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Abstract: A rare homotrinuclear CuII salamo-based complex [Cu3(L)2(µ-OAc)2(H2O)2]·2CHCl3·5H2O
was prepared through the reaction of a non-symmetric salamo-based ligand H2L and Cu(OAc)2·H2O,
and validated by elemental analyses, UV-Visible absorption, fluorescence and infrared spectra,
molecular simulation and single-crystal X-ray analysis techniques. It is shown that three CuII atoms
and two wholly deprotonated ligand (L)2− moieties form together a trinuclear 3:2 (M:L) complex with
two coordination water molecules and two bi-dentate briging µ-acetate groups (µ-OAc−). Besides,
the Hirshfeld surface analysis of the CuII complex was investigated. Compared with other ligands,
the fluorescent strength of the CuII complex was evidently lowered, showing that the CuII ions
possess fluorescent quenching effect.

Keywords: non-symmetric salamo-based ligand; CuII complex; crystal structure; fluorescence prop
erty; the Dmol3 module

1. Introduction

Both the salen-based ligands and their derivatives have shown strong development
potential in the research of materials chemistry, coordination chemistry, and environmental
monitoring for decades because of their good application prospects in organic catalytic
synthesis, molecular magnetic properties, and luminescent properties [1–5], which, owing
to their N2O2-donor structure, usually have excellent coordination ability to transition
metal ions for various structural novel complexes (derivatives) [6–11].

The salamo-based ligands with strong stability and multifunctional chelating ability
have also been studied as a significant class of organic compounds containing N2O2-donor
groups [12–18]. When compared with salen-based ligands, the salamo-based compounds
and their complexes have been applied to ion recognition [19,20], optics [21], electro-
chemistry [22], magnetism [23,24], biochemistry [25,26], catalysis [27,28], supermolecular
construction [29,30], and other fields [31–38], which are expected to give the salamo-based
ligands and their derivatives good development potential to become one of the new re-
search hotspots of coordination chemistry.

The fluorescence on-off phenomenon in the coordination reaction of the salamo-based
ligands and CuII ions can be used to identify and detect CuII ions in the environment [39–42].
According to a large amount of preliminary research works [43–49], here, a non-symmetrical
salamo-derived compound H2L was prepared, several single crystals of its CuII complex
were obtained by natural evaporation method in chloroform/ethanol mixed solvent at
room temperature in about one month, and the structures and properties of H2L and its
CuII complex were further characterized by various modern analytical techniques.

2. Experimental Section
2.1. Materials and Instruments

All chemical solvents and raw materials were acquired from mercantile sources and
could be used directly. Elemental analysis of CuII was tested via IRISER/S-WP-1 ICP atomic
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emission spectrometer (Elementar, Berlin, Germany), and associated elemental analyses
for carbon, hydrogen, and nitrogen were carried out by GmbH VariuoEL V3.00 automatic
elemental analysis instrument (Elementar, Berlin, Germany).The study of IR spectra were
recorded according to a Bruker VERTEX70 FT-IR spectrophotometer, with samples prepared
as CsI (100–500 cm−1) and KBr (400–4000 cm−1) pellets (Bruker AVANCE, Billerica, MA,
USA). The UV-Visible spectra were acquired from a Shimadzu UV-3900 spectrometer
(Shimadzu, Tokyo, Japan). The 1H NMR spectra were tested via German Bruker AVANCE
DRX-400/600 spectrometer (Bruker AVANCE, Billerica, MA, USA). Fluorescent spectra of
H2L and its CuII complex were conducted from an F-7000FL spectrophotometer (Hitachi,
Tokyo, Japan). The structure of X-ray single-crystal determination was also carried out
on a SuperNova Dual (Cu at zero) four-circle diffractometer. Finally, mass spectrum was
recorded using the Bruker Daltonics Esquire 6000 mass spectrometer.

2.2. Preparation of H2L

H2L was obtained by condensation reactions and the process involving nucleophilic
addition and elimination, and the synthetic route was depicted in Scheme 1.
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Scheme 1. Synthesis procedure of H2L.

The synthesis procedure of the non-symmetric salamo-derived ligand (H2L) could be
found in Scheme 1. 2-[O-(1-ethyloxyamide)]oxime-2-naphthol and 1,2-bis(aminooxy)ethane
were synthesized on the basis of similar approaches [20,50].

Salicylaldehyde (244.1 mg, 2.0 mmol) in ethanol (50 mL) was slowly dropped to
2-[O-(1-ethyloxyamide)] oxime-2-naphthol (492.2 mg, 2.0 mmol) in ethanol (30 mL). The
solution was stirred at 55 ◦C for 6 h, cooled to room temperature, and the precipitate was
purified with recrystallization from n-hexane to obtain the product H2L. Yield: 551.7 mg,
78.7%. m.p.: 136~138 ◦C. 1H NMR (500 MHz, DMSO-d6) δ 10.68 (s, 1H, ArH), 9.97 (s,
1H, ArH), 9.02 (s, 1H, CH=N), 8.65 (d, J = 8.6 Hz, 1H, CH), 8.47 (s, 1H, CH=N), 7.88 (d,
J = 8.9 Hz, 1H, CH), 7.84 (d, J = 7.8 Hz, 1H, CH), 7.56 (d, J = 7.8 Hz, 1H, CH), 7.54–7.48
(m, 1H, CH), 7.39–7.33 (m, 1H, CH), 7.28–7.23 (m, 1H, CH), 7.21 (d, J = 8.9 Hz, 1H, CH),
6.90 (d, J = 9.1 Hz, 1H, CH), 6.85 (t, J = 7.9 Hz, 1H, CH), 4.54–4.42 (m, 4H,CH2). (Figure S1)
Anal. Calcd for C20H18N2O4 (%): C 68.56; H 5.18; N 8.00. Found: C 68.74; H 5.15; N 7.93.
UV−Visible (CH3OH), λmax (nm) (εmax, L·mol−1·cm−1): 301 (5.61 × 104), 312 (6.80 × 104),
340 (3.11 × 104), 355 (3.13 × 104).

2.3. Preparation of the CuII Complex

The CuII complex was obtained by mixing H2L (3.5 mg, 0.01 mmol) in chloroform
(3 mL) with Cu(OAc)2·H2O (3.0 mg, 0.015 mmol) in ethanol (5 mL) at room temper-
ature, and the mixed solution color turned to brownish green. The brownish green
mixture was filtered, and several single crystals were acquired via natural evaporation
method. About one week later, several brownish green block-like single crystals were
obtained. Yield: 42.3% (2.90 mg). ESI-FTMS (Figure S2) m/z = 825.087 [Cu2L2+H]+, calc.
824.840; m/z = 532.982 [Cu(H2L)(OAc)2+H]+, calc. 532.920; m/z = 414.046 [Cu(HL)+H]+,
calc. 413.920; m/z = 412.048. [Cu(HL)]+, calc. 412.920. Anal. Calcd for [Cu3(L)2(µ-
OAc)2(H2O)2]·2CHCl3·5H2O (C46H54Cl6Cu3N4O19) (%): C 40.32; H 3.97; N 4.09; Cu
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13.91. Found: C 41.09; H 3.86; N 4.26; Cu 14.25. UV−Visible (CH3OH), λmax (nm) (εmax,
L·mol−1·cm−1): 314 (7.32 × 104), 369 (3.86 × 104), 401 (2.67 × 104).

2.4. Determination of Single-Crystal Structure of the CuII Complex

The single-crystal of the CuII complex with approximate dimensions of 0.22× 0.2× 0.18 mm3

was mounted on goniometer head of a SuperNova Dual (Cu at zero) diffractometer.
The diffraction data were collected using a graphite mono-chromated Mo-Kα radiation
(λ = 0.71073 Å) at 173(2) K. The structure was solved by using the program SHELXS-97
and Fourier difference techniques, and refined by full-matrix least-squares method on F2

using SHELXL-2017. The nonhydrogen atoms were refined anisotropically. The hydrogen
and carbon atoms of the molecule (C8, H8A and H8B sites occupancy disorder 0.450,
and C9′, H9′A and H9′B sites occupancy disoeder 0.550) are disordered unequally. The
crystallographic parameters of the CuII complex are listed in Table 1.

Table 1. Crystal and refinement parameters data of the CuII complex.

Compound The CuII Complex

Empirical formula
Formula weight

C46H54Cl6Cu3N4O19
1370.25

T, (K) 173(2)
Crystal system Tetragonal

Space group I41/a
a/(Å) 28.3010(7)
b/(Å) 28.3010(7)
c/(Å) 15.1845(7)
α/(◦) 90
β/(◦) 90
γ/(◦) 90

Volume (Å3) 12162.0(8)
Z 8

Dcalc (g/cm3) 1.497
µ/(mm−1) 1.373

F(000), e 5592.0
Crystal size/mm3 0.22 × 0.2 × 0.18
	 Range (◦) 4.19 to 53.996
Index ranges −17 ≤ h ≤ 36, −26 ≤ k ≤ 29, −19 ≤ l ≤ 10

Reflections collected 13026
Independent reflections 6539 [Rint = 0.0055, Rsigma = 0.0537]

Data/restraints/parameters 6539/1/395
GOF 1.001

Final R1, wR2 indexes R1 = 0.0441, wR2 = 0.1281
Final R1, wR2 indexes [all data] R1 = 0.0575, wR2 = 0.1323

Largest differences peak and hole/ e Å−3 0.41/−1.07

R1 = Σ||Fo|−|Fc||/Σ|Fo|; wR2 = [Σw (Fo
2−Fc

2)2/Σw(Fo
2)2]1/2, w = [σ2(Fo

2)+(AP)2+BP]–1. Where P =
(Max(Fo

2, 0)+2Fc
2)/3; GOF = S = [Σw(Fo

2−Fc
2)2/(nobs–nparam)]1/2.

3. Results and Discussion
3.1. IR Spectra

The main infrared spectra of H2L and its CuII complex are given in Table 2. The
spectrum of H2L showed a strong stretching vibration band at about 3216 cm−1 which
indicates the presence of multi molecular association and intramolecular hydrogen bonds
(νO-H). However, this peak disappeared in the CuII complex, reflecting that the O−H
groups of H2L are wholly deprotonated [51]. A new O−H stretching vibration peak in
the CuII complex was observed at approximately 3420 cm−1 that belongs to the coordina-
tion water molecules [52]. The stretching vibration bands at 1609 (νC=N) and 1261 cm−1

(νAr-O) of the ligand H2L were shifted to the low frequencies via ca. 6 and 11 cm-1 upon
coordination [53]. Besides, the spectrum of the CuII complex showed absorption bands at
ca. 3425, 1606, and 547 cm−1 which could be assigned to the coordination water molecules,
as is substantiated by the results of elemental analyses and the crystal structure [52]. At the
same time, the far-infrared spectrum of the CuII complex was also obtained in the range
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of the 100~500 cm−1 region so that a distinction could be made between frequencies of
the Cu-O and Cu-N bonds, and new peaks of the CuII complexes were found at ca. 455
and 512 cm−1 [54], respectively. These results support the proposal that strong binding
participations have occurred in the CuII complex [39].

Table 2. The main IR bands for H2L and its CuII complex cm−1.

Compound ν(O-H) ν(C=N) v(Ar-O) ν(Cu-O) ν(Cu-N)

H2L 3216 1609 1261 - -
The CuII complex 3420 1603 1250 455 512

3.2. UV-Visible Spectra

The UV-Visible spectra of the ligand H2L and its CuII complex were tested in methanol
solution (1.0 × 10−5 mol/L) at room temperature.

As depicted in Figure 1, the spectrum of H2L showed four relatively strong absorption
peaks at approximately 301, 312, 340, and 355 nm, the absorption peak at 301 nm belongs
to the π–π* transitions of the benzene rings [55]. The peaks at 312, 340, and 355 nm can be
attributed to the π-π* transitions of the C=N bonds of intra-ligand [56]. The absorption
peak of the CuII complex appeared at about 314 nm; this peak could be appointed to π-π*
transitions of the C=N bonds, indicating that coordination reaction occurred between H2L
and the CuII atoms [56,57]. Simultaneously, two new peaks were found at about 369 and
401 nm, which could be appointed to L→M charge-transfer transitions (LMCT). This is
characteristic of the metal N2O2-donor complexes [57].
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In order to explain the coordination of the ligand H2L to CuII ions, the UV-Vis ab-
sorption titration experiment was also performed (Figure 2). When the centration of CuII

ions were added gradually, a new absorption peak appeared between 345 nm and 460 nm,
which inferred that the ligand H2L and CuII ions coordinate in 1:1.5 ratio to produce a new
L-CuII complex.

3.3. Structure Analysis of the CuII Complex

The CuII complex crystallizes in the triclinic system, space group I41/a. The bond
lengths and angles are listed in Table 3. X-ray single-crystal data showed that three CuII

atoms and two completely deprotonated ligand (L)2− moieties produce together a rare ho-
motrinuclear 3:2 (M:L) complex with two coordination water molecules and two bi-dentate
briging µ-acetate groups (µ-OAc−). This structure differs from the usual mono-nuclear
CuII salamo-based complexes [58]. The six-coordinated terminal CuII (Cu1) atom is sited at
the N2O2 cavity containing two phenolic oxygen (O4 and O1) and oxime nitrogen (N2 and
N1) atoms in the ligand (L)2− moiety, which forms a basic equatorial plane, and bound to
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the other two oxygen (O7 and O5) atoms coming from one coordination water molecule
and the µ-OAc− group, respectively, at the end, forming a slightly distorted octahedral
geometry. The central CuII (Cu2) is located on a crystallographic center of inversion. More
interestingly, the six-coordinated central CuII (Cu2) atom is an octahedron, the Cu2 atom
is surrounded by O6 atoms, which involved two completely deprotonated ligand (L)2−

moieties and two bridged acetate (µ-OAc−) groups (Figure 3a,b). The hydrogen bond data
are summarized in Table 4.
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Table 3. Significant bond lengths (Å) and angles (◦) of the CuII complex.

Bond Lengths Bond Lengths

Cu1-O4 2.024(3) Cu2-O4 2.081(3)
Cu1-O1 2.017(3) Cu2-O1 2.073(3)
Cu1-O5 2.040(3) Cu2-O1# 2.073(3)
Cu1-N1 2.072(4) Cu2-O6 2.063(3)
Cu1-N2 2.063(4) Cu2-O6# 2.063(3)
Cu1-O7 2.118(3) Cu2-O4# 2.081(3)

Bond Angles Bond Angles

O1-Cu1-N1 87.90(13) O1-Cu2-O4# 101.66(11)
O1-Cu1-O4 80.95(11) O1#-Cu2-O1 180.00(13)
O1-Cu1-O5 90.75(12) O1#-Cu2-O4 101.66(11)
O1-Cu1-O7 90.15(13) O1#-Cu2-O4# 78.34(11)
O4-Cu1-O5 92.39(13) O4-Cu2-O4# 180.00
O4-Cu1-O7 90.94(13) O6-Cu2-O1 89.50(12)
O4-Cu1-N1 168.25(13) O6-Cu2-O1# 90.50(12)
O4-Cu1-N2 86.18(13) O6-Cu2-O4 88.55(12)
O5-Cu1-O7 176.64(13) O6-Cu2-O4# 91.45(12)
O5-Cu1-N1 91.42(15) O6-Cu2-O6# 180.00(9)
O5-Cu1-N2 90.92(14) O6#-Cu2-O4# 88.55(12)
N1-Cu1-O7
N2-Cu1-O7

85.39(15)
88.92(14)

O6#-Cu2-O1
O6#-Cu2-O1#

90.50(12)
89.50(12)

N2-Cu1-N1 104.87(15) O6#-Cu2-O4 91.45(12)
O1-Cu2-O4 78.34(11)

Symmetry transformations used to generate equivalent atoms: #1 1+x, y, z.



Crystals 2021, 11, 113 6 of 12

Table 4. Intramolecular hydrogen bonding data [Å,◦] of the CuII complex.

D−H···A D(D−H) d(H···A) d(D···A) ∠D−H···A Symmetry Codes

O7−H7A···N2 0.84 2.62 2.930(5) 103 1-x,1-y,-z
O7−H7B···O4 0.82 2.58 2.955(4) 109 1-x,1-y,-z
C9′−H9′A···O5 0.97 2.36 3.181(12) 142 1-x,1-y,-zCrystals 2021, 11, x FOR PEER REVIEW 6 of 13 
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In addition, there are three couple of intra-molecular hydrogen bondings (C9′-H9′A· · ·O5,
O7-H7A· · ·N2 and O7-H7B· · ·O4) in the CuII complex [59], as depicted in Figure 4.
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3.4. Molecular Simulation Calculation of H2L and Its CuII Complex

In order to better investigate the structures of H2L and its CuII complex, the DMol3

module of MS (Materials Studio) software was used to optimize and simulate the molecules
of H2L and its CuII complex [60].
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The method of structural optimization (property calculation) is GGA, BP (PBE) with
the base set DND (DNP), the solvent model (ethanol), the optimization precision set
medium, and smooth thermal smearing to speed up the convergence of structural opti-
mization. The molecule energies and frontier molecular orbital energies of H2L and its CuII

complex are shown in Table 5. For H2L, it could be found that the calculated energy gap
between the LUMO and HOMO of the CuII complex (0.984 ev) is lower than that of H2L
(1.803 ev) (Figure 5). According to the frontier orbital theory, the photoinduced electron
transfer (PET) may be caused by fluorescence quenching [24].

Table 5. Frontier molecular orbital energies and molecule energies of H2L and its CuII complex.

Name Energy/Ha EHOMO/eV ELUMO/eV ∆E/eV

C20H18N2O4 (H2L) −1183.9 −5.277 −2.917 2.36
C44H42Cu3N4O14 −7894.1 −5.014 −3.028 1.986
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3.5. Fluorescence Spectra

The fluorescent properties of the ligand and its CuII complex were invested in 1 × 10−5 M
ethanol solution at 349 nm excitation wavelength. Corresponding spectra are depicted in
Figure 6.
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The CuII complex underwent fluorescence quenching at 434 nm and the emission
peak is red-shifted, this can be appointed to LMCT [61]. Owing to the H2L molecule’s
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non-bonding pairs on the oxime N atoms where there is a PET (photoinduced electron
transfer) process from the N atom to the benzene ring. Due to the existence of CuII ions, the
fluorescent strength of the system is quenched. This result reflects that CuII ions interact
with the system effectually and have the PET (photoinduced electron transfer) effect, which
attenuates the fluorescent strength [62].

3.6. Hirshfeld Surface Analysis

Hirshfeld surface supplies a 3-D figure of inter-molecular inter-actions in the CuII com-
plex (Figure 7) [63], which could clearly indicate that the surfaces have been mapped over
dnorm and the corresponding location in shape index exists in the complementary region
of red concave surface surrounded by receptors and the blue convex surface surrounding
receptors, further proving that such hydrogen bonding exists. The large and deep red spots
on the three-dimensional (3D) Hirshfeld surfaces indicate close-contact interactions, which
are mainly responsible for the corresponding hydrogen bond contacts. As for the large
amount of white region in the dnorm surfaces, it is suggested that there is a weaker and
farther contact between molecules, rather than hydrogen bonding. The red zone expresses
the O–H between the H and O atoms in the CuII complex. In the interaction intensity
figure, the heavier the red area color is, the stronger O–H inter-actions are. As illustrated,
the shallower areas mostly represent the spread of influences such as H–H and C–H. As
illustrated in the figure, the spread of the approximated hydrogen bonds among the CuII

complex could also be analyzed. This is conducive of investigating inherent elements of
the steady existence among the CuII complex [64].
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the CuII complex.

In addition, the proportion of C–H/H–C, O–H/H–O, and H–H in the CuII complex
can also be acquired by Hirshfeld surfaces analyses [65–69]. Here, we theoretically cal-
culated the percentages of connects devoted to the total Hirshfeld surface region of the
CuII complex.

As shown in Figure 8, in this 2-D Hirshfeld surface figure, the blue area expresses the
distribution of various interactions for the whole CuII complex. The associated ratios of
O–H/H–O, C-H/H-C and H–H/H–H in the surface of Hirshfeld were computed as 8.4%,
18.2%, and 70.2%, respectively.
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CuII complex.

4. Conclusions

In summary, we prepared the non-symmetric salamo-derived ligand H2L and several
single crystals of its CuII complex. [Cu3(L)2(µ-OAc)2(H2O)2]·2CHCl3·5H2O were cultured
by slow evaporation method and various test methods were characterized. Interestingly,
the single crystal structure analysis showed that H2L and CuII ions form a symmetric
trinuclear CuII complex. The UV-Visible titration clearly showed that the radio of H2L to
CuII ions has a 2:3 stoichiometry. Hirshfeld surface analysis indicated that the CuII complex
could be stable due to intra-molecular hydrogen bond interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-435
2/11/2/113/s1, Figure S1: 1H NMR spectrum of H2L. Figure S2: Mass spectrum of the CuII complex.
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