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Abstract: The luminescence of materials in condensed phases is affected by not only their molecular
structures but also their aggregated structures. In this study, we designed new liquid-crystalline
luminescent materials based on biphenylacetylene with a bulky trimethylsilyl terminal group and a
flexible alkoxy chain. The luminescence properties of the prepared materials were evaluated, with a
particular focus on the effects of phase transitions, which cause changes in the aggregated structures.
The length of the flexible chain had no effect on the luminescence in solution. However, in crystals,
the luminescence spectral shape depended on the chain length because varying the chain length
altered the crystal structure. Interestingly, negative thermal quenching of the luminescence from these
materials was observed in condensed phases, with the isotropic phase obtained at high temperatures
exhibiting a considerable increase in luminescence intensity. This thermal enhancement of the
luminescence suggests that the less- or nonemissive aggregates formed in crystals are dissociated in
the isotropic phase. These findings can contribute toward the development of new material design
concepts for useful luminescent materials at high temperatures.

Keywords: photoluminescence; liquid crystal; negative thermal quenching; aggregated structure

1. Introduction

Organic materials that luminesce strongly in the solid state are crucial elements
of organic light-emitting diodes [1–3]. However, although most luminescent organic
molecules exhibit efficient photoluminescence in dilute solution, their luminescence is
usually partially or completely quenched by luminophore aggregation in condensed phases
(e.g., crystals and solid films). This phenomenon, called aggregation-caused quenching
(ACQ), is common in organic molecules with π-electron systems and prevents their practical
use [4,5]. Recently, organic materials that exhibit enhanced luminescence through molecular
aggregation (aggregation-induced emission (AIE)) were developed, paving the way for
the design of efficient solid-state emitters [6–9]. AIE effects are mainly explained by the
restriction of the internal motion of molecules by aggregation.

As molecular aggregation is an essential process for luminescent materials with AIE
activity, the aggregate structure plays a crucial role in their luminescence behavior. In
particular, the luminescence properties of AIE materials are expected to be sensitive to both
their aggregated structures and their molecular structures [9–20]. Therefore, structural
control over molecular aggregates is a key technology for developing organic light-emitting
materials and for tuning their luminescence properties (e.g., luminescence intensity and
color). Liquid crystals (LCs) have the potential to control the aggregate structures of
luminescent materials. LCs are a unique class of soft materials that flow similar to liquids
and possess long-range orientational order similar to crystals. Furthermore, the material
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properties and aggregated structures of LC molecules can be controlled by external stimuli
such as electric fields, magnetic fields, and light [21–23].

We developed various luminescent LC materials with rod-like or disk-like molecular
shapes [24–28]. The photoluminescence behavior of these LC materials was found to switch
upon phase transition [26]. Inspired by our previous work, in this study, we investigated
the luminescence behavior of LC luminophores in crystalline (Cry), LC, and isotropic
(Iso) phases. In LC materials, a rigid mesogenic core are a key structure for achieving
both liquid crystallinity and luminescence behavior. Here, we employed a biphenyl
unit with an ethynyl group, which functioned as both the rod-like (calamitic) core of the
mesogens and an efficient luminophore [22,23,29–32]. Increasing the steric bulkiness of a
luminophore to prevent the aggregate formation in the excited state is a general strategy
for enhancing the luminescence intensity in condensed phases [9]. Accordingly, orthogonal
aromatic rings, spiro-ring structures, and bulky substituents (e.g., t-butyl groups) are often
introduced into luminophores. Therefore, in the present study, a trimethylsilyl group was
attached to the terminal of the LC molecules as a bulky substituent (Figure 1). Varying
the length of a flexible alkoxy chain on the biphenyl unit was found to affect not only
the LC behaviors [31] but also the luminescence spectral shape in crystals. Moreover,
investigations of the effects of phase transitions on the luminescence behavior in condensed
phases revealed abnormal negative thermal quenching effects at high temperatures, which
can provide a new approach for designing highly luminescent solid-state materials.
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Figure 1. Molecular structures and synthetic routes for compounds 5-BPTMS and 6-BPTMS.

2. Materials and Methods
2.1. Materials

In this study, rod-like LC compounds 5-BPTMS and 6-BPTMS were prepared through
a two-step synthetic route using 4-bromo-4′-hydroxybiphenyl as a starting material
(Figure 1) [30–32]. The reagents and solvents used for the synthesis were obtained from
commercial sources and used without further purification. A 1H NMR analysis was per-
formed using a JEOL ECS-400 spectrometer at 400 MHz, and the residual proton in the
NMR solvent was used as an internal reference (Figure S1). Electrospray ionization mass
spectrometry (ESI-MS) was carried out using a Bruker micrOTOF II instrument (Figure S2).
An elemental analysis (C, H, and N) was performed using a Micro Corder JM10 analyzer
(J-Science).

2.1.1. Compound 4-Bromo-4′-pentyloxybiphenyl (5-BPBr)

Compounds 4-Bromo-4′-hydroxybiphenyl (2.0 g, 8.0 mmol), 1-bromopentane (1.3 g,
8.8 mmol), and K2CO3 (1.7 g, 12 mmol) were added to dimethylformamide (25 mL), and
the resultant mixture was stirred for 20 h at 90 ◦C. After filtering off the solids in the
reaction mixture, the filtrate was dissolved in ethyl acetate and washed with deionized
water followed by saturated aqueous NaCl. Anhydrous sodium sulfate was used to dry the
organic layer, which was then concentrated under reduced pressure. Compound 5-BPBr
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was obtained as a white powder (2.0 g, 6.2 mmol, 78% yield). The 1H NMR (400 MHz,
CDCl3, δ): 7.54 (dd, J = 11.2 and 2.4 Hz, 2H; 3,5-H in biphenyl), 7.49 (dd, J = 11.9 and 2.0
Hz, 2H; 3′,5′-H in biphenyl), 7.42 (dd, J = 8.8 and 1.6 Hz, 2H; 2,6-H in biphenyl), 6.99 (dd,
J = 8.4 and 1.6 Hz, 2H; 2′,6′-H in biphenyl), 4.00 (t, J = 6.8 Hz, 2H; OCH2CH2), 1.85–1.78
(quin, J = 7.1 Hz, 2H; OCH2CH2), 1.49–1.35 (m, 4H; CH2CH2(CH2)2CH3), and 0.96 (t,
J = 7.4 Hz, 3H; (CH2)4CH3).

2.1.2. Compound 4-Bromo-4′-hexyloxybiphenyl (6-BPBr)

Compound 6-BPBr (92% yield) was synthesized by the same procedure as 5-BPBr,
except that 1-bromohexane was used instead of 1-bromopentane. The 1H NMR (400 MHz,
CDCl3, δ): 7.53 (dd, J = 11.0 and 2.3 Hz, 2H; 3,5-H in biphenyl), 7.64 (dd, J = 11.0 and 2.0
Hz, 2H; 3′,5′-H in biphenyl), 7.53 (dd, J = 8.8 and 3.0 Hz, 2H; 2,6-H in biphenyl), 6.99 (dd,
J = 8.8 and 2.3 Hz, 2H; 2′,6′-H in biphenyl), 4.01 (t, J = 6.6 Hz, 2H; OCH2CH2), 1.85–1.80
(m, 2H; OCH2CH2), 1.51–1.30 (m, 6H; CH2CH2(CH2)3CH3), and 0.91 (t, J = 7.2 Hz, 3H;
(CH2)5CH3).

2.1.3. Compound 5-BPTMS

Then, 5-BPBr (1.3 g, 4.0 mmol), trimethylsilylacetylene (0.63 g, 6.0 mmol), triphenylphos-
phine (50 mg, 0.20 mmol), CuI (40 mg, 0.20 mmol), and bis(triphenylphosphine)palladium
dichloride (140 mg, 0.20 mmol) were added to a mixture of triethylamine (20 mL) and tetrahy-
drofuran (THF; 10 mL), and the resultant mixture was refluxed for 17 h with stirring. After
filtering off the solids, the filtrate was evaporated under reduced pressure. The residue was
dissolved in ethyl acetate and washed with saturated aqueous NH4Cl, deionized water, and
saturated aqueous NaCl. After the organic layer was dried with anhydrous sodium sulfate,
the solution was concentrated under reduced pressure. Purification of the crude product
by silica gel column chromatography (eluent: hexane) provided 5-BPTMS as a white solid
(1.2 g, 3.6 mmol, 90% yield), m.p. 116 ◦C. The 1H NMR (400 MHz, CDCl3, δ): 7.52–7.50
(m, 6H; 3,5,2′,3′,5′,6′-H in biphenyl), 6.97 (dd, J = 9.8 and 1.5 Hz, 2H; 2,6-H in biphenyl),
4.00 (t, J = 6.9 Hz, 2H; CH2O), 1.90–1.85 (m, 2H; CH2CH2O), 1.80 (quin, J = 6.4 Hz, 2H;
CH2(CH2)2O), 1.48–1.36 (m, 6H; (CH2)2CH3), 0.94 (t, J = 7.0 Hz, 3H; (CH2)3CH3), 0.26 (s;
9H; Si(CH3)3). FTIR (KBr, cm−1): 2954, 2932, 2871, 2861, 2533, 2154, 1601, 1492, 1393, 1249,
984, 860, 837, and 820. ESI-MS m/z: [M]+ calcd for C22H28OSi, 336.1909 found, 336.5246.
Anal. calcd for C22H28OSi: C, 78.51; H, 8.39 found: C, 78.37; H, 8.67.

2.1.4. Compound 6-BPTMS

Compound 6-BPTMS was synthesized by the same procedure as 5-BPTMS and obtained
49% yield, m.p. 107 ◦C. The 1H NMR (400 MHz, CDCl3, δ): 7.52–7.50 (m, 6H; 3,5,2′,3′,5′,6′-H
in biphenyl), 6.96 (dd, J = 9.6 and 3.0 Hz, 2H; 2,6-H in biphenyl), 3.99 (t, J = 6.6 Hz, 2H; CH2O),
1.81 (quin, J = 7.2 Hz, 2H; CH2CH2O), 1.48–1.36 (m, 6H; (CH2)3CH3), 0.92 (t, J = 6.3 Hz, 3H;
(CH2)3CH3), 0.25 (s; 9H; Si(CH3)3). FTIR (KBr, cm−1): 2954, 2938, 2869, 2157, 1605, 1493, 1473,
1394, 1248, 864, 841, 822. ESI-MS m/z: [M–H]+ calcd for C23H29Osi, 349.1988 found, 349.2584.
Anal. calcd for C23H30Osi: C, 78.80; H, 8.63 found: C, 78.84; H, 8.99.

2.2. X-ray Crystallography

Single crystals were prepared by slow evaporation of a mixed solvent system (CH2Cl2/
n-hexane). The obtained crystal was mounted on a glass fiber. The omega scanning tech-
nique was applied to collect the reflection data using a Bruker D8 goniometer with a
monochromatized Mo Kα radiation (λ = 0.71075 Å). To estimate the actual crystal structure
of the synthesized materials, measurements were performed at an ambient temperature
(296 K). The initial structure of the unit cell was determined through a direct method using
APEX2. The structural model was refined by a full-matrix least-squares method using
SHELXL-2014/6 [33,34]. All calculations were performed using the SHELXL software. The
crystallographic data for the synthesized compounds are summarized in the Supplemen-
tary Material, and the indexed data were deposited in the Cambridge Crystallographic Data
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Centre (CCDC) database (CCDC 2125441 for 5-BPTMS and 2125479 for 6-BPTMS). The in-
dexed database contains additional supplementary crystallographic data for this study and
may be accessed without charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html, ac-
cessed on 11 December 2021. The CCDC may be contacted by mail at 12 Union Road, Cam-
bridge CB2 1EZ, U.K., by fax at (44) 1223-336-033, or by email at deposit@ccdc.cam.ac.uk.

2.3. Phase Transition Behavior

The LC behavior was observed by polarized optical microscopy (POM) using an
Olympus BX51 microscope equipped with a hot stage (Instec HCS302 hot stage with an
Mk1000 controller, Instec). To assess the thermochemical stability, a thermogravimetric–
differential thermal analysis (TG–DTA) was carried out using a DTG-60AH instrument
(Shimadzu) at a heating rate of 5.0 ◦C min−1. The thermodynamic parameters were
determined by differential scanning calorimetry (DSC; X-DSC7000, SII) at a scanning rate
of 5.0 ◦C min−1. At least three scans were performed to confirm reproducibility. The
interlayer spacing of the smectic (Sme) LC phase was estimated using X-ray diffraction
(XRD; Ultima IV XRD-DSC IIx, Rigaku). A D/tex-Ultra detector was employed for the
small-angle region and a scintillation counter for the wide-angle region. Measurements
were carried out at a scanning rate of 10 ◦C min−1, and the temperature was controlled
using a built-in unit (ThermoPlus2, DSC8230, Rigaku).

2.4. Photophysical Properties

UV-visible absorption and steady-state photoluminescence spectra were recorded on a
JASCO V-550 absorption spectrometer and a Hitachi F-7000 fluorescence spectrometer with
a R928 photomultiplier (Hamamatsu) as the detector, respectively. The crystals prepared
for single-crystal X-ray structural analysis were also used for measurements in the Cry and
LC phases. The crystals were placed between a pair of quartz plates and set on a homemade
heating stage to record the spectra at controlled temperatures. The photoluminescence
quantum yields were determined using a calibrated integrating sphere (Hitachi). The
photoluminescence lifetimes were measured at an excitation wavelength of 280 nm using a
Quantaurus Tau photoluminescence lifetime measurement system (C1136-21, Hamamatsu).

2.5. Computations

All computations were performed using the density functional theory (DFT) with the
B3LYP hybrid functional and the 6-311+G(d,p) basis set in the Gaussian 16 (revision C.01)
program package [35]. The optimized geometries were determined by DFT calculations
using the same basis set. The stationary points were characterized by frequency calculations
to confirm that the minimum energy structures had no imaginary frequencies.

3. Results and Discussion
3.1. Synthesis and Characterization of Biphenylacetylene Compounds

In this study, 5-BPTMS and 6-BPTMS, biphenylacetylene compounds with a terminal
trimethylsilyl group, were synthesized according to the synthetic route shown in Figure
1. Following purification by column chromatography and recrystallization from a mixed
solvent system of CH2Cl2 and hexane, the compounds were fully characterized by a 1H
NMR spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and an
elemental analysis. All analytical data (presented in the Material and Methods section)
confirmed that the desired compounds were obtained.

To clarify the molecular structure of the synthesized compounds in the condensed phase,
a single-crystal X-ray structural analysis was performed. Both 5-BPTMS and 6-BPTMS
furnished single crystals suitable for X-ray crystallography. The key crystallographic data are
summarized in Table S1, and the crystal structures are shown in Figure 2. Both compounds
crystallized in the P-1 triclinic space group with four (5-BPTMS) or six (6-BPTMS) formula
units per unit cell. The unit cells of 5-BPTMS and 6-BPTMS contain two and three types
of conformational isomers, respectively, which can be characterized by the dihedral angle

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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of the biphenyl moiety (Table 1). It should be noted that the biphenyl dihedral angles
of some conformational isomers were extremely small, with the two benzene rings of the
biphenyl moiety forming an almost coplanar structure. In the molecular model obtained by
the DFT structural optimization, the C2–C1–C1′–C2′ dihedral angle in the biphenyl moiety
was approximately 38◦ (Figure S3 and Table 1). Therefore, the molecules in the crystal lattice
are distorted, probably because of intermolecular interactions, which allows tight packing.
Selected interatomic distances between neighboring molecules are listed in Figures S4 and S5,
and the results indicate that intermolecular interactions exist in the Cry phase.
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Figure 2. Molecular structures with the smallest C2–C1–C1′–C2′ dihedral angle, as determined by single-crystal X-ray
structural analysis at room temperature: (a) 5-BPTMS and (b) 6-BPTMS. The hydrogen atoms are omitted for clarity. Atom
color legend: gray—C; red—O; yellow—Si.

Table 1. Key structural parameters of biphenylacetylene compounds determined by single-crystal
X-ray structural analysis and DFT calculations.

Compound Biphenyl Dihedral Angle 1 (◦) Molecular Length 2 (Å)

5-BPTMS in crystals 9.17, 11.37 –
5-BPTMS optimized 3 37.99 20
6-BPTMS in crystals 5.96, 15.84, 30.48 –

6-BPTMS optimized 3 37.98 21
1 Dihedral angle of C2–C1–C1′–C2′. 2 Length between the carbon atoms in the terminal methyl groups of the
trimethylsilyl moiety and alkoxy chain. 3 Structure optimized by DFT calculations using the B3LYP hybrid
functional with the 6-311+G(d,p) basis set (Figure S3).

3.2. Thermal Behavior of Biphenylacetylene Compounds

The thermochemical stability of the compounds was evaluated by TG–DTA (Figure S6).
The thermal decomposition temperature was defined as the temperature at which 5%
weight loss occurs. The TG–DTA thermograms showed that 5-BPTMS and 6-BPTMS were
thermally stable up to 204 and 208 ◦C, respectively.

The thermodynamic behavior of the compounds was observed using DSC and POM.
As shown by the DSC thermogram in Figure 3a, 5-BPTMS exhibited two endothermic
peaks during the heating process and four or more exothermic peaks during the cooling
process. In contrast, the DSC thermogram of 6-BPTMS (Figure 3b) showed two distinct
exothermic peaks during the cooling process, whereas two overlapping peaks were not
clearly separated during the heating process. These two peaks could not be completely
separated by changing the scan rate, suggesting that this compound exhibits an LC phase
in a very narrow temperature range during the heating process. As the DSC results suggest
that the synthesized compounds exhibited liquid crystallinity, we used POM to observe the
phase transition behavior of 5-BPTMS and 6-BPTMS and determine their phase structures
(Figure 4). POM observations during the cooling process revealed a fan-shaped texture
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for both compounds, which suggests the formation of a Sme phase. For 5-BPTMS, no
significant change in the optical texture was observed at 103 ◦C, where an exothermic peak
appeared in the DSC thermogram. During the heating process, 5-BPTMS showed the same
fan-shaped texture between 108 and 116 ◦C, but this characteristic optical texture was not
observed for 6-BPTMS because of the narrow temperature range of the LC phase.
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To confirm the LC phase structures in more detail, XRD measurements were performed
at various temperatures during the cooling process (Figure 5). In the LC temperature range
(115–103 ◦C for 5-BPTMS and 104–86 ◦C for 6-BPTMS), diffraction peaks appeared in
the small-angle region (~3.5◦) for both compounds (Figure 5a,b), which are attributable
to the Sme layer spacing (d). In both materials, the d values were slightly larger than
the molecular lengths estimated from the DFT-optimized structures (Table 1). Thus, we
proposed a packing model for the LC phase of these compounds, as schematically shown
in Figure 5. In this model, because of the bulkiness of the terminal trimethylsilyl group,
the molecules cannot overlap to form Sme layers. Instead, the molecules are shifted in the
layers to avoid steric hindrance. This model provides an explanation for the interlayer
spacing of the Sme phase being longer than the molecular length of each compound.
Based on the optical textures observed by POM and the XRD results, we conclude that the
observed LC phase is the smectic A (SmeA) phase.
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Small-angle XRD patterns for (a) 5-BPTMS and (b) 6-BPTMS. Wide-angle XRD patterns for (c) 5-BPTMS and (d) 6-BPTMS.
XRD measurements were performed in the temperature ranges of 30–38 ◦C (1st heating, Cry, black), 114–109 ◦C (1st cooling,
SmeA, green), 96–92 ◦C (1st cooling, SmeX, red), 89–88 ◦C (1st cooling, Cry′, violet), and 31–30 ◦C (1st cooling, Cry, blue) for
5-BPTMS, and 23–51 ◦C (1st heating, Cry, black), 109–95 ◦C (1st cooling, SmeA, red), and 39–30 ◦C (1st heating, Cry, blue)
for 6-BPTMS. (e) Molecular model of 6-BPTMS and (f) schematic model of the packing structure in the SmeA phase.
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The phase sequences and transition temperatures obtained from the DSC and POM
observations are summarized in Table 2. Compound 5-BPTMS showed another LC phase
upon cooling below the temperature range of the SmeA phase (<103 ◦C). In the temperature
range of 103–89 ◦C, the optical texture was not significantly different from that observed for
the SmeA phase, and the XRD results indicated that the layer spacing was the same as that
in the SmeA phase. However, this phase showed higher-order diffraction peaks in the wide-
angle XRD measurements (Figure 5c). At present, although the detailed phase structure
is unclear, this phase can be considered a higher-order Sme (SmeX) phase. Additionally,
in the temperature range of 89–85 ◦C, the optical texture changed slightly, with striped
patterns appearing in the fan shape. This texture was unchanged in the Cry phase at
temperatures below 85 ◦C. Thus, we conclude that the phase observed in the temperature
range of 89–85 ◦C was another Cry phase (Cry′) and that a Cry′-to-Cry phase transition
occurred at 85 ◦C.

Table 2. Thermal and photophysical properties of biphenylacetylene compounds.

Compound Phase Sequences 1 and Transition Temperatures (◦C) 2 τ (ns) 3 Φ (%) 4

5-BPTMS
Heating Cry 108 SmeA 116 Iso

1.6 22Cooling Cry 85 Cry′ 89 SmeX 103 SmeA 115 Iso

6-BPTMS
Heating Cry 107 Iso

1.7 30Cooling Cry 86 SmeA 104 Iso
1 Cry, crystalline; SmeX, unidentified smectic; SmeA, smectic A; Iso, isotropic. 2 The phase transition temperatures were determined by
DSC during the 2nd scanning process. 3 τ, luminescence lifetime in crystals at room temperature. 4 Φ, luminescence quantum yield in
crystals at room temperature.

3.3. Photophysical Properties in Solution and Crystals at Room Temperature

The UV-visible absorption and photoluminescence spectra of 5-BPTMS and 6-BPTMS
were measured in dilute CH2Cl2 solution. Compound 5-BPTMS in CH2Cl2 solution
(2.0 × 10−5 mol L−1) exhibited a UV absorption band at 290 nm, and the molar extinction
coefficient at the absorption maxima was 4× 104 L mol−1 cm−1 (Figure 6a). This absorption
band was attributed to the π–π* transition of the biphenyl moiety. Compound 6-BPTMS
in the CH2Cl2 solution showed a similar absorption behavior (Figure 6c). Both compounds
were completely transparent in the visible light region (>340 nm), which is an important
characteristic for light-emitting materials.

The photoluminescence spectra of 5-BPTMS and 6-BPTMS were also measured in
dilute CH2Cl2 solution (2.0 × 10−6 mol L−1). Both compounds exhibited a luminescence
band with an emission peak maximum (λmax

em) in the UV region at 355 nm (Figure 6a,c).
Thus, the length of the terminal alkoxy chain in the biphenylacetylene compounds had no
effect on the spectral shape and λmax

em of the luminescence in the solution.
These compounds also emitted photoluminescence in crystals at room temperature

(Figure 6b,d). The deep-blue photoluminescence from the crystals was visible to the naked
eye under UV irradiation at 365 nm. In sharp contrast to the photoluminescence behavior
in the solution, the luminescence spectral shape in crystals showed a clear dependence
on the terminal chain length, meaning that photoluminescence of the present materials
dramatically depends on the intermolecular interactions (aggregated structure). For the
6-BPTMS crystal, the luminescence band appeared at 377 nm with a shoulder at 355 nm.
Although λmax

em was shifted 22 nm toward longer wavelengths due to a difference in
polarity around the molecules, this luminescence band can be considered to be the same as
that observed in the dilute solution. Therefore, we conclude that the luminescence of the
6-BPTMS crystal exhibited a vibronic structure and was emitted by a monomer.
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Figure 6. Photophysical properties of biphenylacetylene compounds. Absorption (black, 2.0 × 10−5 mol L−1), corrected
photoluminescence (blue, 2.0× 10−6 mol L−1, λex = 313 nm), and excitation (red, λem = 355 nm, 2.0× 10−6 mol L−1) spectra
of (a) 5-BPTMS and (c) 6-BPTMS in CH2Cl2 solution. Excitation (red) and corrected photoluminescence (blue) spectra
of (b) 5-BPTMS and (d) 6-BPTMS in crystals. Insets: corresponding photographs of the solutions and crystals under UV
irradiation at 365 nm.

In contrast, for the 5-BPTMS crystal, the luminescence band was broader than that in
the solution, suggesting that the luminescence spectrum of the 5-BPTMS crystal contained
at least two luminescence bands at ~370 and 410 nm. Similar to 6-BPTMS, the band
at ~370 nm was a monomer emission with vibronic structures and corresponded to the
band observed in a dilute solution. However, the luminescence at longer wavelengths
was likely emitted by molecular aggregates. As aforementioned, the biphenyl moiety of
5-BPTMS formed the coplanar structure in the Cry, and that allows it to form the ground
state aggregates. The ground state aggregates can be considered as pre-excimer formation
sites, and they become excited aggregates, such as excimer, by photoexcitation, resulting
in luminescence at longer wavelength [36–44]. In the Cry, 5-BPTMS molecules may form
several types of the ground state aggregates. Different from the excimer in solutions, the
structural relaxation of the excited aggregates cannot occur in the Cry phase owing to the
restriction by the lattice. Therefore, the complicated spectral shape was observed in the
luminescence in the 5-BPTMS Cry (Figure 6b).
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As shown in Table 1, some components in the 6-BPTMS crystal have a large dihedral
angle of 30.48◦, which is similar to that of the optimized structure (37.98◦). In contrast, small
dihedral angles (9.17◦ and 11.37◦) were observed for the 5-BPTMS crystal. Thus, 5-BPTMS
molecules can pack more tightly than 6-BPTMS molecules in crystals, facilitating the
formation of aggregates. The densities of the crystals estimated from the crystallographic
data (1.061 g cm–3 for 5-BPTMS and 1.032 g cm−3 for 6-BPTMS) are also consistent with
this packing behavior. Therefore, the crystallographic data strongly support our hypothesis
regarding the photoluminescence behavior of the compounds in crystals.

To further investigate the luminescence behavior of the materials, the luminescence
lifetimes (τ) and quantum yields (Φ) were measured in the crystals at room temperature,
and the results are summarized in Table 2. Although the spectral shapes differed, both
compounds showed similar luminescence lifetimes (~1.6 ns) in crystals; thus, the observed
luminescence can be considered to be fluorescence (Figure S7). The Φ values for the crystals
of these compounds were relatively high (22% for 5-BPTMS and 30% for 6-BPTMS).

3.4. Photoluminescence Behavior in LC Phases

To determine the effects of the aggregated structures (i.e., phase structures) on the
luminescence behavior, the photoluminescence spectra were recorded at various temper-
atures. Figure 7 shows the luminescence spectra of 5-BPTMS and 6-BPTMS at various
temperatures during the cooling process. The compounds exhibited strong emissions at
high temperatures in the LC and Iso phases. Compared with the aforementioned emission
spectra in the crystals, slight changes in the spectral shape were observed in the SmeA
and Iso phases for 5-BPTMS, with the relative intensity of the shorter wavelength band
becoming larger than that of the longer wavelength band. However, no significant changes
in spectral shape were observed for 6-BPTMS in the LC and Iso phases. As mentioned
above, the 5-BPTMS crystal shows dual emissions from monomers and aggregates. Thus,
the luminescence behavior suggests that a portion of the aggregates formed in the crys-
tal dissociated in the LC and Iso phases. In contrast, 6-BPTMS showed only monomer
emission in the Cry phase, and the luminescence spectrum did not change in the LC and
Iso phases.

In Figure 7c,d, the luminescence intensities at 391 nm are plotted as a function of
temperature. In the Cry phase, the photoluminescence intensity of each compound de-
creased slightly as the temperature increased. This type of temperature dependence for the
luminescence intensity is a common phenomenon, known as thermal quenching, which
originates from an increase in the nonradiative relaxation of excited states with increasing
temperature owing to thermally activated molecular motion. However, in the SmeA phase,
the luminescence intensity increased with increasing temperature. Furthermore, in the
Iso phase, the luminescence intensity was almost twice that in the Cry phase. This neg-
ative thermal quenching of the luminescence, where the intensity of photoluminescence
increases with increasing temperature, is an abnormal phenomenon that has occasionally
been observed in inorganic materials, such as semiconductor nanomaterials, and metal-
organic frameworks [45–49]. Generally, the luminescence intensity of organic materials is
reduced by aggregation because the excited states of molecular aggregates are less emis-
sive than those of their monomeric forms [4,5]. Therefore, we assume that less emissive
aggregates are formed in the 5-BPTMS crystal and nonemissive aggregates are formed
in the 6-BPTMS crystal, and that these aggregates dissociate in the LC and Iso phases at
high temperatures. As discussed above, this assumption is consistent with the temperature
dependence observed for the luminescence spectral shape in these systems.
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391 nm as a function of temperature (red, 2nd heating scan; blue, 2nd cooling scan).

To gain further insight into the origin of this abnormal phenomenon, the luminescence
spectra were obtained in a mixed solvent system of good and poor solvents (Figure S8). Both
compounds showed good solubility in THF but were insoluble in water; thus, increasing
the water fraction in the mixed solvent caused the aggregation of the molecules. As
shown in Figure S8b, the luminescence intensity gradually decreased with increasing water
fraction owing to molecular aggregation. These results indicate that neither compound
showed AIE activity; instead, both compounds showed ACQ. For 5-BPTMS, a slight blue
shift was observed at >80 vol% water, as aggregates were formed owing to the polarity
effects of the solvent. In addition, at >80 vol% water, the λmax

em and spectral shape of
5-BPTMS differed from that observed for the crystal (Figure 6) because the crystal packing
structure depended on the crystallization conditions or crystal size [28]. Compound 6-
BPTMS exhibited a similar blue shift upon increasing the water fraction. However, in this
case, the luminescence band observed at ~400 nm at 80 vol% water was the same as that
observed for the crystal.

The observation of ACQ properties for these materials supported our proposed nega-
tive thermal quenching mechanism. In the crystal, owing to dense packing, the molecules
form aggregates. Because both materials have ACQ properties, the aggregates are less-
or nonemissive. In the Cry phase, the materials exhibit normal thermal quenching, and
the luminescence intensity decreases with increasing temperature. However, the less- or
nonemissive aggregates dissociate by Cry-to-LC and LC-to-Iso phase transitions, and the
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resultant monomeric compounds show intense luminescence at high temperatures. As the
molecules are packed more densely in the SmeA LC phase than in the Iso phase, the most
intense luminescence is produced by the Iso phase.

Here, it is important to compare the emission behavior of the present materials with
conventional LC compounds with the biphenyl core, e.g., 4′-n-pentyl-4-cyanobiphenyl
(5CB) [50–53]. It was reported that 5CB exhibited UV fluorescence at ~330 nm in dilute
solutions (10−6 mol L−1) [51]. Comparing the λmax

em with 5-BPTMS and 6-BPTMS in so-
lutions, the λmax

em of 5CB appeared at shorter wavelength due to the electron-withdrawing
nature of the cyano group. In the concentrated solution (10−1 mol L−1) and the nematic
LC phase (at room temperature), 5CB showed intense luminescence at ~400 nm, and this
luminescence was attributed to the excimer emission. This red-shift of the λmax

em in the
condensed phases is similar luminescence behavior to 5-BPTMS, and it supports that its
luminescence in the condensed phases is emitted from the aggregates. However, in contrast
to 5-BPTMS and 6-BPTMS, the luminescence intensity of 5CB decreased in the Iso phase.
Therefore, we conclude that the negative thermal quenching effect observed in the present
materials is not common in the luminescent LC materials.

4. Conclusions

In this study, we discussed the effects of phase transitions, namely, changes in the
aggregated structures, on the luminescence behavior of LC materials based on bipheny-
lacetylene with a bulky trimethylsilyl terminal group and a flexible alkoxy chain. No
effect of the terminal chain length on the photoluminescence was observed in the solu-
tion; however, the luminescence spectral shape in the crystals showed a clear dependence
on the terminal chain length, meaning that photoluminescence of the present materials
dramatically depends on the intermolecular interactions (aggregated structure). Notably,
these materials showed the negative thermal quenching of the luminescence in condensed
phases. In particular, in the Iso phase at high temperatures, the luminescence intensity in-
creased considerably. In the crystals, the molecules formed less- or nonemissive aggregates.
However, these aggregates dissociated by Cry-to-LC and LC-to-Iso phase transitions, and
the resultant monomeric compounds showed intense luminescence at high temperatures.
We believe that this phenomenon can pave the way for the development of new material
design concepts for useful luminescent materials at high temperatures.
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