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Abstract: Surface passivation is critically important to improve the current collapse and the over-
all device performance in metal-oxide semiconductor high-electron mobility transistors (MOS-
HEMTs) and, thus, their reliability. In this paper, we demonstrate the surface passivation effects in
AlGaN/AlN/GaN-based MOS-HEMTs using ultraviolet-ozone (UV/O3) plasma treatment prior
to SiO2 -gate dielectric deposition. X-ray photoelectron spectroscopy (XPS) was used to verify the
improved passivation of the GaN surface. The threshold voltage (VTH) of the MOS-HEMT was
shifted towards positive due to the band bending at the SiO2/GaN interface by UV/O3 surface
treatment. In addition, the device performance, especially the current collapse, hysteresis, and 1/f
characteristics, was further significantly improved with an additional 15 nm thick hafnium silicate
(HfSiOX) passivation layer after the gate metallization. Due to combined effects of the UV/O3 plasma
treatment and HfSiOX surface passivation, the magnitude of the interface trap density was effectively
reduced, which further improved the current collapse significantly in SiO2-MOS-HEMT to 0.6%
from 10%. The UV/O3-surface-modified, HfSiOX-passivated MOS-HEMT exhibited a decent perfor-
mance, with IDMAX of 655 mA/mm, GMMAX of 116 mS/mm, higher ION/IOFF ratio of approximately
107, and subthreshold swing of 85 mV/dec with significantly reduced gate leakage current (IG) of
9.1 × 10−10 A/mm.

Keywords: AlGaN/AlN/GaN; gallium oxide; MOS-HEMT; HfSiOX; UV/O3; passivation; interface
trap density; flicker noise

1. Introduction

In recent years, substantial research has been focused on AlGaN/GaN-based high
electron mobility transistors (HEMTs) for high-power and radio-frequency applications due
to the remarkable properties of III-nitrides such as high saturation velocity (~2× 107 cm/s),
wide band gap (~3.4 eV), high carrier density (~1013/cm2), and large breakdown electric
field (>3 MV/cm) [1–3]. In particular, high-density and high-mobility two-dimensional
electron gas (2DEG) generated at the AlGaN/GaN interface allows us to understand how
power-switching transistors having low ON-resistance are applicable to next-generation
power conversion systems [4]. However, observations confirm that the AlGaN/GaN
HEMTs suffer from severe current collapse due to the presence of multiple surface states at
source/drain (S/D) access region [5]. Various methods were introduced to improve the
surface and interface states, such as wet cleaning [6], dry etching [6], interface passivation
layers [7,8], and surface plasma treatment [9–11].

Among these methods, ultraviolet/ozone (UV/O3) surface plasma treatment is im-
portant due to its ability to screen the effects of polarization bound charges of GaN and to
produce the Ga-O surface dielectric layer on GaN [12]. Eller et al. and Choi et al. reported
that Gallium oxide (Ga-O) layer is useful as a surface dielectric layer in GaN-based elec-
tronic devices [6,13]. Notably, this method is much easier and simpler to apply than what
was previously reported [14]. To date, UV/O3 is mainly used for cleaning. There are very
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few available reports that are focused on the improvement of the interface quality of the
GaN devices by the application of UV/O3 surface plasma treatment [12,15,16].

Furthermore, previous reports have suggested that the current collapse phenomenon
can be effectively mitigated by the reduction of surface states using the different surface
passivation dielectrics [17]. Numerous dielectric materials have been used as a passivation
layer along with various deposition technologies to improve the device performance, such
as SiO2, SiNX, SiON, AlN, and HfO2 [17–20]. However, previous investigation has revealed
that each material has its own limitations, e.g., higher gate leakage currents or high interface
state density have been observed after SiO2, SiNX, or HfO2 passivation [17,21].

Recent studies have explored how the interface state density could be reduced ef-
fectively by the incorporation of Si into Al2O3, which subsequently improves the device
performance [22]. In order to improve the dielectric properties of HfO2, the inclusion of Si
into HfO2 has been investigated. Due to the unique properties of hafnium silicate (HfSiOX),
i.e., high dielectric constant (~16.8) [23], with comparatively large band-gap (~6 eV) [24]
and lower interface trap density than HfO2, some research groups have previously used
HfSiOX as gate dielectric [19]. To date, direct observation of the improvement of perfor-
mance in SiO2 metal oxide semiconductor high electron mobility transistor (MOS-HEMT),
using the combined effects of UV/O3 surface modification with HfSiOX passivation, has
not yet been investigated.

With this aim in mind, in this work, the interface of the SiO2 MOS-HEMTs was im-
proved through UV/O3 surface plasma treatment prior to gate oxide deposition. Dramatic
reduction of the current collapse in the MOS-HEMT due to deposition of HfSiOX pas-
sivation layer after gate metallization was also examined. The UV/O3 treatment might
have screened the internal/external polarization charge and altered the band bending at
the atomic layer deposition (ALD) SiO2/GaN interface through modifying the charged
surface states, which resulted in positive shifting of the VTH in MOS-HEMT compared
to conventional HEMT (C-HEMT). The threshold voltage of–3 V, IDMAX of 655 mA/mm,
subthreshold slope of 85 mV/dec, and IG of 9.1 × 10−10 A/mm with a significant im-
provement of current degradation of 0.6% were achieved for UV/O3 plasma modified
SiO2-MOS-HEMT after HfSiOX surface passivation.

2. Materials and Methods

The AlGaN/AlN/GaN heterostructure was grown on a 6-inch p-type low-resistive
Si substrate using metal organic-chemical vapour deposition (MOCVD) system. The het-
erostructure consisted of 5.5 µm GaN buffer layer, a 200 nm undoped GaN layer, 1 nm AlN,
and a 25 nm Al0.23Ga0.77N as barrier layer, and a 2 nm GaN cap layer. The room tempera-
ture sheet carrier-density (nsh) and mobility (µ) were extracted from Hall measurements,
which were approximately 8 × 1012/cm2 and 1700 cm2/V. s, respectively.

Device processing began with mesa isolation using an inductive coupled plasma reac-
tive ion etching (ICP-RIE) system under Cl2/BCl3 environment. After that, source and drain
regions were defined with UV photolithography and Ti/Al/Ni/Au (25/150/30/120 nm)
metal stacks were deposited by using electron-beam (e-beam) evaporator. Then, the rapid
thermal annealing (RTA) was done at 875 ◦C for 30 s under N2 ambient to ensure good
ohomic contact. The sheet resistance was found to be approximately 400 Ω/�. After
that, the UV-ozone surface plasma treatment was done with 7 mg/L-O3 dose and ac-
tive wavelengths of 185 nm and 254 nm for 4 min, prior to gate oxide deposition. Then,
5 nm SiO2 layer was deposited as gate dielectric using atomic layer deposition (ALD)
system at 250 ◦C. Then, the gate region was defined by UV photolithography and Ni/Au
(80/100 nm) metal stack was deposited by e-gun evaporator. Furthermore, to improve the
device performance, a 15 nm thick HfSiOX passivation layer was deposited by ALD. As for
the 15 nm HfSiOX deposition, one cycle reaction of bis-(diethylamino) silane (SAM-24)
with ozone was inserted into HfO2 after 4 cycles of HfO2 to form ~1 nm HfSiOX. As a
reference, to understand the effects of surface modification and passivation layer separately,
C-HEMTs were fabricated with three different conditions, i.e., (i) without UV/O3 treatment
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and HfSiOX passivation, (ii) with UV/O3 treatment and without HfSiOX passivation, and
(iii) with UV/O3 and HfSiOX passivation. In addition, to determine the HfSiOX passi-
vation effects on MOS-HEMT, devices were fabricated (iv) with and (v) without HfSiOX
passivation. The UV lithography and DC measurements were performed with the MJB3
Karl Suss Mask Aligner and B1500A Semiconductor Characterization system. Figure 1a
shows the schematic diagram of UV/O3 surface-modified HfSiOX passivated MOS-HEMT.
All devices were made with the same gate length (LG = 2 µm) and LGD/LSG (2/2 µm)
distances.
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Figure 1. (a) Schematic illustration and (b) TEM image of ultraviolet-ozone (UV/O3)-treated HfSiOX

passivated metal-oxide semiconductor high-electron mobility transistors (MOS-HEMT). (c) EDX line
scan of HfSiOX. AFM image of MOS-HEMT (d) without UV/O3, (e) with UV/O3 treatment before
passivation, and (f) with UV/O3 treatment after passivation.

3. Results and Discussion

Figure 1b shows the transmission electron microscopy (TEM) image of the UV/O3
surface-treated HfSiOX-passivated MOS-HEMT. From TEM image, it can be understood
that, due to the UV/O3 surface treatment prior to gate dielectric deposition, a thin layer
of GaOXNY was formed [25]. The energy dispersive X-ray (EDX) line scan of HfSiOX was
shown in Figure 1c. Figure 1d,e shows the atomic force microscopy (AFM) images of the
unpassivated sample with and without UV/O3 plasma treatment, while the AFM image of
the UV/O3 modified HfSiOX passivated sample is shown in Figure 1f. The combined effects
of UV/O3 surface treatment and the deposition of HfSiOX passivation layer decreased the
surface roughness significantly, which subsequently improved the device performance.

To analyse the improvement of device performance, X-ray photoelectron spectroscopy
(XPS) was performed using K-Alpha X-ray photoelectron spectrometer to examine the
change in the surface chemistry of the SiO2/GaN interface after UV/O3 plasma treatment.
Figure 2a,b exhibit the change in atomic composition of GaN 3d core levels without and
with UV/O3 surface treatment, respectively. It can be seen that both spectra were de-
convoluted into Ga-N and Ga-O peaks. The Ga-N peak de-convoluted at 19.7 eV and Ga-O
peak appeared at 20.8 eV, considering spin orbital splitting [15]. The peak intensity ratio of
Ga-O/Ga-N was improved to 75% from 38% after UV/O3 plasma treatment, indicating an
improved passivation. Since the standard Gibbs free energy of the Ga-O bond is negatively
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larger (−285 kJ/mol) than Ga-N bond (−157 kJ/mol), the Ga atoms in the Ga-O bond
could come from the Ga-N bond [15].

Crystals 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. X-ray photoelectron spectroscopy (XPS) measurements of Ga 3d core levels in (a) with-
out UV/O3 and (b) with UV/O3 surface-treated GaN MOS-HEMT. 

The typical drain current-voltage characteristics of the UV/O3 surface-treated MOS-
HEMT and C-HEMT before and after HfSiOX passivation is shown in Figure 3. The maxi-
mum drain currents (IDMAX) (@ VG =4 V) before/after passivation were found to be 655/620 
mA/mm for MOS-HEMT and 542/504 mA/mm (@ VG =1 V) for C-HEMT, respectively. 
Owing to the large gate leakage current, C-HEMT could not be biased with high VG. 
Henceforth, the reduction of IDMAX in C-HEMT was due to the large gate leakage current 
[26]. The improvement of the IDMAX after passivation was attributed to the increase in sheet 
electron concentration [27] and surface-controlled effect [28]. After passivation, the SiO2 
MOS-HEMT showed good pinch-off characteristics. In comparison, IDMAX was found ap-
proximately to be 415 mA/mm for C-HEMT without surface treatment and passivation.  

 
Figure 3. Comparison of drain current-voltage (ID-VD) characteristics of (a) conventional HEMT 
(C-HEMT) (before and after UV/O3 treatment) and (b) MOS-HEMT with and without HfSiOX pas-
sivation. 

To understand the gate controllability of UV/O3 surface-modified MOS-HEMT and 
C-HEMT, the transfer characteristics were calibrated before and after passivation at VD= 
4V, as shown in Figure 4. The threshold voltage (VTH) is defined as the gate bias intercept 
point of the linear extrapolation of ID at peak transconductance (GMMAX) [29]. VTH of the 
MOS-HEMT after and before passivation were found to be −3.0 V and −2.65 V, respec-
tively. For C-HEMT, VTH was found to be approximately −3.05 V before passivation, which 
is hardly a change after HfSiOX passivation. In previous literature, the negative shifting of 
VTH in MOS-HEMT compared to planar HEMT was observed to be due to the larger sep-
aration between the gate and the channel [30]. The threshold voltage can be expressed as 
[31]  

௧ܸ௛ ൌ 	߶஻ െ Δܧ஼ െ ߶ி െ ௢௫ߝ௢௫ݐ ൫ ଵܲ ൅ ଶܲ ൅ ଷܲ ൅ ௔ே/ௌ௜ைଶ൯ீ݊ݍ െ ௖௔௣ߝ௖௔௣ݐ ሺ ଶܲ ൅ ଷܲሻെ ௕ߝ௕ݐ ଷܲ െ ௢௫ߝ௢௫2݊ݍ ௢௫ଶݐ  
(1)

where ∅஻ is the metal barrier height; 	∅ி is the energy difference EC−EF (EF is the Fermi 
energy) in the GaN bulk; ∆ܧ௖ is the conduction band offset between SiO2 and GaN; ݐ௕ is 

Figure 2. X-ray photoelectron spectroscopy (XPS) measurements of Ga 3d core levels in (a) without
UV/O3 and (b) with UV/O3 surface-treated GaN MOS-HEMT.

The typical drain current-voltage characteristics of the UV/O3 surface-treated MOS-
HEMT and C-HEMT before and after HfSiOX passivation is shown in Figure 3. The
maximum drain currents (IDMAX) (@ VG = 4 V) before/after passivation were found to
be 655/620 mA/mm for MOS-HEMT and 542/504 mA/mm (@ VG = 1 V) for C-HEMT,
respectively. Owing to the large gate leakage current, C-HEMT could not be biased with
high VG. Henceforth, the reduction of IDMAX in C-HEMT was due to the large gate leakage
current [26]. The improvement of the IDMAX after passivation was attributed to the increase
in sheet electron concentration [27] and surface-controlled effect [28]. After passivation, the
SiO2 MOS-HEMT showed good pinch-off characteristics. In comparison, IDMAX was found
approximately to be 415 mA/mm for C-HEMT without surface treatment and passivation.
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Figure 3. Comparison of drain current-voltage (ID-VD) characteristics of (a) conventional HEMT
(C-HEMT) (before and after UV/O3 treatment) and (b) MOS-HEMT with and without HfSiOX

passivation.

To understand the gate controllability of UV/O3 surface-modified MOS-HEMT and C-
HEMT, the transfer characteristics were calibrated before and after passivation at VD = 4 V,
as shown in Figure 4. The threshold voltage (VTH) is defined as the gate bias intercept
point of the linear extrapolation of ID at peak transconductance (GMMAX) [29]. VTH of the
MOS-HEMT after and before passivation were found to be −3.0 V and −2.65 V, respectively.
For C-HEMT, VTH was found to be approximately −3.05 V before passivation, which is
hardly a change after HfSiOX passivation. In previous literature, the negative shifting of
VTH in MOS-HEMT compared to planar HEMT was observed due to the larger separation
between the gate and the channel [30]. The threshold voltage can be expressed as [31]

Vth = φB − ∆EC − φF − tox
εox

(
P1 + P2 + P3 + qnGaN/SiO2

)
− tcap

εcap
(P2 + P3)

− tb
εb

P3 − qnox
2εox

t2
ox

(1)
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where ∅B is the metal barrier height; ∅F is the energy difference EC−EF (EF is the Fermi
energy) in the GaN bulk; ∆Ec is the conduction band offset between SiO2 and GaN; tb is
the barrier thickness; tox is the SiO2 thickness; εb is the permittivity of the barrier layer; εox
is the permittivity of the SiO2; nox is the oxide charge; nGaN/SiO2 is the interface charge
density at the SiO2/GaN interface; and P1, P2, and P3 are the total polarization sheet
charges (sum of the spontaneous and piezoelectric polarization) at the GaN-cap surface,
GaN-cap/AlGaN interface, and AlGaN/GaN buffer interface, respectively. The UV/O3
treatment could screen internal/external polarization bound charges and form thin Ga2OX
layer on the GaN surface that could shift the VTH towards positive [16]. Another reason for
the positive shifting of threshold voltage in the MOS-HEMT might be the band bending at
the SiO2/GaN interface, which changed the ∆EC causing the UV-O3 treatment [11]. After
HfSiOX passivation, the sheet carrier concentration was increased in the channel, which
effectively shifted the VTH in the negative direction [32].
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Figure 4. Comparison of transfer characteristics (ID-VG) (@ VD = 4 V) of (a) C-HEMT (before and
after UV/O3 treatment) and (b) MOS-HEMT with and without HfSiOX passivation.

GMMAX was increased to 116 mS/mm after passivation from 90 mS/mm for MOS-
HEMT, while for UV/O3-treated C-HEMT, the GMMAX was increased to 138 mS/mm
(129 mS/mm) after passivation (before passivation) treatment. To understand the linear
behaviour of the devices, the gate voltage swing (GVS) was calculated for two devices.
The GVS, defined as 10% drop from the GMMAX, was increased to 2.53 V (1.55 V) from
1.60 V (1.15 V) for MOS-HEMT (C-HEMT) after passivation [30]. The largest GVS after
passivation suggests a better linear behaviour for the UV/O3 surface-treated MOS-HEMT
compared with the C-HEMT, from which a smaller intermodular distortion, a smaller phase
noise, and a larger dynamic range could be expected, thus making it desirable for practical
amplifier applications [30]. The GMMAX and GVS were found to be 104 mS/mm and 0.87 V,
respectively, for C-HEMT without UV/O3 treatment as well as HfSiOX passivation.

Figure 5a shows the subthreshold characteristics as a function of gate voltage (@ VD = 4 V)
for UV/O3 surface-treated MOS-HEMT and C-HEMT after passivation. It is clearly found
that the subthreshold drain leakage current was decreased more than two orders of mag-
nitude in UV/O3 surface modified HfSiOX passivated MOS-HEMT than C-HEMT. The
interface oxide (GaOXNY) on the GaN, formed by the UV/O3 surface treatment, reduced
the defect states at the metal–semiconductor interfaces resulting in the reduction of sub-
threshold drain leakage current and the reverse-biased gate leakage current in MOS-HEMT
as shown in Figure 5a [15]. The subthreshold drain leakage current is dominated by the
reverse-biased drain leakage current in the pinch-off region [33]. Since the reverse bias
gate leakage current was suppressed in MOS-HEMT, the subthreshold drain leakage was
decreased due to the improvement of the metal barrier height, as discussed later [34]. The
subthreshold swing (SS) was also highly dependent on the reversed-bias gate leakage
current [33]. The SS is defined as [35]

SS =

(
∂logIDS

∂VGS

)−1
(2)
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Figure 5. Comparison of (a) subthreshold (@ VD = 4 V) and gate leakage (IG-VG) characteristics of C-
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characteristics of (@ VD = 6 V) C-HEMT (before and after UV/O3 treatment) and MOS-HEMT with
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To understand the gate controllability, the SS values of the MOS-HEMT and C-HEMT
were calculated from Figure 5a. Plasma-treated MOS-HEMT after passivation exhib-
ited much lower SS of 85 mV/dec than for C-HEMT (125 mV/dec). The ON/OFF ratio
(ION/IOFF) for MOS-HEMT was found to be approximately 3.1 × 107, while for C-HEMT
it was found to be 1.6 × 106. The SS and ION/IOFF were found to be 160 mV/dec and
4.8 × 105 for C-HEMT without UV/O3 treatment and HfSiOX passivation.

The reverse and forward gate leakage I-V characteristics of the surface-treated SiO2
MOS-HEMT and C-HEMT after passivation are shown in Figure 5a. It was clearly revealed
that the reverse gate leakage current (IG) (@ VG = −15 V) of MOS-HEMT was 9.1 × 10−10

A/mm, which was nearly two orders of magnitude less than C-HEMT (4.3 × 10−8 A/mm).
As expected, due to the increment of effective barrier height, causing the insertion of
large band gap (~9 eV) ALD SiO2 as gate dielectric, the gate leakage current was reduced
in MOS-HEMT compared to C-HEMT. The band alignment of Ni/SiO2/GaN Schottky
interface with Ga-O interlayer due to UV/O3 surface treatment might be another reason
for the noticeable reduction of IG [15].

The ideality factor (η) can be extracted by employing the standard thermionic equation
as [36]

η =
q

kT

(
dV

d(lnI)

)
(3)

where T is the temperature, q is the electron charge, k is the Boltzmann constant, and V is
the applied voltage.

The ideality factors of 2.5 and 3.2 were calculated for MOS-HEMT and C-HEMT,
respectively. The UV/O3 surface plasma treatment prior to gate dielectric deposition
reduced the interface state densities, which effectively improved the ideality factor of the
MOS-HEMT. Furthermore, a higher turn on voltage (VT) was observed in C-HEMT with
UV/O3 surface treatment and MOS-HEMT, as shown in the inset of Figure 5a. The shift
of VT was associated with the formation of Ga-O interface oxide layer by UV/O3 surface
treatment in C-HEMT [15].

Figure 5b shows the hysteresis characteristics for MOS-HEMT and C-HEMT before
and after HfSiOX passivation (@ VD = 6 V). The MOS-HEMT exhibited less hysteresis than
C-HEMT after HfSiOX passivation. The combined effects of UV/O3 surface treatment
and HfSiOX passivation resulted in the significant reduction of hysteresis in SiO2-MOS-
HEMT. Compared to C-HEMT, the MOS-HEMT exhibited almost low hysteresis of 0.11 V
after passivation due to the effective neutralization of the surface caused by the Ga-O
interface oxide passivation [15] and HfSiOX passivation layer [35]. Due to the presence of
acceptor-like surface states on the device, counter-clockwise hysteresis was found [35].

To investigate the effectiveness of the HfSiOX surface passivation and UV/O3 surface
treatment in the MOS-HEMT compared to C-HEMT, the gate lag measurements were
employed. Figure 6a–d show the drain current response of the UV/O3-treated MOS-HEMT
and C-HEMT before and after HfSiOX passivation. The pulse width and pulse period are
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set to 500 µs and 50 ms, respectively. From observation, it was clearly revealed that with
HfSiOX passivation the current collapse was improved significantly in MOS-HEMT over
C-HEMT. The drain-source current collapse was significantly improved to 0.6% (7%) in
MOS-HEMT (C-HEMT) after HfSiOX passivation, while before passivation it was found to
be approximately 10% (13%) (@ VD = 8 V, VG = 0 V). Most of the surface traps presented
in the S/D access regions might have been passivated by UV/O3 surface modification
and HfSiOX passivation, resulting in significant improvement in the current collapse.
Without surface treatment and passivation, the current collapse was found in C-HEMT to
be approximately 20% (not shown here). The formation of the thin Ga-O interface layer
between gate metal and GaN cap, which serves as the passivation layer, resulted in the
reduction of current collapse to 13% from 20% in C-HEMT [15,37].
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Figure 6. Comparison of pulsed ID-VD characteristics of UV/O3-treated C-HEMT (a) after and
(b) before HfSiOX passivation and MOS-HEMT (c) after and (d) before HfSiOX passivation.

In order to understand the reduction of trap states after the UV/O3 surface treatment
and HfSiOX passivation of the devices, capacitance-voltage (C-V) measurements of C-
HEMT and MOS-HEMT were measured at 1 MHz, shown in Figure 7a,b. The interface state
density (Dit) for surface-treated MOS-HEMT can be extracted from the previously reported
formula [38] to be 1.9 × 1012 eV−1·cm−2 (4.1 × 1012 eV−1·cm−2) with HfSiOX passivation
(without passivation). To realize the surface passivation effects on the reduction of interface
state density, Dits for C-HEMT were also estimated to be 9.7 × 1012 eV−1·cm−2 (1.4 ×
1013 eV−1·cm−2) after (before) HfSiOX surface passivation. A similar trend was found in
the previous report [39]. Due to the combined effects of UV/O3 surface treatment and
HfSiOX passivation, the interface trap density was reduced approximately one order of
magnitude in MOS-HEMT compared to C-HEMT.

Low-frequency noise, or 1/f measurement, is an effective method for studying electron-
trapping and -de-trapping behaviour. Figure 7c shows the low-frequency characteristics,
measured at VDS = 4 V, VGS = −1 V, and f = 10~105 Hz, for MOS-HEMT before and
after passivation, and C-HEMT. In 1/f-noise characteristics, the variation of noise current
spectral density SID (A2/Hz) with frequency was measured. This is directly related to
the presence of electron traps and/or de-trapping between the 2 DEG channel and traps
in the GaN buffer layer [34]. It was found that SID of the MOS-HEMT was one order
lower after passivation than before passivation, as expected from the improved surface
quality [34]. Table 1 shows the comparison of MOS-HEMT and C-HEMT before and after
UV/O3 modification and HfSiOX passivation.
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Table 1. Comparison MOS-HEMT and C-HEMT with different conditions.

Parameters C-HEMT C-HEMT with
UV/O3

C-HEMT with
UV/O3 and HfSiOX

MOS-HEMT with
UV/O3

MOS-HEMT with
UV/O3 and HfSiOX

IDMAX (mA/mm) 415 504 542 620 655

VTH (V) −3.1 −3.05 −3.05 −2.65 −3.0

GMMAX (mS/mm) 104 129 138 90 116

SS (mV/dec) 160 140 125 95 85

ION/IOFF 4.8 × 105 — 1.6 × 106 — 3.1 × 107

IG (A/mm)
(@ VG = −15 V) 6.6 × 10−8 — 4.3 × 10−8 — 9.1 × 10−10

Current collapse
(%) 20 13 7 10 0.6

Dit (eV−1·cm−2) 2.1 × 1013 1.4 × 1013 9.7 × 1012 4.1 × 1012 1.9 × 1012

Hysteresis (∆ V)
(V) 1.04 2.12 0.804 1.95 0.11

GVS (V) 0.87 1.15 1.55 1.60 2.53

4. Conclusions

In summary, we have demonstrated the combined effects of UV/O3 plasma treat-
ment and the surface passivation using ALD-grown HfSiOX on the DC performance of
SiO2-MOS-HEMTs. A high-quality HfSiOX passivation layer significantly reduced the
current degradation from 10% to 0.6% in MOS-HEMT compared to C-HEMT by decreasing
the trapping phenomenon originating from the surface states. A significant enhancement
of electrical characteristics in MOS-HEMT was observed after the combined treatment,
compared to C-HEMT. The MOS-HEMT with surface plasma treatment after passivation
exhibited IDMAX of 655 mA/mm, GMMAX of 116 mS/mm, on-off ratio of 3.1 × 107 with
subthreshold slope of 85 mV/dec, and VTH of −3 V. The combined effects of band bending
at the SiO2/GaN interface and screening of internal/external-polarization-bound charges
by the UV/O3 surface treatment shifted the VTH in a positive direction in MOS-HEMT, com-
pared to C-HEMT. The reversed gate leakage current of approximately 9.1 × 10−10 A/mm
was achieved. Furthermore, the aforementioned combined treatment decreased the in-
terface trap states from 4.1 × 1012 eV−1·cm−2 to 1.9 × 1012 eV−1·cm−2 in UV/O3-treated
MOS-HEMT after HfSiOX passivation, which resulted in the reduction of hysteresis and
1/f-noise characteristics, compared to C-HEMT. The experimental results are significant
for the development of high-performance GaN-based MOS-HEMT.
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