sized
and have a thickness of a few hundred micrometers. For a lithium niobate WGR which
should couple extraordinarily polarized light of a wavelength of λ = 1 µm via a rutile
prism, a ratio of the major radius R1 and the minor radius R2 of R2/R1 ≈ 0.4 is a good
choice for a sufficient coupling efficiency [25]. For the simulations shown in Section 3.1
using this ratio, we vary the thickness between a minimum of 50 µm and a maximum of
∆z = 2× R2 for major radii of R1 = 100, 500 and 1000 µm. In case of ∆z = 2× R2 we obtain
a semicircular bulge. Furthermore we investigate the effect of a gap between the resonator
rim and the beginning of the electrode. To this end we introduce a distance ∆d between the
rim of the resonator and the beginning of the electrode for a WGR with ∆z = 500 µm and
R1 = 1000 µm as is illustrated in Figure 2a. We define the rim as the spatial position where
the curvature begins. This investigation we consider to be important for two different
reasons: (1) Lithium niobate can withstand very high electric field strengths of up to
65 kV mm−1 [26]. However, air has a breakdown voltage of 3 kV mm−1 only, which limits
the maximum voltage that can be applied to the resonator [27]. The shortest path between
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the electrodes through the air can be enlarged and hence the maximum voltage until an
electric breakdown occurs. Furthermore, insulators can be applied to further increase
the breakdown voltage. However, smaller electrodes reduce the field at the rim for a
given voltage and it is open which effect will win. (2) This gap can also stem from the
fabrication process of the WGR. During the shaping and polishing of the resonator the
electrode can be partially removed. By introducing the gap ∆d we want to account for
this, by either applying a gap just to the top electrode , in the following referred to as
asymmetric case or to both electrodes, referred to as symmetric case in the following. Since
the bulk WGRs are typically mounted on a post and therefore one side is protected, we
consider the asymmetric case for a damage of the electrode during the fabrication process.
The symmetric case is considered when applying an isolation layer on both electrodes.

Figure 2. Geometries used for the simulation. We assume an axially symmetrical 2D model. The resonator has at the bottom
and top a metal electrode. In (a) the geometry with a constant ratio is illustrated. Here R1 is the major radius, R2 the minor
radius and ∆z the thickness. For this shape we also investigated a variation of the distance ∆d between the rim of the
resonator and the electrode. (b) The few-mode geometry. The small bulge at the equator of the WGR is used to guide the
light. Here rs is the radius of the small circle and the distance ∆r between the rim of the resonator and R1.

Another investigated geometry is that of few-mode WGRs. As shown in Figure 2b, this
is characterized by a small convex bulge at the equator of the resonator. The major radius R1
of the resonator is always kept at 1 mm. The shape of the small bulge is characterized by two
parameters. The first, rs, describes the radius of the circle, and ∆r, which characterizes the
distance of the bulge from the straight part of the resonator. We keep the radius rs = 5 µm
constant, while the distance ∆r is varied. We simulate for thicknesses of ∆z = 500 µm and
∆z = 50 µm. In our model we approximate the shape of the bulge with a semicircle. In
order to provide a smooth transition between semicircular bulge and the bulk material,
the shape of the bulge is approximated by a cubic Bézier curve. The formula with weights
can be found in the Appendix A.

The following simulation and analysis procedure is performed: For each geometrical
configuration we perform an eigenfrequency analysis to compute the intensity distribution
of the fundamental mode. In a second step we compute the electric field distribution for
a voltage of U = 1 V applied to the electrodes. This is done by solving the electrostatic
Maxwell equations. Finally, we determine for each geometry the average strength of the
external electric field and the distribution in the area of the optical mode where the intensity
is larger than 10% of the maximum intensity of the mode. We always use a wavelength
λ = 1 µm and the refractive index n of 2.16 [28]. In the simulation we use a free triangular
mesh with a locally dense meshing. Inside the WGR the maximum element size is set to
4 µm. This value decreases towards the position of the optical mode. Here, the maximum
size is set to λ/10, i.e., to 100 nm.
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3. Results

The results section is divided in two parts: The first part is dealing with the simulation
in the conventional resonator geometry with different ratios of the thicknesses ∆z and
the major radii R1. Additionally we discuss the influence of a gap ∆d between the rim of
the resonator and the electrode. In the second part we discuss few-mode resonators for
different ∆r and ∆z.

3.1. Conventional Resonator Geometry

In Figure 3 the electric field distribution in z-direction for two exemplary thicknesses
∆z = 500 µm and ∆z = 50 µm for R1 = 1000 µm is shown. In both cases the permittivity is
assumed to be εC. This results in a ratio of ∆z/R1 = 0.5 in the first and ∆z/R1 = 0.05 in
the second example.

Figure 3. Two examples of electric field distributions Ez for different thicknesses. The distribution
is plotted based on εC. The red area indicates where the intensity of the fundamental optical mode
is larger than 10% of its maximum. The black bar has in (a) a size of 50 µm and in (b) of 10 µm.
For better visibility the range of field values is limited such that the region of interest provides
enough contrast.

Comparing the field strengths in Figure 3a,b we obtain the expected behavior, that
with decreasing thickness and a constant voltage applied to the electrodes, the electric field
increases. Since the ratio R2/R1 is constant, the horizontal distance between the electrode
and the position of the optical mode decreases, while the size of the mode is constant for a
given R1. This gives an additional gain in the effective electric field strength. In Figure 4a
the average value of Ez is shown for the investigated thicknesses between ∆z = 800 µm
and ∆z = 50 µm of a WGR with R1 = 1000 µm in the unclamped case. Furthermore,
in Figure 4b we compare our electric field strength determined for the unclamped and
clamped cases with the field strength of a respective plate capacitor for different ratios
∆z/R1 and for radii of R1 = 100, 500 and 1000 µm.

For the resonator with ∆z/R1 = 0.5 we obtain an electric field strength of 79.5%
(72.5%) of the strength a plate capacitor of similar thickness would have. With decreasing
thickness the mismatch becomes less, ending up with a strength of 98% (97%) of the case
of a respective plate capacitor for ∆z/R1 = 0.05. The values within brackets represent the
clamped case. To quantify the homogeneity of the external applied electric field we calculate
the maximum values of the external electric field Ez,max and the minimum values Ez,min in
the considered area of the optical mode. Then we derive ∆Ez/Ez = (Ez,max − Ez,min)/Ez.
It is as small as 2% for all investigated thicknesses in case of the fundamental optical mode.
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Figure 4. (a) The average electric field strength in the area where the intensity is larger than 10 % of its maximal intensity of
the fundamental optical mode for R1 = 1000 µm and different thicknesses ∆z. The green line indicates the field strength Ez

according to Ez = E0 = U/∆z. (b) Comparison between the electric field Ez and the respective field in a plate capacitor E0

for different ∆z/R1. The error bars have point size.

In the next set of simulations we determine the average strength of Ez for the variation
of the distance ∆d as indicated in Figure 2 for a standard 500-µm-thick resonator. The results
are shown in Figure 5a. For each ∆d we calculate Ez for both dielectric tensor values for
lithium niobate.

Figure 5. (a) The electric field strength in the area of the optical mode for different distances ∆d of the electrode from the
rim of the resonator between 0 and 150 µm. The major radius of the WGR is R1 = 1000 µm and the thickness ∆z = 500 µm.
(b) Schematic of a possible configuration with an additional isolation layer with length ∆l covering the top and the
bottom electrode.

We investigate the symmetric case, where the electrodes on the top and bottom move
both the same way, as well as the asymmetric case, where only the top electrode changes
its distance from the rim. In all cases the strength of Ez decreases nearly linearly after
∆d = 30 µm. Our measure for the field inhomogeneities ∆Ez/Ez stays below 2% across the
area of the fundamental mode even for increasing values of distance ∆d. To estimate the
possible gain in the breakdown voltage we calculate the shortest distance of the electrodes
for this configuration through the air, assuming this to be the relevant distance. For an
electrode reaching the rim we obtain an arc length of 0.54 mm. A straightforward way
of increasing this distance and thus reducing the risk of a breakdown in air would be to
apply isolating layers with a very high dielectric strength in the gaps ∆d and on top of both
electrodes as shown in Figure 5b. As an example, we assume a ∆l = 300 µm long layer on
both sides. Hence the relevant distance between the electrodes doubles. Assuming that
∆d = 20 µm is needed to apply the isolation layer sufficiently, we obtain a decrease in the
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electric field strength assuming εUC of 1% only. In order to be able to contact the resonator
the isolation layer cannot cover the whole electrode.

3.2. Few-Mode Resonator

Two examples for the obtained strength distributions of the electric field Ez for the
few-mode geometry are displayed in Figure 6 for a resonator with R1 = 1000 µm and
∆z = 500 µm. For ∆r = 1 µm the optical mode is almost completely located in the part of
the resonator which is between the electrodes, while for ∆r = 5 µm the optical mode is
located in the bulge outside the electrodes. The change of the mean electric field strength
Ez in the area of the optical mode with increasing ∆r from 1 to 5 µm is shown in Figure 7.
Additionally, the number of the obtained transversal modes for each configuration is
displayed. The size of the error bar is given as ∆Ez = Ez,max − Ez,min, with the minimum
values of the external applied electric field Ez,min and the maximum value Ez,max in the
considered area of the optical mode. For ∆r = 0 and 0.5 µm no solution for the optical mode
could be found in our simulation. For each ∆r we calculated Ez for both dielectric constants.
In Figure 7b we compare both Ez to the respective field strength E0 of a plate capacitor
with the same thickness. The highest values for 91.2% (90%) are obtained for ∆r = 1 µm.
The value in the brackets represents the determined strength for εC. At ∆r = 5 µm we
determine for εUC a relative strength of Ez/E0 = 60% which is 9.5% larger than that for εC.
The relative electric field inhomogeneity ∆Ez/Ez across the area of the fundamental mode
for ∆r = 5 µm assuming εUC is determined to be 24% and for εC 41% of average value.
When the thickness of the resonator is reduced to ∆z = 50 µm , the relative strength Ez/E0
changes in the sub-percent level compared to the WGR with ∆z = 500 µm. Also the field
homogeneity does not change significantly.

Figure 6. Two examples for different ∆r in the case of a few-mode WGR with a semicircular bulge
with radius rs = 5 µm, R1 = 1000 µm and ∆z = 500 µm. The electric field strength is plotted using
the unclamped dielectric constant. We simulate in (a) ∆r = 1 µm and in (b) ∆r = 5 µm. The color
code represents the electric field strength Ez. The red area indicates the area where the intensity of
the fundamental optical mode is larger than 10% of its the maximum value. The black bar has a size
of 5 µm. For better visibility the range of Ez field values is limited such that the region of interest
provides enough contrast.
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Figure 7. (a) The average electric field strength Ez in the few-mode resonator with small radius rs = 5 µm in the area where
the normalized intensity of the fundamental optical mode is larger than 10%. The red data points represent the strength
Ez with εC and black the one with εUC. The error bars represent ∆Ez. The inset show the highest possible optical mode.
The yellow bar has a size of 5 µm. (b) Comparison between the electric field Ez and the respective field in a plate capacitor
E0. The gray bars as a measure for the field inhomogeneity are given by ∆Ez/E0.

4. Discussion

For the conventional WGR geometry the performed simulations validate that with
decreasing thickness the electric field strength is increasing. This is so far the expected
behavior considering a simple plate capacitor model. Depending on the dielectric con-
stant used, Ez develops differently. For the unclamped case, εUC is twice as large in the
radial component as εC and the E-field lines are thus more strongly drawn into the bulge
providing a larger field strength and higher homogeneity of the field. For example for a
WGR with ∆z/R1 = 0.5 the deviation from the respective electric field strength of a plate
capacitor between both WGRs is just 7%. This difference decreases to 0.7% at ∆z/R1 = 0.05.
The homogeneity of Ez considering the difference between the minimum and the maxi-
mum value is less than 2% for each ∆z/R1 constant. We investigated for three different
radii different ratios of ∆z/R1 as long as the minimal dimensions of ∆z = 50 µm and
R1 = 100 µm are not violated. Due to the characteristics of the electric field we can use this
ratio to determine the behavior of the electric field Ez for typical dimensions of bulk WGRs
made out of lithium niobate.

For a WGR with R1 = 1000 µm and ∆z = 500 µm and with a gap ∆d we determine a
reduction of the average electric field strength Ez of less than 2%, if ∆d is less than 30 µm in
the asymmetric case and 20 µm in the symmetric case. Also here for the unclamped case
the reduction is lower compared to the clamped case. The relative inhomogeneity of the
electric field ∆Ez/Ez is for all investigated cases less than 2%. These findings confirm that
small damages of the electrode during the fabrication process have only minor impact on
Ez. We find that it is possible to increase the effective distance between the electrodes and
thus increase the voltage at which the electrical breakdown in air takes place significantly
by applying an isolation layer with only a minor decrease of the effective electric field Ez at
the cross section of the optical mode.

For the few-mode resonator the difference between the electric field strength Ez for the
clamped and unclamped dielectric tensor is larger compared with that for the conventional
geometry. For this micrometer-sized bulge the effect of a twice as large radial component
of εUC compared with εC comes obviously more into play as our results show. The larger
∆r, the greater the difference between both values is. For ∆r = 5 µm the difference between
both strengths of the dielectric tensors is 9.4%. Also the relative field inhomogeneity ∆Ez/Ez
is larger compared to that of the conventional WGR geometry and varies between 17% and
23% for εUC and from 28% up to 42% for εC. The present study has only investigated the
dielectric constants for the unclamped and clamped cases. Depending on the frequency that
is used for the external electric field, one might excite resonances. For lithium niobate we
expect these resonances for frequencies of some MHz [29]. Here the values for the dielectric
constant might differ drastically. So far we discussed only the fundamental optical mode.
Higher-order modes in conventional resonators will have a reduced homogeneity since
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they are spatially more expanded compared to the fundamental optical mode. However,
the next higher order of transversal modes does not obtain significant deviation from the
respective values of the fundamental mode with respect to strength and homogeneity.
Applying an external electric field to a lithium niobate WGR due to the piezoelectric effect
the resonance frequency is changed as well. However, this contribution is more than one
order of magnitude lower than the frequency shift induced by the Pockels effect and can
be neglected in most cases [17,19,20].

5. Conclusions

To conclude: For all geometries used most of the expected electrical field is indeed
present in the region where the light circulates. However, for small rims and overlaying
rims just half of the field expected from the plate capacitor formula reaches the relevant
region. The inhomogeneity of the electric field distribution is in most cases excellent
amounting to just 2% or less, again except for small and overlaying rims where several 10%
of inhomogeneity might be present. The cases of the clamped versus the free resonators
for quickly/slowly varying external applied electric fields yield differences of the order
of 10% or more for the fields achieved. The simulations provide relevant information
how to optimally design the resonators for Pockels tuning and to compare more precisely
experimental data with theoretical expectations.
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Appendix A. Bézier Curve

We used the following cubic Bézier curve to model the small bulge symmetrically
around the center z = 0:

b(t) =
∑3

i=0 biwiB3
i (t)

∑3
i=0 wiB3

i (t)
, t ∈ [0, 1]. (A1)

Bp
i (t) are Bernstein basis function, with control points in the 2D euclidean space

(
r
z

)
,

b0 =

(
R1 − ∆ r√

r2
s − (rs − ∆r)2

√
2

)
, b1 =

(
R1 − ∆ r√

r2
s − (rs − ∆r)2

)
, b2 =

(
R1√

r2
s − (rs − ∆r)2

)
,

b3 =

(
R1
0

)
, all weight wi = 1.
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