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Abstract: Bismuth ferrite (BiFeO3) is a promising multiferroic and multifunctional inorganic chemical
compound with many fascinating application potentials in sensors, photo-catalysis, optical devices,
spintronics, and information storage, among others. This class of material has special advantages
in the photocatalytic field due to its narrow energy band gap as well as the possibility of the
internal polarization suppression of the electron-hole recombination rate. However, the narrow
light absorption range, which results in a low degradation efficiency, limits the practical application
of the compound. Experimental chemical doping through which the energy band gap of bismuth
ferrite compound is tailored to the desired value suitable for a particular application is frequently
accompanied by the lattice distortion of the rhombohedral crystal structure. The energy band
gap of doped bismuth ferrite is modeled in this contribution through the fusion of a support vector
regression (SVR) algorithm with a gravitational search algorithm (GSA) using crystal lattice distortion
as a predictor. The proposed hybrid gravitational search based support vector regression HGS-SVR
model was evaluated by its mean squared error (MSE), correlation coefficient (CC), and root mean
square error (RMSE). The proposed HGS-SVR has an estimation capacity with an up to 98.06%
accuracy, as obtained from the correlation coefficient on the testing dataset. The proposed hybrid
model has a low MSE and RMSE of 0.0092 ev and 0.0958 ev, respectively. The hybridized algorithm
further models the impact of several doping materials on the energy band gap of bismuth ferrite,
and the predicted energy gaps are in excellent agreement with the measured values. The precision
and robustness exhibited by the developed model substantiate its significance in predicting the
energy band gap of doped bismuth ferrite at a relatively low cost while the experimental stress
is circumvented.

Keywords: bismuth ferrite; support vector regression; energy band gap; gravitational search algo-
rithm; hybridization

1. Introduction

Bismuth ferrite with the chemical formula BiFeO3 has been known since the 1950s [1].
However, its potential applications as a semiconductor multifunctional material in piezo-
electric devices, spintronics, sensors, photosensitizers, and photocatalyisis have recently
gained significant interest [2–5]. The narrow energy band gap characterizing this mate-
rial allows the maximum and efficient utilization of the visible light from solar radiation
energy as compared to the widely used TiO2 photocatalyst that absorbs in the UV range
as a result of its wide band gap [6]. Other promising technological application areas of
bismuth ferrite include wastewater treatment, in photovoltaics, in the photodegredation of
organic dyes, in air purification processes, and in the generation of clean energy through
hydrogen generation from water splitting [7]. The response of bismuth ferrite to visible
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light due to the nature of its band gap is of particular interest in photocatalytic applications
because the material combines many unique features such as cost effectiveness, nontoxicity,
long-term stability, special crystalline structure, electro-optical properties, and electrical
conductivity [3]. This work determines the band gap energy of doped-bismuth ferrite from
the crystal lattice distortion caused by doping using a hybrid gravitational search (HGS)
algorithm and support vector regression (SVR) algorithm.

Bismuth ferrite is a visible light-driven inorganic perovskite photocatalyst with the
general crystal structural formula ABX3, in which A and B represent the periodic table
metal ions while X stands for anionic group [8–10]. Altering both the A and B sites of
this material through doping mechanisms enhances the photocatalytic activity of bismuth
ferrite through band gap tuning and consequently distorts its crystal structure. Pure
bismuth ferrite is characterized by a distorted rhombohedral perovskite structure with a
room temperature space group of R3c [11]. It should be noted that this space group allows
spontaneous polarization formation, while the orbital overlap between O and Fe as well
as magnetic exchange are controlled by the Fe-O-Fe angle. The corner and center crystal
structural positions are occupied by Bi3+ and Fe3+ ions, respectively, while O2- ions occupy
the face centers of the cube. The unit cell crystal lattice parameters are a = b = 0.559 nm
(α = β = 90◦) and c = 1.387 nm (γ = 120◦) [12]. The rotational angle for oxygen octahedra
contributes to the structural key description of the crystal structure of the compound.
The angle 00 characterizing the cubic perovskite matches the ionic sizes completely. The
perovskite structure of bismuth ferrite contains ferro-electricity at the Bi-site while the
Fe-site describes its magnetism. The active lone pair of Bi3+ ions (which is stereo chemical
in nature) contributes significantly to the compound polarization, while the polarization
resides along the c-axis crystal structural parameter of the rhombohedral structure as a
result of the dislocation of Bi ions as compared with the octahedral of FeO6 crystal. The
perovskite structure of this compound is governed by the tolerance factor prescribed by
Gold-Schmidt in 1926 [1]. If the change in the tolerance factor value is accompanied
with a change in atomic species Fe3+ and Bi3+, the crystallographic symmetry becomes
influenced and might change to tetragonal, orthorhombic, or monoclinic. The particle size,
morphology, surface area, electronic band structure, and porosity are significant factors that
affect the photo-activity of bismuth ferrite, while all this information is embedded in the
crystal lattice parameters [1,12,13]. The crystal field that alters the electronic band structures,
dipole moments, and production, as well as the transportation of charge carriers generated
by photo, can be easily influenced by the oxygen octahedral, which is manifested from
crystal lattice distortion after doping. The resulting distortion from doping is employed in
this work to determine the corresponding band gap energy of doped bismuth ferrite.

Support vector regression (SVR) is a computational intelligence-based machine learn-
ing modeling method with the minimization principle (structural risk) as the mathematical
bedrock of its formulation [14]. The algorithm relates the descriptive predictors with
the desired target through the acquisition of patterns. In principle, real-life non-linear
problems that are difficult to solve with a high degree of precision in the problem real
space are mapped to feature space characterized with a high dimensionality with the
aid of non-linear functions. Therefore, this method of problem handling brings about
uniqueness to the SVR algorithm and has facilitated its application in many fields, such
as condensed matter physics [15–17], laser physics [18–20], and material science [21–23],
among others. Since the precision and accuracy of proposed model significantly depend
on the choice of some hyper-parameters, the parameters were selected in this work using a
gravitational search algorithm. The developed hybrid gravitational search based support
vector regression HGS-SVR model is characterized by a high degree of robustness as well
as precision, as observed from the obtained results, while the model is evaluated using
three performance-measuring parameters.

The rest of the manuscript is arranged as follows: Section 2 of the manuscript presents
the mathematical formulation of the developed model. The hybridization as well as the
computational methodology implemented while developing the algorithms are presented
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in Section 3. Section 3 also includes the dataset description and acquisition. The results of
the developed model are discussed in Section 4, while Section 5 presents the conclusions
drawn from the outcomes of the research work.

2. Mathematical Description of the Algorithms Employed for the Modeling
and Simulation

This section presents the mathematical background of the components of the devel-
oped model.

2.1. Gravitational Search Algorithm

The gravitational search algorithm (GSA) is a population-based heuristic intelligent
optimization algorithm that was developed recently [24]. The algorithm is governed by
gravitational principles and Newton’s second law of motion. The basic gravitational law
governing the operational principles and procedures of the algorithm is mathematically
stated as presented in Equation (1):

F = G
Ma Mb

R2 , (1)

where G represents the gravitational constant; F stands for the magnitude of the gravita-
tional pull; while Ma and Mb, respectively, represent the masses of agent a and b navigating
the Newtonian search space defined by the user.

Objects in Newtonian mechanics are treated as agents in GSA and their global search-
ing potentials are determined by the heaviness of the agents, as demonstrated by their
sluggishness towards convergence. The objects are made to attract each other by the force
of gravity, resulting in a gross movement of lighter objects towards heavier objects. The
movement of the heavier objects is slower than that of the lighter objects, and the heavier
objects offer a better solution to the problem. GSA begins by considering a gravitational
system containing N number of agents; the ith agent’s position is defined as depicted in
Equation (2):

Xi =
(

x1
i . . . .xd

i . . . .xn
i

)
f or i = 1, 2, 3, . . . ., N, (2)

where n represents the space dimension of the problem and xd
i defines the ith agent position

in the dth dimension.
The gravitational pull acting on objects of mass i from objects with mass j at time t is

presented in Equation (3):

Fd
ij(t) = G(t)

Mi(t)×Mj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
, (3)

where G(t) is the gravitational constant at time t; Mi and Mj are the masses of agents i
and j, respectively; Rij(t) is the Euclidian distance between i and j agents defined as in
Equation (4); and ε is a small constant that ensures the randomness of the algorithm.

Rij(t) = ‖Xi(t), Xj(t)‖2. (4)

The total gravitational force acting on the ith agent in the dth dimension is taken to
be a weighted sum of the dth component of other forces brought into play by neighboring
agents. The formulation representing the total force is presented in Equation (5):

Fd
i (t) = ∑N

j=1,j 6=i randjFd
ij(t), (5)

where randj stands for a random number spanning between 0 and 1.
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Accordingly, the acceleration of the ith agent at iteration time t and in dth direction,
ad

i (t), is defined as presented in Equation (6):

ad
i (t) =

Fd
i (t)

Mii(t)
, (6)

where Mii represents the ith agent’s inertial mass.
The subsequent velocity of an agent incorporates the sum of its previous velocity and

acceleration. Therefore, the subsequent agent’s position and velocity can be computed
through the implementation of Equations (7) and (8), respectively.

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (7)

vd
i (t + 1) = randi × vd

t (t) + ad
i (t), (8)

where vd
t (t) and xd

i (t) are the respective agents’ velocity and position.
The randomly initialized gravitational constant G at the commencement of the op-

timization processes is reduced as time proceeds to control the search accuracy. This
indicates that G is a function of the initially defined value of G0 as well as time t. The
relationship is presented in Equation (9):

G(t) = G0e−α t
T , (9)

where α and G0 are the positive constant and initial value of the gravitational constant,
respectively.

Gravitational and inertial masses are calculated after a fitness evaluation. The heavier
the mass of an agent, the more efficient the agent is in terms of the solution it represents.
In other words, heavier masses will move slower than lighter masses. The masses are
updated using Equations (10) and (11) with the assumption that:

Mai = Mpi = Mii = Mi, where i = 1, 2, . . . . . . N,

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

, (10)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

, (11)

where f iti(t) is the fitness value of agent i at time t, and the worst(t) and best(t) fitness are
defined mathematically in Equations (12) and (13), respectively, for the minimization problem:

worst(t) = max
jε{1,...N}

f itj(t), (12)

best(t) = min
jε{1,...N}

f itj(t). (13)

2.2. Support Vector Regression Based Algorithm

SVR is a supervised learning algorithm with an excellent capacity to recognize subtle
patterns in a set of complex data. The algorithm belongs to the data analysis algorithms
family governed by convex quadratic programming [25]. SVR is an extension of the work
of Vapnik and co-workers on support vector machine (SVM) [26], which is a tool that
is obtained from statistical learning theory for carrying out classification tasks. Several
implementations of SVM have been achieved in different areas of research shortly after its
proposal [27,28]. SVM is therefore a universal term that can be grouped into classification
and regression algorithms based on the nature of the problem under consideration [29].
Support vector classification (SVC) employs only one slack variable, while SVR uses two
slack variables. Both SVC and SVR employ very similar algorithms, and the difference in
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the algorithms includes the number of slack variables and the inclusion of loss function
among others. In general, a support vector regression function relating the descriptors (x)
with the targets is defined as presented in Equation (14).

f (x, ∝) = 〈w, x〉+ b (14)

where w ε K and b ∈ <.
The algorithm precisely determines the parameters w and b in a manner such that

the bound error does not go beyond a threshold value represented by epsilon ε for the
whole training set of data. A small value for vectorω is sought for achieving the aims of
the algorithm. The Euclidean norm ‖w‖2 is subjected to minimization as well as convex
optimization transformation in order to attain a flat function in Equation (14). The modified
optimization problem is presented in Equation (15):

Minimize 1
2‖w‖

2.
Subject to: {

fk − 〈w, xk〉 − b ≤ ε

〈w, xk〉+ b− fk ≤ ε
(15)

Constraints that may prevent the possibility of attaining a convex optimized problem
in Equation (15) are factored in through the inclusion of slack variables (ξk and ξ∗k ). The
new optimization problem is presented in Equation (16).

Minimize 1
2‖w‖

2 + C ∑K
k=1
(
ξk + ξ∗k

)
.

Subject to: 
fk − 〈w, xk〉 − b ≤ ε + ξk
〈w, xk〉+ b− fk ≤ ε + ξ∗k

ξk, ξ∗k ≥ 0
(16)

where the parameter C contained in Equation (16) is referred to as the penalty factor which
regularizes the complexity of the generated function.

The predictive and future generalization strength of an SVR-based model can be
strongly influenced by the optimal choice of hyper-parameters such as epsilon ε, penalty
factor C, and the kernel option contained in the non-linear mapping function for data
transformation. The acquired support vectors present in insensitive zones are controlled
through epsilon, while the trade-off between the complexities in the SVR-based model and
the maximum allowed error is regularized through the penalty factor defined by the user.
The kernel option controls the extent and the degree of mapping while transforming from
one feature space to another [30,31]. The choice of these parameters is meta-heuristically
controlled using a gravitational search algorithm. The final regression function constructed
in feature space with a high dimension with the inclusion of Lagrange multipliers (λ and
λ*) and a non-linear mapping function is presented in Equation (17):

f (x) =
K

∑
k=1

(λk − λk
∗)δ〈xk, x〉+ b (17)

where δ〈xk, x〉 represents the kernel function.
The mathematical formulation of the implemented Gaussian function is defined by

Equation (18):

δ〈xm, x〉 = exp
(
−
‖xj − xi‖

ψ

)
(18)

where ψ stands for the kernel option.

3. Empirical Study and Computational Details of the Proposed Hybrid Model

This section presents the data acquisition method as well as the computational details
of the proposed hybrid model. The initial results of the statistical analysis carried out on
the implemented dataset are also presented.
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3.1. Data Acquisition Description and Statistical Analysis

The structural distortion in the crystal lattice attributed to the introduction of different
classes of doping materials into the rhombohedrally distorted perovskite structure of
bismuth ferrite is the descriptive input to the developed HGS-SVR model. The distortions
are encoded in the lattice parameters of the doped bismuth ferrite compounds extracted
from the literature [3,11,32–38]. The corresponding experimentally measured energy band
gap for all forty-three bismuth ferrite compounds are also drawn from the same source.
The dataset employed for the simulation is analyzed and presented in Table 1. The entire
content of the available data can be inferred from the obtained means, minimums, and
maximums of each of the descriptors as well as the measured band gaps. The consistency
in the dataset is inferred from the values of the standard deviations, while the coefficients
of correlation relate the degree of linear relation existing between the energy band gaps
and the crystal lattice parameters.

Table 1. Analysis of the employed dataset.

Statistical Parameters a (Ǻ) c (Ǻ) Energy Band Gap (ev)

Mean 5.5766 13.8147 2.2053
Standard deviation 0.0299 0.1119 0.3659

Correlation coefficient −0.6033 0.0926
Maximum 5.6430 13.9178 2.9300
Minimum 5.5020 13.3408 1.6100

A low value of the coefficient of correlation between the crystal lattice parameter along
the c-axis of rhombohedral and the measured band gap shows insufficiency of linear model
in acquiring all the intricacies as well as pattern connecting the descriptor with the desired
band gap. The crystal lattice parameter along the a-axis of the rhombohedral perovskite
structure is negatively correlated with the measured band gap. The hybridization of
the gravitational search algorithm and support vector regression proposed in this work
captures and approximates the connections (which are non-linear) existing between the
crystal lattice distortions and band gap energy of bismuth ferrite compound doped with
other materials.

3.2. Computational Methodology Involved in the Developed HGS-SVR Model

The computational strategy employed in the hybridization of GSA with SVR algo-
rithm was carried out using a MATLAB computing environment. The main function of
the hybridized GSA is to optimally select hyper-parameters with which the SVR algorithm
makes predictions. The acquired dataset available for the simulation was initially random-
ized and subsequently partitioned into two (a training and testing set). The partitioning
ratio is 4:1, in which 80% of the total data (thirty-five data points) were implemented at the
training phase of model development, while the remaining 20% (eight data points) serve
as the testing dataset. The randomization process adopted allows the uniform allocation of
data points into the training and testing phases and ensures efficient and effective compu-
tation. The optimized SVR hyperparameters include the penalty factor (C), epsilon (ε), and
kernel option (ψ) of the most effective Gaussian kernel function. Step by step details of the
computational methodology are described as follows:

Step I: Separation of data into phases after randomization: The extracted data from
forty-three doped bismuth ferrite compounds were initially randomized to prevent unjust
data distribution and further separated into training and testing sets in the ratio of 4:1.

Step II: Selection of a mapping function: Since data transformation to high-dimensional
feature space is an integral part of SVR algorithm, a function was selected for this purpose
among many functions, which include Sigmoid, Polynomial, and Gaussian.

Step III: Population of probable solutions within GSA frame: A specific number of
agents was populated within GSA frame. Each agent encodes information about hyper-
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parameters and span within the search space. The upper search spaces for the penalty
factor, kernel option and epsilon were set at 1000, 0.3, and 0.3, respectively, while the
lower search spaces of the hyper-parameters were, respectively, set at 1, 0.001, and 0.001.
Each agent goes into SVR algorithm using a training set of data and the root mean square
error (RMSE) between the measured and predicted energy band gap was computed. The
future generalization strength of the entire SVR model (corresponding to the number of
the agents) was evaluated using a testing set of data with RMSE as the fitness function.

Step IV: Computation of agent mass, gravitational pull and acceleration: The mass of
each of the agents, the gravitational pull, and the acceleration were, respectively, computed
using Equations (5), (6) and (10).

Step V: Population replacement through position and velocity computation: imple-
mentation of Equations (7) and (8) leads to population replacement with most probable
solution within the search space.

Step VI: Stopping criteria: The algorithm stops when Step II to Step V are repeated
100 times, while the optimum hyper-parameters and kernel functions were saved for subse-
quent implementation. Figure 1 depicts the flow chart of the entire computational methodology.
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4. Results and Discussion

This section presents the results of the developed hybrid HGS-SVR model. Parameters
that measure the estimation accuracy of the developed model are also presented. The
dependency of the number of objects exploiting and exploring the defined search space
on the model precision is presented. The implementation of the developed model to
investigate the band gap energy of doped bismuth ferrite is discussed in this section.

4.1. Convergence of the Developed Hybrid Model

The performance of the employed gravitational search algorithm depends on the initial
value of gravitational constant G0, positive constant alpha α, the initial population of the
agent, and the maximum number of iterations. The maximum number of iterations was set
at 100, since the search spaces of the hyper-parameters are well explored and convergence
is frequently attained before reaching the maximum iteration of 100. Figure 2a presents
five different runs of convergence of the developed hybrid model, while the number of
the initial population, the initial gravitational constant, and the parameter alpha were set
at ten, one hundred, and twenty, respectively. Similarly, Figure 2b presents the model
convergence for an initial population of agents of twenty, while the initial gravitational
constant and parameter alpha were also set at one hundred and twenty, respectively.
Similarly, an investigation was carried out for a total of fifty in the initial population. The
influence of the initial value of the gravitational constant and alpha on the performance
of the developed hybrid model is, respectively, presented in Figure 2c,d. The optimum
values of the initial value of gravitational constant and alpha are presented in Table 2. The
best number of runs for each of the initial population of agents is presented in Figure 3.
The figure presents the variation in the convergence as the number of objects exploiting
and exploring the defined search space changes. Optimum convergence is attained when
ten objects explore the search space. When the number of objects within gravitational pull
of Newtonian mechanics increases to twenty, premature convergence occurs as a result
of the complexity due to the large number of agents exploiting a limited search space. A
further increase in the number of objects subjects the optimization problem to converge
within local solutions. The optimum values of the hyper-parameters obtained using GSA
are presented in Table 2.
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Model Hyper-Parameter Optimized Value

Kernel mapping function Gaussian
Initial number of agents 10

Penalty factor (C) 307.3545
Gaussian kernel option 0.0299

Epsilon 0.0186
Hyper-parameter lambda E-7

Initial value gravitational constant (G0) 100
Parameter alpha (α) 20
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4.2. Evaluation of the Developed Hybrid Model

Parameters that measure model performance such as the correlation coefficient (CC)
between the measured band gap of doped bismuth ferrite and the predicted values using
the developed HGS-SVR model, root mean square error (RMSE), and mean squared error
(MSE) are used for the model evaluation during the training and testing phase of model
development.

Figure 4 presents the values of the coefficient of correlation of the developed hybrid
HGS-SVR model during the training and testing stages. The testing set of data shows a
better performance as compared with the training set. The performance enhancement
during the testing stage is 6.94% as compared with the result obtained during the training
stage of the model. Figure 5 depicts the performance comparison on the basis of RMSE.
The testing phase shows a reduced error while a performance improvement of 55.56% is
obtained. Table 3 presents the values for each of the parameters during the training and
testing stages of model development.
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Table 3. Performance measuring parameters during the model development.

Dataset CC RMSE (ev) MSE (ev)

Training phase 0.917 0.1437 0.02065
Testing phase 0.9806 0.0958 0.009178

In order to further justify the predictive and generalization capacity of the developed
hybrid model over the entire dataset, several experiments were conducted randomly
using different portions of the dataset, while the hyper-parameters of SVR algorithm
were set at optimum values, as presented in Table 2. Table 4 presents the results of the
performance measuring the parameters for each of the runs. The mean value and the
standard deviation for each of the runs for the two performance measuring parameters
are also presented in Table 4. Relatively small values of standard deviation show the
consistency of the predictive strength of the developed hybrid model, while the mean
values of the performance measuring parameters still maintain a better performance during
the testing stage of model development.

Table 4. Evaluation of the generalization and predictive capacity of the model for different number
of runs.

Number of Run CC-Training CC-Testing RMSE-Training RMSE-Testing

1 0.9170 0.9806 0.1437 0.0958
2 0.9139 0.965 0.1495 0.1073
3 0.9022 0.9747 0.1472 0.0853
4 0.9026 0.9815 0.1446 0.1405
5 0.9098 0.9525 0.141 0.1440
6 0.9036 0.9698 0.1404 0.1155

Mean 0.9081 0.9707 0.1444 0.1147
Standard deviation 0.0063 0.0109 0.0035 0.0237

4.3. Influence of Aluminum Particles on Band Gap of Bismuth Ferrite Using HGS-SVR Model

The effect of doping bismuth ferrite with aluminum of different concentrations is
presented in Figure 6. The band gap energy of the compound increases with the concen-
tration of the aluminum [33]. Since the substituted aluminum particles in the compound
are characterized with a reduced ionic radius as compared with that of Fe and Bi, an
increase in the energy band gap is expected. The developed model captures the results
of the experimentally measured band gap, as presented in Figure 6. The influence of the
dopants has been observed to translate to reduced crystal lattice parameters of the prepared
samples [33].

4.4. The Effect of Lanthanum on Band Gap Energy of Bismuth Compound Using HGS-SVR

The significance of lanthanum doping on the band gap energy of bismuth ferrite is
presented in Figure 7. The difference in ionic radii between the substituted rare earth
lanthanum and the host bismuth ferrite leads to FeO6 octahedra modulation coupled with
structural changes [39]. The predictions of the developed hybrid HGS-SVR model match
the measured values excellently.

4.5. Impact of Yttrium Substitution on Energy Band Gap of Bismuth Ferrite Using the
Developed Model

The influence of the incorporation of yttrium particles on the parent bismuth ferrite is
depicted in Figure 8. The figure further presents a comparative study between the results
of the developed hybrid HGS-SVR model and the experimentally measured values [38].
The results of the model show that an increase in the concentration of yttrium leads to
reduction in the energy band gap which agree excellently well with the experimental values.
The incorporation of yttrium dopants contracts the unit cell volume of the compound
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consequent upon contraction in lattice parameters along both axes [38]. The observed
pattern is expected, since the ionic radius of Bi3+ ion is larger than that of Y3+ ion.
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4.6. Significance of Samarium Dopants on the Energy Band Gap of Bismuth Ferrite

Figure 9 presents the obtained energy band gap when samarium particles are intro-
duced into the parent bismuth ferrite compound. The figure also compares the experimental
values with the predicted band gaps [35]. Samarium particle incorporation reduces the
energy band gap of the host material as depicted in the figure. The tolerance factor that
incorporates the ionic radii of the perovskite constituent surfers a reduction due to the dif-
ference in ionic radii of Sm3+ ions and Bi3+ions. Consequently, the Fe-O bond compresses
and leads to lattice distortion in the crystal structure [35].
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5. Conclusions

Modeling the band gap energy of bismuth ferrite doped with several classes of materi-
als is presented. A support vector regression algorithm is hybridized with a gravitational
search algorithm for hyper-parameter optimization using forty-three different samples
of bismuth ferrite-doped compounds. The observed distortion in the lattice structure of
bismuth ferrite, as detailed in the crystal lattice parameters, is the input feature to the
developed hybrid HSG-SVR model. The effect of the initial number of objects exploring
the Newtonian mechanics search space on the model convergence was investigated and
presented. The testing phase of the developed model outperforms the training phase, as
evaluated using three different parameters that measure model performance. The devel-
oped hybrid model further investigates the influence of aluminum dopants, lanthanum
particles, yttrium dopants, and samarium particles on the energy band gap of the parent
bismuth ferrite, while the results of the developed model agree excellently well with the
measured values. The precision, accuracy, and robustness demonstrated by the developed
model will definitely facilitate the quick determination of the energy band gap of doped
bismuth ferrite through an elegant approach which is efficient and less costly.
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