

Article Combined Implications of UV/O₃ Interface Modulation with HfSiO_X Surface Passivation on AlGaN/AlN/GaN MOS-HEMT

Soumen Mazumder 🔍, Ssu-Hsien Li, Zhan-Gao Wu and Yeong-Her Wang * 🔍

Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan 701, Taiwan; soumen.mazumder9@gmail.com (S.M.); bpoy0111@gmail.com (S.-H.L.); andy85cc@gmail.com (Z.-G.W.)

* Correspondence: yhw@ee.ncku.edu.tw; Tel.: +886-6-275-7575-62352; Fax: +886-6-2080598

Abstract: Surface passivation is critically important to improve the current collapse and the overall device performance in metal-oxide semiconductor high-electron mobility transistors (MOS-HEMTs) and, thus, their reliability. In this paper, we demonstrate the surface passivation effects in AlGaN/AlN/GaN-based MOS-HEMTs using ultraviolet-ozone (UV/O₃) plasma treatment prior to SiO2 -gate dielectric deposition. X-ray photoelectron spectroscopy (XPS) was used to verify the improved passivation of the GaN surface. The threshold voltage (V_{TH}) of the MOS-HEMT was shifted towards positive due to the band bending at the SiO_2/GaN interface by UV/O₃ surface treatment. In addition, the device performance, especially the current collapse, hysteresis, and 1/f characteristics, was further significantly improved with an additional 15 nm thick hafnium silicate $(HfSiO_X)$ passivation layer after the gate metallization. Due to combined effects of the UV/O₃ plasma treatment and HfSiO_X surface passivation, the magnitude of the interface trap density was effectively reduced, which further improved the current collapse significantly in SiO₂-MOS-HEMT to 0.6% from 10%. The UV/O3-surface-modified, HfSiOX-passivated MOS-HEMT exhibited a decent performance, with I_{DMAX} of 655 mA/mm, G_{MMAX} of 116 mS/mm, higher I_{ON}/I_{OFF} ratio of approximately 10^7 , and subthreshold swing of 85 mV/dec with significantly reduced gate leakage current (I_G) of 9.1×10^{-10} A/mm.

Keywords: AlGaN/AlN/GaN; gallium oxide; MOS-HEMT; HfSiO_X; UV/O₃; passivation; interface trap density; flicker noise

1. Introduction

In recent years, substantial research has been focused on AlGaN/GaN-based high electron mobility transistors (HEMTs) for high-power and radio-frequency applications due to the remarkable properties of III-nitrides such as high saturation velocity ($\sim 2 \times 10^7$ cm/s), wide band gap (~ 3.4 eV), high carrier density ($\sim 10^{13}$ /cm²), and large breakdown electric field (>3 MV/cm) [1–3]. In particular, high-density and high-mobility two-dimensional electron gas (2DEG) generated at the AlGaN/GaN interface allows us to understand how power-switching transistors having low ON-resistance are applicable to next-generation power conversion systems [4]. However, observations confirm that the AlGaN/GaN HEMTs suffer from severe current collapse due to the presence of multiple surface states at source/drain (S/D) access region [5]. Various methods were introduced to improve the surface and interface states, such as wet cleaning [6], dry etching [6], interface passivation layers [7,8], and surface plasma treatment [9–11].

Among these methods, ultraviolet/ozone (UV/O_3) surface plasma treatment is important due to its ability to screen the effects of polarization bound charges of GaN and to produce the Ga-O surface dielectric layer on GaN [12]. Eller et al. and Choi et al. reported that Gallium oxide (Ga-O) layer is useful as a surface dielectric layer in GaN-based electronic devices [6,13]. Notably, this method is much easier and simpler to apply than what was previously reported [14]. To date, UV/O_3 is mainly used for cleaning. There are very

Citation: Mazumder, S.; Li, S.-H.; Wu, Z.-G.; Wang, Y.-H. Combined Implications of UV/O₃ Interface Modulation with HfSiO_X Surface Passivation on AlGaN/AlN/GaN MOS-HEMT. *Crystals* **2021**, *11*, 136. https://doi.org/10.3390/cryst11020136

Academic Editor: Chun-Liang Lin Received: 24 December 2020 Accepted: 25 January 2021 Published: 28 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). few available reports that are focused on the improvement of the interface quality of the GaN devices by the application of UV/O_3 surface plasma treatment [12,15,16].

Furthermore, previous reports have suggested that the current collapse phenomenon can be effectively mitigated by the reduction of surface states using the different surface passivation dielectrics [17]. Numerous dielectric materials have been used as a passivation layer along with various deposition technologies to improve the device performance, such as SiO₂, SiN_X, SiON, AlN, and HfO₂ [17–20]. However, previous investigation has revealed that each material has its own limitations, e.g., higher gate leakage currents or high interface state density have been observed after SiO₂, SiN_X, or HfO₂ passivation [17,21].

Recent studies have explored how the interface state density could be reduced effectively by the incorporation of Si into Al_2O_3 , which subsequently improves the device performance [22]. In order to improve the dielectric properties of HfO_2 , the inclusion of Si into HfO_2 has been investigated. Due to the unique properties of hafnium silicate ($HfSiO_X$), i.e., high dielectric constant (~16.8) [23], with comparatively large band-gap (~6 eV) [24] and lower interface trap density than HfO_2 , some research groups have previously used $HfSiO_X$ as gate dielectric [19]. To date, direct observation of the improvement of performance in SiO₂ metal oxide semiconductor high electron mobility transistor (MOS-HEMT), using the combined effects of UV/O₃ surface modification with $HfSiO_X$ passivation, has not yet been investigated.

With this aim in mind, in this work, the interface of the SiO₂ MOS-HEMTs was improved through UV/O₃ surface plasma treatment prior to gate oxide deposition. Dramatic reduction of the current collapse in the MOS-HEMT due to deposition of HfSiO_X passivation layer after gate metallization was also examined. The UV/O₃ treatment might have screened the internal/external polarization charge and altered the band bending at the atomic layer deposition (ALD) SiO₂/GaN interface through modifying the charged surface states, which resulted in positive shifting of the V_{TH} in MOS-HEMT compared to conventional HEMT (C-HEMT). The threshold voltage of–3 V, I_{DMAX} of 655 mA/mm, subthreshold slope of 85 mV/dec, and I_G of 9.1 × 10⁻¹⁰ A/mm with a significant improvement of current degradation of 0.6% were achieved for UV/O₃ plasma modified SiO₂-MOS-HEMT after HfSiO_X surface passivation.

2. Materials and Methods

The AlGaN/AlN/GaN heterostructure was grown on a 6-inch p-type low-resistive Si substrate using metal organic-chemical vapour deposition (MOCVD) system. The heterostructure consisted of 5.5 μ m GaN buffer layer, a 200 nm undoped GaN layer, 1 nm AlN, and a 25 nm Al_{0.23}Ga_{0.77}N as barrier layer, and a 2 nm GaN cap layer. The room temperature sheet carrier-density (n_{sh}) and mobility (μ) were extracted from Hall measurements, which were approximately 8 \times 10¹²/cm² and 1700 cm²/V. s, respectively.

Device processing began with mesa isolation using an inductive coupled plasma reactive ion etching (ICP-RIE) system under Cl₂/BCl₃ environment. After that, source and drain regions were defined with UV photolithography and Ti/Al/Ni/Au (25/150/30/120 nm) metal stacks were deposited by using electron-beam (e-beam) evaporator. Then, the rapid thermal annealing (RTA) was done at 875 °C for 30 s under N2 ambient to ensure good ohomic contact. The sheet resistance was found to be approximately 400 Ω/\Box . After that, the UV-ozone surface plasma treatment was done with 7 mg/L-O₃ dose and active wavelengths of 185 nm and 254 nm for 4 min, prior to gate oxide deposition. Then, 5 nm SiO_2 layer was deposited as gate dielectric using atomic layer deposition (ALD) system at 250 °C. Then, the gate region was defined by UV photolithography and Ni/Au (80/100 nm) metal stack was deposited by e-gun evaporator. Furthermore, to improve the device performance, a 15 nm thick $HfSiO_X$ passivation layer was deposited by ALD. As for the 15 nm $HfSiO_X$ deposition, one cycle reaction of bis-(diethylamino) silane (SAM-24) with ozone was inserted into HfO_2 after 4 cycles of HfO_2 to form ~1 nm $HfSiO_X$. As a reference, to understand the effects of surface modification and passivation layer separately, C-HEMTs were fabricated with three different conditions, i.e., (i) without UV/O_3 treatment

and HfSiO_X passivation, (ii) with UV/O₃ treatment and without HfSiO_X passivation, and (iii) with UV/O₃ and HfSiO_X passivation. In addition, to determine the HfSiO_X passivation effects on MOS-HEMT, devices were fabricated (iv) with and (v) without HfSiO_X passivation. The UV lithography and DC measurements were performed with the MJB3 Karl Suss Mask Aligner and B1500A Semiconductor Characterization system. Figure 1a shows the schematic diagram of UV/O₃ surface-modified HfSiO_X passivated MOS-HEMT. All devices were made with the same gate length (L_G = 2 μ m) and L_{GD}/L_{SG} (2/2 μ m) distances.

Figure 1. (a) Schematic illustration and (b) TEM image of ultraviolet-ozone (UV/O_3) -treated HfSiO_X passivated metal-oxide semiconductor high-electron mobility transistors (MOS-HEMT). (c) EDX line scan of HfSiO_X. AFM image of MOS-HEMT (d) without UV/O₃, (e) with UV/O₃ treatment before passivation, and (f) with UV/O₃ treatment after passivation.

3. Results and Discussion

Figure 1b shows the transmission electron microscopy (TEM) image of the UV/O₃ surface-treated HfSiO_X-passivated MOS-HEMT. From TEM image, it can be understood that, due to the UV/O₃ surface treatment prior to gate dielectric deposition, a thin layer of GaO_XN_Y was formed [25]. The energy dispersive X-ray (EDX) line scan of HfSiO_X was shown in Figure 1c. Figure 1d,e shows the atomic force microscopy (AFM) images of the unpassivated sample with and without UV/O₃ plasma treatment, while the AFM image of the UV/O₃ modified HfSiO_X passivated sample is shown in Figure 1f. The combined effects of UV/O₃ surface treatment and the deposition of HfSiO_X passivation layer decreased the surface roughness significantly, which subsequently improved the device performance.

To analyse the improvement of device performance, X-ray photoelectron spectroscopy (XPS) was performed using K-Alpha X-ray photoelectron spectrometer to examine the change in the surface chemistry of the SiO₂/GaN interface after UV/O₃ plasma treatment. Figure 2a,b exhibit the change in atomic composition of GaN 3d core levels without and with UV/O₃ surface treatment, respectively. It can be seen that both spectra were deconvoluted into Ga-N and Ga-O peaks. The Ga-N peak de-convoluted at 19.7 eV and Ga-O peak appeared at 20.8 eV, considering spin orbital splitting [15]. The peak intensity ratio of Ga-O/Ga-N was improved to 75% from 38% after UV/O₃ plasma treatment, indicating an improved passivation. Since the standard Gibbs free energy of the Ga-O bond is negatively

larger (-285 kJ/mol) than Ga-N bond (-157 kJ/mol), the Ga atoms in the Ga-O bond could come from the Ga-N bond [15].

Figure 2. X-ray photoelectron spectroscopy (XPS) measurements of Ga 3d core levels in (**a**) without UV/O_3 and (**b**) with UV/O_3 surface-treated GaN MOS-HEMT.

The typical drain current-voltage characteristics of the UV/O₃ surface-treated MOS-HEMT and C-HEMT before and after HfSiO_X passivation is shown in Figure 3. The maximum drain currents (I_{DMAX}) (@ $V_G = 4$ V) before/after passivation were found to be 655/620 mA/mm for MOS-HEMT and 542/504 mA/mm (@ $V_G = 1$ V) for C-HEMT, respectively. Owing to the large gate leakage current, C-HEMT could not be biased with high V_G . Henceforth, the reduction of I_{DMAX} in C-HEMT was due to the large gate leakage current [26]. The improvement of the I_{DMAX} after passivation was attributed to the increase in sheet electron concentration [27] and surface-controlled effect [28]. After passivation, the SiO₂ MOS-HEMT showed good pinch-off characteristics. In comparison, I_{DMAX} was found approximately to be 415 mA/mm for C-HEMT without surface treatment and passivation.

Figure 3. Comparison of drain current-voltage (I_D - V_D) characteristics of (**a**) conventional HEMT (C-HEMT) (before and after UV/O₃ treatment) and (**b**) MOS-HEMT with and without HfSiO_X passivation.

To understand the gate controllability of UV/O₃ surface-modified MOS-HEMT and C-HEMT, the transfer characteristics were calibrated before and after passivation at V_D = 4 V, as shown in Figure 4. The threshold voltage (V_{TH}) is defined as the gate bias intercept point of the linear extrapolation of I_D at peak transconductance (G_{MMAX}) [29]. V_{TH} of the MOS-HEMT after and before passivation were found to be -3.0 V and -2.65 V, respectively. For C-HEMT, V_{TH} was found to be approximately -3.05 V before passivation, which is hardly a change after HfSiO_X passivation. In previous literature, the negative shifting of V_{TH} in MOS-HEMT compared to planar HEMT was observed due to the larger separation between the gate and the channel [30]. The threshold voltage can be expressed as [31]

$$V_{th} = \phi_B - \Delta E_C - \phi_F - \frac{t_{ox}}{\varepsilon_{ox}} \left(P_1 + P_2 + P_3 + q n_{GaN/SiO_2} \right) - \frac{t_{cap}}{\varepsilon_{cap}} \left(P_2 + P_3 \right) - \frac{t_b}{\varepsilon_b} P_3 - \frac{q n_{ox}}{2\varepsilon_{ox}} t_{ox}^2$$

$$(1)$$

where \emptyset_B is the metal barrier height; \emptyset_F is the energy difference $E_C - E_F$ (E_F is the Fermi energy) in the GaN bulk; ΔE_c is the conduction band offset between SiO₂ and GaN; t_b is the barrier thickness; t_{ox} is the SiO₂ thickness; ε_b is the permittivity of the barrier layer; ε_{ox} is the permittivity of the SiO₂; n_{ox} is the oxide charge; $n_{GaN/SiO2}$ is the interface charge density at the SiO₂/GaN interface; and P_1, P_2 , and P_3 are the total polarization sheet charges (sum of the spontaneous and piezoelectric polarization) at the GaN-cap surface, GaN-cap/AlGaN interface, and AlGaN/GaN buffer interface, respectively. The UV/O₃ treatment could screen internal/external polarization bound charges and form thin Ga₂O_X layer on the GaN surface that could shift the V_{TH} towards positive [16]. Another reason for the positive shifting of threshold voltage in the MOS-HEMT might be the band bending at the SiO₂/GaN interface, which changed the ΔE_C causing the UV-O₃ treatment [11]. After HfSiO_X passivation, the sheet carrier concentration was increased in the channel, which effectively shifted the V_{TH} in the negative direction [32].

Figure 4. Comparison of transfer characteristics (I_D - V_G) (@ V_D = 4 V) of (**a**) C-HEMT (before and after UV/O₃ treatment) and (**b**) MOS-HEMT with and without HfSiO_X passivation.

 G_{MMAX} was increased to 116 mS/mm after passivation from 90 mS/mm for MOS-HEMT, while for UV/O₃-treated C-HEMT, the G_{MMAX} was increased to 138 mS/mm (129 mS/mm) after passivation (before passivation) treatment. To understand the linear behaviour of the devices, the gate voltage swing (GVS) was calculated for two devices. The GVS, defined as 10% drop from the G_{MMAX} , was increased to 2.53 V (1.55 V) from 1.60 V (1.15 V) for MOS-HEMT (C-HEMT) after passivation [30]. The largest GVS after passivation suggests a better linear behaviour for the UV/O₃ surface-treated MOS-HEMT compared with the C-HEMT, from which a smaller intermodular distortion, a smaller phase noise, and a larger dynamic range could be expected, thus making it desirable for practical amplifier applications [30]. The G_{MMAX} and GVS were found to be 104 mS/mm and 0.87 V, respectively, for C-HEMT without UV/O₃ treatment as well as HfSiO_X passivation.

Figure 5a shows the subthreshold characteristics as a function of gate voltage (@ $V_D = 4 V$) for UV/O₃ surface-treated MOS-HEMT and C-HEMT after passivation. It is clearly found that the subthreshold drain leakage current was decreased more than two orders of magnitude in UV/O₃ surface modified HfSiO_X passivated MOS-HEMT than C-HEMT. The interface oxide (GaO_XN_Y) on the GaN, formed by the UV/O₃ surface treatment, reduced the defect states at the metal–semiconductor interfaces resulting in the reduction of sub-threshold drain leakage current and the reverse-biased gate leakage current in MOS-HEMT as shown in Figure 5a [15]. The subthreshold drain leakage current is dominated by the reverse-biased drain leakage current in the pinch-off region [33]. Since the reverse bias gate leakage current was suppressed in MOS-HEMT, the subthreshold drain leakage was decreased due to the improvement of the metal barrier height, as discussed later [34]. The subthreshold swing (SS) was also highly dependent on the reverse-biase gate leakage current [33]. The SS is defined as [35]

$$SS = \left(\frac{\partial log I_{DS}}{\partial V_{GS}}\right)^{-1} \tag{2}$$

Figure 5. Comparison of (**a**) subthreshold (@ $V_D = 4 V$) and gate leakage (I_G - V_G) characteristics of C-HEMT (before and after UV/O₃ treatment) and MOS-HEMT with HfSiO_X passivation. (**b**) Hysteresis characteristics of (@ $V_D = 6 V$) C-HEMT (before and after UV/O₃ treatment) and MOS-HEMT with and without HfSiO_X passivation.

To understand the gate controllability, the SS values of the MOS-HEMT and C-HEMT were calculated from Figure 5a. Plasma-treated MOS-HEMT after passivation exhibited much lower SS of 85 mV/dec than for C-HEMT (125 mV/dec). The ON/OFF ratio (I_{ON}/I_{OFF}) for MOS-HEMT was found to be approximately 3.1×10^7 , while for C-HEMT it was found to be 1.6×10^6 . The SS and I_{ON}/I_{OFF} were found to be 160 mV/dec and 4.8×10^5 for C-HEMT without UV/O₃ treatment and HfSiO_X passivation.

The reverse and forward gate leakage I-V characteristics of the surface-treated SiO₂ MOS-HEMT and C-HEMT after passivation are shown in Figure 5a. It was clearly revealed that the reverse gate leakage current (I_G) (@ V_G = -15 V) of MOS-HEMT was 9.1×10^{-10} A/mm, which was nearly two orders of magnitude less than C-HEMT (4.3×10^{-8} A/mm). As expected, due to the increment of effective barrier height, causing the insertion of large band gap (~9 eV) ALD SiO₂ as gate dielectric, the gate leakage current was reduced in MOS-HEMT compared to C-HEMT. The band alignment of Ni/SiO₂/GaN Schottky interface with Ga-O interlayer due to UV/O₃ surface treatment might be another reason for the noticeable reduction of I_G [15].

The ideality factor (η) can be extracted by employing the standard thermionic equation as [36]

ł

$$\eta = \frac{q}{kT} \left(\frac{dV}{d(lnI)} \right) \tag{3}$$

where *T* is the temperature, *q* is the electron charge, *k* is the Boltzmann constant, and *V* is the applied voltage.

The ideality factors of 2.5 and 3.2 were calculated for MOS-HEMT and C-HEMT, respectively. The UV/O₃ surface plasma treatment prior to gate dielectric deposition reduced the interface state densities, which effectively improved the ideality factor of the MOS-HEMT. Furthermore, a higher turn on voltage (V_T) was observed in C-HEMT with UV/O₃ surface treatment and MOS-HEMT, as shown in the inset of Figure 5a. The shift of V_T was associated with the formation of Ga-O interface oxide layer by UV/O₃ surface treatment in C-HEMT [15].

Figure 5b shows the hysteresis characteristics for MOS-HEMT and C-HEMT before and after HfSiO_X passivation (@ $V_D = 6$ V). The MOS-HEMT exhibited less hysteresis than C-HEMT after HfSiO_X passivation. The combined effects of UV/O₃ surface treatment and HfSiO_X passivation resulted in the significant reduction of hysteresis in SiO₂-MOS-HEMT. Compared to C-HEMT, the MOS-HEMT exhibited almost low hysteresis of 0.11 V after passivation due to the effective neutralization of the surface caused by the Ga-O interface oxide passivation [15] and HfSiO_X passivation layer [35]. Due to the presence of acceptor-like surface states on the device, counter-clockwise hysteresis was found [35].

To investigate the effectiveness of the $HfSiO_X$ surface passivation and UV/O_3 surface treatment in the MOS-HEMT compared to C-HEMT, the gate lag measurements were employed. Figure 6a–d show the drain current response of the UV/O_3 -treated MOS-HEMT and C-HEMT before and after $HfSiO_X$ passivation. The pulse width and pulse period are

set to 500 µs and 50 ms, respectively. From observation, it was clearly revealed that with HfSiO_X passivation the current collapse was improved significantly in MOS-HEMT over C-HEMT. The drain-source current collapse was significantly improved to 0.6% (7%) in MOS-HEMT (C-HEMT) after HfSiO_X passivation, while before passivation it was found to be approximately 10% (13%) (@ $V_D = 8 V$, $V_G = 0 V$). Most of the surface traps presented in the S/D access regions might have been passivated by UV/O₃ surface modification and HfSiO_X passivation, resulting in significant improvement in the current collapse. Without surface treatment and passivation, the current collapse was found in C-HEMT to be approximately 20% (not shown here). The formation of the thin Ga-O interface layer between gate metal and GaN cap, which serves as the passivation layer, resulted in the reduction of current collapse to 13% from 20% in C-HEMT [15,37].

Figure 6. Comparison of pulsed I_D - V_D characteristics of UV/O₃-treated C-HEMT (**a**) after and (**b**) before HfSiO_X passivation and MOS-HEMT (**c**) after and (**d**) before HfSiO_X passivation.

In order to understand the reduction of trap states after the UV/O₃ surface treatment and HfSiO_X passivation of the devices, capacitance-voltage (C-V) measurements of C-HEMT and MOS-HEMT were measured at 1 MHz, shown in Figure 7a,b. The interface state density (D_{it}) for surface-treated MOS-HEMT can be extracted from the previously reported formula [38] to be $1.9 \times 10^{12} \text{ eV}^{-1} \cdot \text{cm}^{-2}$ ($4.1 \times 10^{12} \text{ eV}^{-1} \cdot \text{cm}^{-2}$) with HfSiO_X passivation (without passivation). To realize the surface passivation effects on the reduction of interface state density, D_{it}s for C-HEMT were also estimated to be $9.7 \times 10^{12} \text{ eV}^{-1} \cdot \text{cm}^{-2}$ ($1.4 \times 10^{13} \text{ eV}^{-1} \cdot \text{cm}^{-2}$) after (before) HfSiO_X surface passivation. A similar trend was found in the previous report [39]. Due to the combined effects of UV/O₃ surface treatment and HfSiO_X passivation, the interface trap density was reduced approximately one order of magnitude in MOS-HEMT compared to C-HEMT.

Low-frequency noise, or 1/f measurement, is an effective method for studying electrontrapping and -de-trapping behaviour. Figure 7c shows the low-frequency characteristics, measured at $V_{DS} = 4$ V, $V_{GS} = -1$ V, and $f = 10 \sim 10^5$ Hz, for MOS-HEMT before and after passivation, and C-HEMT. In 1/f-noise characteristics, the variation of noise current spectral density S_{ID} (A^2/Hz) with frequency was measured. This is directly related to the presence of electron traps and/or de-trapping between the 2 DEG channel and traps in the GaN buffer layer [34]. It was found that S_{ID} of the MOS-HEMT was one order lower after passivation than before passivation, as expected from the improved surface quality [34]. Table 1 shows the comparison of MOS-HEMT and C-HEMT before and after UV/O₃ modification and HfSiO_X passivation.

Figure 7. Comparison of C-V characteristics of C-HEMT (**a**) with and without UV/O_3 treatment, and (**b**) MOS-HEMT with and without HfSiO_X passivation. (**c**) Flicker noise characteristics of MOS-HEMT with and without HfSiO_X passivation, and C-HEMT without any treatment.

Parameters	C-HEMT	C-HEMT with UV/O ₃	C-HEMT with UV/O ₃ and HfSiO _X	MOS-HEMT with UV/O ₃	MOS-HEMT with UV/O ₃ and $HfSiO_X$
I _{DMAX} (mA/mm)	415	504	542	620	655
V _{TH} (V)	-3.1	-3.05	-3.05	-2.65	-3.0
G _{MMAX} (mS/mm)	104	129	138	90	116
SS (mV/dec)	160	140	125	95	85
I _{ON} /I _{OFF}	$4.8 imes 10^5$	—	$1.6 imes 10^6$		$3.1 imes 10^7$
I_G (A/mm) (@ V _G = -15 V)	$6.6 imes 10^{-8}$	_	$4.3 imes 10^{-8}$	—	$9.1 imes 10^{-10}$
Current collapse (%)	20	13	7	10	0.6
$D_{it} (eV^{-1} \cdot cm^{-2})$	$2.1 imes 10^{13}$	$1.4 imes 10^{13}$	$9.7 imes10^{12}$	$4.1 imes10^{12}$	$1.9 imes 10^{12}$
Hysteresis (Δ V) (V)	1.04	2.12	0.804	1.95	0.11
GVS (V)	0.87	1.15	1.55	1.60	2.53

Table 1. Comparison MOS-HEMT and C-HEMT with different conditions.

4. Conclusions

In summary, we have demonstrated the combined effects of UV/O_3 plasma treatment and the surface passivation using ALD-grown HfSiO_X on the DC performance of SiO_2 -MOS-HEMTs. A high-quality HfSiO_X passivation layer significantly reduced the current degradation from 10% to 0.6% in MOS-HEMT compared to C-HEMT by decreasing the trapping phenomenon originating from the surface states. A significant enhancement of electrical characteristics in MOS-HEMT was observed after the combined treatment, compared to C-HEMT. The MOS-HEMT with surface plasma treatment after passivation exhibited I_{DMAX} of 655 mA/mm, G_{MMAX} of 116 mS/mm, on-off ratio of 3.1×10^{7} with subthreshold slope of 85 mV/dec, and V_{TH} of -3 V. The combined effects of band bending at the SiO₂/GaN interface and screening of internal/external-polarization-bound charges by the UV/O3 surface treatment shifted the VTH in a positive direction in MOS-HEMT, compared to C-HEMT. The reversed gate leakage current of approximately 9.1×10^{-10} A/mm was achieved. Furthermore, the aforementioned combined treatment decreased the interface trap states from $4.1 \times 10^{12} \text{ eV}^{-1} \cdot \text{cm}^{-2}$ to $1.9 \times 10^{12} \text{ eV}^{-1} \cdot \text{cm}^{-2}$ in UV/O₃-treated MOS-HEMT after HfSiO_X passivation, which resulted in the reduction of hysteresis and 1/f-noise characteristics, compared to C-HEMT. The experimental results are significant for the development of high-performance GaN-based MOS-HEMT.

Author Contributions: S.M. is responsible for the device preparation and characterization, data analysis, and paper writing. All authors analyzed the data and revised the manuscript. Y.-H.W. is the advisor to monitor the progress and paper editing. All authors have read and agreed to the published version of the manuscript.

Funding: "This research was funded by Ministry of Science and Technology, Taiwan, grant number MOST 106-2221-E-006-219-MY3 and MOST 109-2221-E-06-075-MY2" and Transcom. Inc., Taiwan, grant number 109S0172.

Acknowledgments: The flicker noise measurements in Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Taiwan are highly appreciated.

Conflicts of Interest: The Authors declare no conflict of interest.

References

- Borga, M.; Meneghini, M.; Benazzi, D.; Canato, E.; Püsche, R.; Derluyn, J.; Abid, I.; Medjdoub, F.; Meneghessoa, G.; Zanoni, E. Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment. *Microelectron. Reliab.* 2019, 100–101, 1–5. [CrossRef]
- Ardaravičius, L.; Matulionis, A.; Liberis, J.; Kiprijanovic, O.; Ramonas, M.; Eastman, L.F.; Shealy, J.R.; Vertiatchikh, A. Electron drift velocity in AlGaN/GaN channel at high electric fields. *Appl. Phys. Lett.* 2003, *83*, 4038–4040. [CrossRef]
- Mazumder, S.; Wang, Y.H. Investigation of HfSiO_X passivation effect on AlGaN/GaN HEMT. In Proceedings of the 2020 International Symposium on Devices, Circuits and Systems, ISDCS, Howrah, India, 4–6 March 2020; pp. 1–4.
- 4. Hori, Y.; Yatabe, Z.; Hashizume, T. Characterization of interface states in Al₂O₃/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. *J. Appl. Phys.* **2013**, *114*, 244503. [CrossRef]
- 5. Arulkumaran, S. Surface passivation effects in AlGaN/GaN HEMTs on high-resistivity Si substrate. In Proceedings of the 2007 International Workshop on Physics of Semiconductor Devices, IWPS, Mumbai, India, 16–20 December 2007; pp. 317–322.
- Eller, B.S.; Yang, J.; Nemanich, R.J. Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 2013, 31, 050807. [CrossRef]
- Jussila, H.; Mattila, P.; Oksanen, J.; Perros, A.; Riikonen, J.; Bosund, M.; Varpula, A.; Huhtio, T.; Lipsanen, H.; Sopanen, M. High-k GaAs metal insulator semiconductor capacitors passivated by ex-situ plasma-enhanced atomic layer deposited AlN for fermi-level unpinning. *Appl. Phys. Lett.* 2012, 100, 071606. [CrossRef]
- 8. Passlack, M.; Hong, M.; Mannaerts, J.P. Quasistatic and high frequency capacitance-voltage characterization of Ga₂O₃-GaAs structures fabricated by in-situ molecular beam epitaxy. *Appl. Phys. Lett.* **1996**, *68*, 1099–1101. [CrossRef]
- 9. Park, S.; Kim, S.Y.; Choi, Y.; Kim, M.; Shin, H.; Kim, J.; Choi, W. Interface properties of atomic-layer-deposited Al₂O₃ thin films on ultraviolet/ozone-treated multilayer MoS₂ crystals. *ACS Appl. Mater. Interfaces* **2016**, *8*, 11189–11193. [CrossRef]
- 10. Smith, L.L.; King, S.W.; Nemanich, R.J.; Davis, R.F. Cleaning of GaN surfaces. J. Electron. Mater. 1996, 25, 805–810. [CrossRef]
- 11. Bradley, S.T.; Goss, S.H.; Hwang, J.; Schaff, W.J.; Brillson, L.J. Surface cleaning and annealing effects on Ni/AlGaN interface atomic composition and schottky barrier height. *Appl. Phys. Lett.* **2004**, *85*, 1368–1370. [CrossRef]
- 12. Kim, K.; Ryu, J.H.; Kim, J.; Cho, S.J.; Liu, D.; Park, J.; Lee, I.-K.; Moody, B.; Zhou, W.; Albrecht, J.; et al. Band-bending of Ga-polar GaN interfaced with Al₂O₃ through ultraviolet/ozone treatment. *ACS Appl. Mater. Interfaces* **2017**, *9*, 17576–17585. [CrossRef]
- 13. Choi, J.H.; Cho, C.H.; Cha, H.Y. Design consideration of high voltage Ga₂O₃ vertical Schottky barrier diode with field plate. *Results Phys.* **2018**, *9*, 1170–1171. [CrossRef]
- Liu, X.; Low, E.K.F.; Pan, J.; Liu, W.; Teo, K.L.; Tan, L.S.; Yeo, Y.C. Impact of in situ vacuum anneal and SiH₄ treatment on electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors. *Appl. Phys. Lett.* 2011, *99*, 093504. [CrossRef]
- 15. Kim, K.; Liu, D.; Gong, J.; Ma, Z. Reduction of leakage current in GaN Schottky diodes through ultraviolet/ozone plasma treatment. *IEEE Electron. Device Lett.* **2019**, *40*, 1796–1799. [CrossRef]
- Kim, K.; Kim, T.J.; Zhang, H.; Liu, D.; Jung, Y.H.; Gong, J.; Ma, Z. AlGaN/GaN schottky-gate HEMTs with UV/O₃-treated gate interface. *IEEE Electron. Device Lett.* 2020, 41, 1488–1491. [CrossRef]
- 17. Arulkumaran, S.; Egawa, T.; Ishikawa, H.; Jimbo, T.; Sano, Y. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO₂, Si₃N₄, and silicon oxynitride. *Appl. Phys. Lett.* **2003**, *84*, 613–615. [CrossRef]
- 18. Javorka, P.; Bernat, J.; Fox, A.; Marso, M.; Lüth, H.; Kordoš, P. Influence of SiO₂ and Si₃N₄ passivation on AlGaN/GaN/Si HEMT performance. *Electron. Lett.* **2003**, *39*, 1155–1157. [CrossRef]
- 19. Huang, S.; Jiang, Q.; Yang, S.; Zhou, C.; Chen, K.J. Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film. *IEEE Electron. Device Lett.* 2012, 33, 516–518. [CrossRef]
- 20. Lin, Y.S.; Lin, S.F.; Hsu, W.C. Microwave and power characteristics of AlGaN/GaN/Si high-electron mobility transistors with HfO₂ and TiO₂ passivation. *Semicond. Sci. Technol.* **2015**, *30*, 015016. [CrossRef]
- Li, S.; Hu, Q.; Wang, X.; Li, T.; Li, X.; Wu, Y. Improved interface properties and dielectric breakdown in recessed AlGaN/GaN MOS-HEMTs using HfSiO_X as gate dielectric. *IEEE Electron. Device Lett.* 2019, 40, 295–298. [CrossRef]

- Chan, S.H.; Tahhan, M.; Liu, X.; Bisi, D.; Gupta, C.; Koksaldi, O.; Li, H.; Mates, T.; Denbaars, S.P.; Keller, S. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN-based devices. *Jpn. J. Appl. Phys.* 2016, 55, 021501. [CrossRef]
- Karim, Z.; Boissiere, O.; Lohe, C.; Zhang, Z.; Manke, C.; Lehnen, P.; Baumann, P.K.; Dalton, J.; Park, W.; Ramanathan, S.; et al. Advanced metal gate electrode options compatible with ALD and AVD®HfSiOx based gate dielectrics. *ECS Trans.* 2006, *3*, 363–374. [CrossRef]
- 24. Yang, W.; Fronk, M.; Geng, Y.; Chen, L.; Sun, Q.Q.; Gordan, O.D.; Zhou, P.; Zahn, D.R.; Zhang, D.W. Optical properties and bandgap evolution of ALD HfSiOx films. *Nanoscale Res. Lett.* **2015**, *10*, 1–5. [CrossRef] [PubMed]
- Hou, B.; Ma, X.; Zhu, J.; Yang, L.; Chen, W.; Mi, M.; Zhu, Q.; Chen, L.; Zhang, R.; Zhang, M.; et al. 0.9-A/mm, 2.6-V flash-like normally-off Al₂O₃/AlGaN/GaN MIS-HEMTs using charge trapping technique. *IEEE Electron. Device Lett.* 2018, 39, 397–400. [CrossRef]
- Zheng, Y.Y.; Yue, H.; Cheng, Z.J.; Qian, F.; Yu, N.J.; Hua, M.X. A study on Al₂O₃ passivation in GaN MOS-HEMT by pulsed stress. *Chin. Phys. B* 2008, 17, 1405. [CrossRef]
- Lin, Y.S.; Lin, S.F. Large-signal linearity and high-frequency noise of passivated AlGaN/GaN high-electron mobility transistors. *Micromachines* 2021, 12, 1–7.
- 28. Kikkawa, T.; Nagahara, M.; Okamoto, N.; Tateno, Y.; Yamaaguchi, Y.; Hara, N.; Joshin, K.; Asbeck, P.M. Surface-charge controlled AlGaN/ GaN-power HFET without current collapse and Gm dispersion. *IEDM Tech. Dig.* **2001**, *8*, 585.
- 29. Cai, Y.; Zhou, Y.; Lau, K.M.; Chen, K.J. Enhancement-mode AlGaN/GaN HEMTs with low on-resistance and low knee voltage. *IEEE Trans. Electron.* **2006**, *E89-C7*, 1025–1030. [CrossRef]
- 30. Yue, Y.; Hao, Y.; Zhang, J.; Ni, J.; Mao, W.; Feng, Q.; Liu, L. AlGaN/GaN MOS-HEMT with HfO₂ dielectric and Al₂O₃ interfacial passivation layer grown by atomic layer deposition. *IEEE Electron. Device Lett.* **2008**, *29*, 838–840. [CrossRef]
- 31. Tapajna, M.; Kuzmik, J. A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxidesemiconductor high-electronmobility transistors. *Appl. Phys. Lett.* **2012**, *100*, 113509. [CrossRef]
- 32. Lu, W.; Kumar, V.; Schwindt, R.; Piner, E.; Adesida, I. A comparative study of surface passivation on AlGaN/GaN HEMTs. *Solid State Electron.* **2002**, *46*, 1441–1444. [CrossRef]
- Liu, L.; Xi, Y.; Ahn, S.; Ren, F.; Gila, B.P.; Pearton, S.J.; Kravchenko, I.I. Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing. *J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.* 2014, *32*, 1–5. [CrossRef]
- Reddy, M.S.P.; Park, W.S.; Im, K.S.; Lee, J.H. Dual-surface modification of AlGaN/GaN HEMTs using TMAH and piranha solutions for enhancing current and 1/f-Noise Characteristics. *IEEE J. Electron. Devices Soc.* 2018, 6, 791–796. [CrossRef]
- Liu, H.Y.; Ou, W.C.; Hsu, W.C. Investigation of post oxidation annealing effect on H₂O₂-grown Al₂O₃/AlGaN/GaN MOSHEMTs. IEEE J. Electron. Devices Soc. 2016, 4, 358–364. [CrossRef]
- Mahajan, S.S.; Malik, A.; Laishram, R.; Vinayak, S. Performance enhancement of gate-annealed AlGaN/GaN HEMTs. J. Kor. Phys. Soc. 2017, 70, 533–538. [CrossRef]
- Tingting, Y.; Xinyu, L.; Yingkui, Z.; Chengzhan, L.; Ke, W.; Guoguo, L. Impact of UV/ozone surface treatment on AlGaN/GaN HEMTs. J. Semicond. 2009, 30, 124001. [CrossRef]
- Kalb, W.L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. *Phys. Rev. B* 2010, *81*, 1–13. [CrossRef]
- Anderson, T.J.; Wheeler, V.D.; Shahin, D.I.; Tadjer, M.J.; Koehler, A.D.; Hobart, K.D.; Christou, A.; Kub, F.J.; Eddy, C.R., Jr. Enhancement mode AlGaN/GaN MOS high-electron-mobility transistors with ZrO₂ gate dielectric deposited by atomic layer deposition. *Appl. Phys. Exp.* 2016, *9*, 071003. [CrossRef]