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Abstract: This experimental study presents concrete-filled double-skin tubular columns and demon-
strates their expected advantages. These columns consist of an outer steel tube, an inner steel tube,
and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension
ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate
axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield
strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled
double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe,
on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube.
Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally,
the experimental results are compared with the existing design methods presented in AISC 360-16
(2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives
better results, followed by AISC (2016) and EC4 (2004).

Keywords: concrete-filled double-skin tubular columns; PVC pipes; steel tubes; axial capacity;
stub columns; multiphysics model

1. Introduction

Conventional reinforced concrete has been largely used to construct composite struc-
tures [1,2]. With a growing demand for high-rise structures, it is difficult and impossible
to use reinforced concrete due to its low strength-to-weight ratio [3]. While, on the other
hand, an exponential rise in the use of steel structures has been observed [4]. This increase
is due to steel properties resistant to both compressive and tensile loading [5]. The advance-
ment in technology has developed new methods of constructing engineering structures.
Engineers widely use concrete-filled steel tubes (CFSTs) in high-rise buildings due to their
numerous advantages in normal and extreme weather conditions [6–17]. Different variants
of CFSTs have also been employed due to their better performance. A recycled aggregate
infilled CFST [13], preplaced aggregate CFST [14], multi-cell composite CFST [16], CFST
with external steel confinement [18], and concrete-filled double steel tubes (CFDSTs) [19,20]
are some of the common types of CFSTs currently being used. CFDST columns are com-
posite columns with outer and inner steel tubes, whereas concrete is sandwiched between
these tubes. Different types of CFDSTs and CFSTs are shown in Figure 1. CFDST columns
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have found many practical applications in the construction industry due to their unending
advantages [21]. These columns do not need formwork for their construction as outer and
inner steel sections act as a case to perform this function [22]. The absence of formwork
can lead to faster construction, which can significantly reduce the project’s cost [23]. The
CFDST columns are lighter in weight as concrete in a core is replaced by the inner hollow
steel section [23]. The CFDST columns have increased strength due to the confinement
of concrete provided by inner and outer steel sections, and these columns show good
resistance to wind and earthquake loading by dumping their vibrations [24–26]. Besides
that, CFDSTs with a greater internal hollow area can be utilized as submarine pipelines,
offshore platform legs, subsurface embedded pipeline cabins and corridors, etc. [27], since
they have a greater stiffness and axial capacity, and a longer lifespan than conventional
reinforced concrete.

1 

 

 Figure 1. Different typologies of CFDSTs and CFSTs (a) CFDST with similar sections (b) CFDST with
different sections (c) CFST with SHS and CHS.

The structural behavior of CFDST columns has been studied by numerous authors,
both experimentally and numerically. Most of the tests were performed on circular CFSTs,
and later on square and rectangular-shaped tubes. Furthermore, in most studies, the shape
of the outer and inner steel tubes has been the same. Zhao and Grzebieta [28] performed
experimental tests on square–square CFDST columns, subjected only to an axial load,
filled with normal strength concrete, and studied the ductility and plasticity of CFDST
columns. Uenaka et al. [25] studied the axial behavior of thin-walled circular–circular
CFDST columns. They concluded that the inner tube did not utilize its full strength due
to the buckling of the outer steel tube. Tao et al. [29] studied CFDST columns subjected
to eccentric loads. The analytical method was proposed based on the vast experimen-
tal tests conducted on circular–circular CFDSTs. It was concluded that circular–circular
CFDST columns fail in global buckling when subjected to an eccentric load. Tests on
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rectangular–rectangular CFDST beam-columns were reported by [30]. Li et al. [31,32]
performed experimental tests on CFDST columns with an inner and outer tube of a circu-
lar geometrical shape, while Han et al. [33] reported tests on elliptically shaped CFDST
columns with a variation in the type of steel used in the outer and inner sections. Moreover,
Han et al. [34] also proposed a novel non-linear concrete modelling approach to examine
CFDST columns and validate them through a comparison with the experimental tests
findings of other scholars.

Additionally, the research findings explain that the CFDST column has a much greater
strength than the summation of strengths of an inner tube, outer tube, and compres-
sive strength of concrete, separately [35]. Dong and Ho [36] empirically examined the
performance of CFDST columns with respect to stiffness and strength having externally
bonded steel rings under a compression load. The comparison of their findings, with
CFDST columns lacking outside confinement, reveals that using external steel rings for
the confinement of CFDST columns greatly improved their load-carrying capacity, duc-
tility, and stiffness. Haas and Koen [37] used two distinct lengths and hollowness ratios
and investigated the performance of CFDST columns with eccentric loading. They dis-
covered that the axial capacity decreased with the increase in the length and hollowness
ratio. Romero et al. [38] reported the experimental response of six circular CFDST slender
columns infilled with high strength and normal strength concrete under elevated and
ambient temperatures. They found that the buckling load (i.e., 1644 kN) was the same
for ambient and elevated temperatures, regardless of the location of the slightly thicker
tube (inner or outer). They also found that the layout of the examined specimens had a
substantial impact on their fire-resistant performance.

CFDST columns with different inner and outer steel tubes have also been studied by a
few researchers [39,40]. Elchalakani et al. [40] studied short circular–square CFDSTs filled
with high-strength concrete. The author compared the results with three different design
codes using a multiphysics model. Tests on square–circular columns were reported by
Han et al. [39]. Yang et al. [41] performed experimental tests on a different combination
of outer and inner steel tube shapes. They concluded that circular columns performed
better, followed by outer-square inner-circular sections. However, studies have shown
that a circular hollow section (CHS), used as an outer tube, provides good confinement
to concrete. In contrast, a square hollow section (SHS) is easier to fabricate and install a
beam-to-column connection [41]. Hence, CFDST columns with a CHS on the interior side
and a square hollow section (SHS) on the exterior side is used in this research.

As in CFDST columns, the primary objective of the inner tube is to provide formwork
(although, in some cases, it resists some external compressive forces); it is economical to
provide a thinner inner tube than the outer tube. However, the thinner tubes are vulnerable
to buckling. As an alternative, the use of other materials would be a smart choice. This
paper proposed a kind of composite column, namely, concrete-filled circular steel tubular
columns with an inner circular PVC pipe, “CFSPT column”. By replacing the internal
steel tube of CFDST columns with a circular PVC pipe, low-cost and eco-friendly CFSPT
columns can be prepared with enhanced properties. The advantages of combining the three
kinds of materials are expected to be the sandwiched concrete being better confined by the
PVC pipe and the steel tube, the sandwiched concrete being able to delay the local buckling
of the steel tube, and the buckling of the inner slender PVC column and the splitting of
the PVC pipe also being restrained. Thus, compared with the CFDST column, the better
ductility of the CFSPT column can be achieved. As for its connection system, CFDST
columns to steel beam connections using diaphragms or blinded bolts can be adopted [42].
Detailed experimental work is reported in this manuscript to study, in detail, the axial
behavior of CFSPT columns. The inner steel tube is replaced with a PVC pipe to decrease
the overall cost of the member. The effect of the slenderness of the outer tube and outer-
to-inner tube dimensions ratio is also studied. The performance of concrete-filled steel
plastic tubes (CFSPT) is compared with the CFDST performance. Finally, the experimental
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results of the multiphysics model are compared with the available design codes to check
the applicability of existing codes on the CFSPT.

2. Materials and Methods
2.1. Specimen Preparation

The CFDST columns investigated consisted of an outer square steel tube, a circular
inner tube, and concrete in between the two tubes. A total of 24 specimens was cast for
this experimental study. Figure 2 shows the geometry and terminology of the composite
column used in this research. In Figure 2, Bo represents the outer width of the composite
column, Di shows the diameter of the inner steel tube, to shows the thickness of the steel
tube, and ti is the thickness of plastic tube. The details of the casted specimens are shown
in Table 1. The number of specimens was chosen based on the parameters to be studied.
All the specimens were tested at 28 days.
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Table 1. Specimen designation and their dimensions.

Specimen
Name

Group of
Combinations

Outer Width
(mm)

Inner Diameter
(mm)

Type of Inner
Tube Bo/Di Ratio Bo/to Ratio

SS100-37.5

G1

100 37.5 Steel 2.67 83.30
SS100-31.25 100 31.25 Steel 3.20 83.30

SS75-37.5 75 37.5 Steel 2.00 62.40
SS75-31.25 75 31.25 Steel 2.40 62.40

SP100-37.5

G2

100 37.5 Plastic 2.67 83.30
SP100-31.25 100 31.25 Plastic 3.20 83.30

SP75-37.5 75 37.5 Plastic 2.00 62.40
SP75-31.25 75 31.25 Plastic 2.40 62.40

Table 1 shows eight different combinations used in the research. The combinations
were divided into two broad groups based on the type of inner tube. Three samples were
cast, for each combination, to enhance the accuracy of the results. “G1” and “G2” groups
contained CFDST and CFSPT columns, respectively. (Bo/Di) varied from 2 to 3.2 in a
group. The rest of the dimensions of CFDST columns were kept constant in both groups.
For instance, the SS100-37.5 represents a concrete-filled double-skin tube constructed with
inner and outer steel tubes with 37.5 mm and 100 mm in diameter, respectively, while
SP75-31.25 represents concrete-filled double-skin tube constructed with inner plastic tube
and outer steel tube having width 31.25 mm and diameter 75 mm, respectively. Using the
various combinations of casted samples tabulated in Table 1, the effect of the inner tube on
the ultimate axial capacity of CFDST and CFSPT columns was studied.
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2.2. Properties of Concrete

The ACI mix design procedure was followed to prepare a concrete mix with pro-
portions of 1:1.5:3 (representing parts of cement, fine aggregate, and coarse aggregate,
respectively), i.e., M20 concrete, to achieve the design strength of 20 MPa. The study was
based in Pakistan, where concrete is usually produced with 20 MPa of targeted compressive
strength [43]. A water–cement ratio of 0.55 was considered in this research to attain the
higher workability of concrete. Water absorption for both coarse and fine aggregates was
measured to be 1%. Ordinary Portland cement with a specific gravity of 3.1 was used in
this research. Specific gravities for fine and coarse aggregate were 2.65 and 2.6, respectively.
Coarse aggregates had a nominal maximum size of 20 mm, while fine aggregates with a
size less than 4.75 mm were considered. Six cylinders and three cubes were cast (with the
same proportions) to determine the stress–strain curve and strength of infilled concrete to
be used in columns. The stress–strain graph of the used concrete is provided in Figure 3.
Ingredients were mixed, cast, and cured according to the ASTM standard [44]. Concrete
was placed in three layers and was properly compacted with a mechanical vibrator. As the
specimens did not need any formwork, the specimens were covered with plastic bags from
the top immediately after casting.
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Figure 3. Stress–strain graph of the concrete used in this research.

2.3. Properties of Steel Tubes

The steel used in this research was cold-formed mild steel with an average amount of
carbon content varying between 0.05% and 0.25% by weight. Two different dimensions
of SHS, CHS, and PVC pipe were selected to serve the purpose of confinement tubes as
described earlier. A flat steel plate was used as a base plate to construct CFDST columns.
The top of the plate was marked to ensure that the inner tube was placed right in the center
of the outer tube. Tensile tests were performed on the rolls from which square and circular
sections were created according to the ASTM standard [45]. Specifically, ASTM D876 was
used for finding out the tensile strength of the PVC tubes. Table 2 shows the yield strength
for all the samples. It must be noted that there was a difference between yield strengths of
square and circular X-sections.
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Table 2. Properties of materials.

Tube Type Yield Strength
(MPa)

Ultimate
Strength (MPa)

Elastic Modulus
(MPa) Poisson’s Ratio

Square steel 210 350 210,000 0.3
Circular steel 300 362 205,000 0.3

PVC 50 70 2620 0.34
Concrete 18 20 35,300 0.2

Furthermore, the yield strength was different even for the same cross-section. This
difference was kept intentionally to study the effect of the yield strength of steel on the
behavior of samples. The length or height of all the samples used for every test conducted
was kept as 150 mm.

2.4. Properties of PVC Pipes

Circular PVC pipes were obtained from Alpha Pipe Industries Abbottabad, Pakistan,
and used to replace inner steel tubes in 12 samples. The diameter and thickness of PVC
pipes were kept the same as steel tubes for easy comparison. However, the yield strength
of PVC pipes was calculated using tensile test machine (ASTM D876) performed in the
laboratory and is shown in Table 2.

2.5. Test Procedure

After 28 days of curing, prepared specimens were tested in a hydraulic compression
testing machine with a maximum capacity of 2000 KN. Displacement-controlled load was
applied, as suggested in available literature [46,47], at the top end of the specimen with the
help of a thick steel plate that distributed the load uniformly. The digital meter recorded
the peak load when the specimen failed. All tests were conducted in the concrete testing
laboratory of COMSATS University, Abbottabad Campus.

3. Results and Discussion

The axial compressive strength and failure modes of all the columns were presented
in this section to discuss the influence of different parameters on the axial behavior of
CFDSTs and CFDPTs. The parameters included the slenderness of the outer tube, the type
of material of the inner tube, and Bo/Di. Furthermore, a comparison of the performance of
CFDST columns against CFSPT columns revealed the contribution of the inner tubes on
the strength index and concrete contribution ratio.

3.1. Failure Modes

Figure 4 shows the failure modes of CFDST and CFSPT tubes. All columns failed
due to the local failure of tubes and the yielding of steel. The local failure of steel tubes
was more prominent in larger sections as compared to smaller sections. In concrete, shear
failure was observed after the crushing mode. Furthermore, it was noted that the type
of material (pipe or steel) did not prevent the shear failure of concrete. After testing, all
the specimens were cut in the middle, and a smooth inner surface of the shell concrete
was observed, showing a proper compaction. Similar observations were reported in the
literature for stainless CFDSTs [48,49].
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3.2. Effect of Inner Tube of Distinct Materials

The use of composite construction (i.e., CFDSTs) is increasing with time. Different
ways were used to analyze the performance of composite columns as composite con-
struction is considered strong in terms of its load-carrying performance regardless of its
construction cost. The use of a PVC tube as an inner tube in a concrete-filled double-skin
tube can lead to the lower construction cost. Thus, it is necessary to analyze the perfor-
mance equivalency of CFDSTs and CFPSTs. Figure 5 shows the comparison between the
axial capacities of CFDSTs and CFSPTs. It was observed that by replacing the inner tube of
steel with a PVC pipe, on average, less than 10% strength was reduced irrespective of size
and dimensions of the steel tube. This reduction may be due to a lesser contribution of the
inner tube to the ultimate axial capacity of the CFDST and CFSPT columns. The inner tube
did not perform to its maximum capacity as the outer tube underwent buckling before
yielding the inner tube. Various researchers concluded similar results for long CFDSTs and
stainless CFDSTs. Hence, it can be concluded that the performance of CFSPTs was almost
equal to CFDSTs, despite the reduced cost of the PVC pipe. Thus, CFSPTs can be used as
an effective practical alternative to CFDSTs.
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3.3. Effect of Bo/t Outer Tube Slenderness

Eight different sets of CFDST and CFSPT samples (three for each set) were tested
with varying Bo/t. The overall experimental results of these samples, along with the
code comparison, are shown in Tables 3 and 4. The average strength of CFDSTs (1st and
3rd sample) was reduced by 42% (from 202 to 117) when the Bo/t of the outer tube was
reduced by 25% (from 83.33 to 62.5). A similar reduction in the axial capacity of CFSPTs was
observed for similar changes in the slenderness of the outer tube. The strength reduction
due to a reduced Bo/t was less for the smaller diameter of inner tube for both CFSPTs and
CFDSTs as shown in Figure 6. However, for a similar reduction in Bo/t, the strength of
CFSPTs was reduced by 47% (from 192 to 103). The difference in strength reduction was
not significant and showed the superiority of CFSPTs, as PVC pipes are much cheaper than
steel. Similar conclusions were reported in the literature and were due to failure to utilize
the full capacity of inner tubes in the case of the low slenderness of the outer tube [50,51].
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3.4. Effect of Outer-to-Inner Tube Dimension Ratio

Figure 7 compares the ultimate axial compression values to show the effect of the
Bo/Di tube ratio. Four different Bo/Di ratios were used in this study for CFDSTs and
CFSPTs. The effect of changing Bo/Di was the same on CFDSTs and CFSPTs. Furthermore,
increasing the Bo/Di ratio from 2 to 2.67 resulted in a higher ultimate capacity. This
higher ultimate capacity was due to the higher effect of confinement, more contact area,
and higher amount of steel [52]. However, upon further increasing Bo/Di, the ultimate
capacity decreased. The decrease may have been the result of the poor compaction of
infilled concrete [53].

Furthermore, it may be due to steel buckling as the advantage of concrete was not
fully utilized due to a lesser amount of concrete. Hence, it can be concluded that the
careful selection of Bo/Di must be taken into consideration to fully utilize the advantages
of CFDSTs and CFSPTs. Furthermore, the optimum Bo/Di ratio was the same for CFDSTs
and CFSPTs, showing a similar behavior of both columns.
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3.5. Effect of Inner Tube on Strength Index

Numerous researchers used a strength index to compare the ultimate axial capacities of
CFDST columns with the theoretical estimated ultimate capacities [33,54–56]. The strength
index was calculated using Equation (1):

Strength index = SI =
P(EXP)

Aos. f yo + Ais. f yi + Ac. f ′c
(1)

where Aos, Ais, and Ac are the cross-sectional areas of the outer tube, inner tube, and infilled
concrete, respectively. Table 3 presents the comparison of the Strength Index (SI) on the
strength of CFDSTs and CFSPTs. It can be observed that the value of SI was largely lesser
than the unity for CFDST and CFSPT columns, which meant a simple arithmetic sum of
individual strengths over predicted the capacity of slender CFDST columns. Furthermore,
SI did not vary largely regardless of the inner tube of distinct materials.
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Table 3. SI and CCR of all the tested specimens.

Specimen Name Aos (mm2) Ais (mm2) Ac (mm2) SI CCR

SS100-37.5 480 141.37 8657.5 0.69 1.41
SS100-31.25 480 117.81 8994.8 0.64 1.38

SS75-37.5 360 141.37 4342.5 0.58 0.93
SS75-31.25 360 117.81 4679.8 0.67 1.13
SP100-37.5 480 141.37 8657.5 0.75 1.78

SP100-31.25 480 117.81 8994.8 0.68 1.67
SP75-37.5 360 141.37 4342.5 0.63 1.15
SP75-31.25 360 117.81 4679.8 0.71 1.36

Table 4. Ultimate capacity obtained from experimental tests and different design codes.

Specimen Name B0/Di Average PExp(kN) PAISC(kN) PHAN(kN) PEC4(kN)

SS100-37.5 2.67 202.85 251 254 269

SS100-31.25 3.20 188.46 250 249 269

SS75-37.5 2.00 117.86 164 182 167

SS75-31.25 2.40 133.72 162 177 167

SP100-37.5 2.67 192.63 220 197 239

SP100-31.25 3.20 177.47 224 202 243

SP75-37.5 2.00 103.72 135 126 141

SP75-31.25 2.40 120.53 139 130 145

3.6. Effect of Inner Tube on Concrete Contribution Ratio

The concrete contribution ratio (CCR) was calculated using Equation (2) to com-
pare the contribution of infilled concrete to the ultimate axial capacity of CFDST and
CFSPT columns:

CCR =
P(EXP)

Aos. f yo + Ais. f yi
(2)

where Aos and Ais are the cross-sectional areas of the outer and inner tubes, respectively.
Table 3 presents the comparison between CFDSTs and CFSPTs based on the CCR. It was
observed that the CCR did not vary largely, regardless of the inner tube of distinct materials.
The average value of CCR in the case of CFSPT was 27.5% greater than CFDST. Thus,
it can be concluded that PVC pipe as an inner tube did not largely affect the CCR of
infilled concrete.

3.7. Axial Capacity of CFDST Column

Experimental results of CFDST specimens were compared with the compressive
strength obtained using design equations of AISC 360-16 (2016), GB51367 (2019), and EC4
(2004). In most of the cases, these codes gave conservative results due to the consideration
of several basic assumptions, which were not applicable in composite construction. All the
specimens studied in this research had an outer section slenderness in the category of very
slender as specified in EC4.

3.7.1. AISC Specifications

The AISC equation derivation worked on the same concept as used in the design of
structural steel. The mentioned code did not consider the concrete confinement contribu-
tion to the axial capacity of concrete-filled tubes. It did not consider the triaxial loading
condition, which clearly stated that the concrete compressive strength was increased. In the
case of plastic stress distribution, AISC simply stated that the yield stress of the tube was



Crystals 2021, 11, 1434 11 of 15

reached at 0.95 fc’. The ultimate axial strength (PAISC) of CFDST columns was determined
using Equation (3), as specified by AISC specification [57].

PAISC =

{
Pno

[
0.658

Pno
Pe

]
: Pno

Pe ≤ 2.25

0.877Pe : Pno
Pe > 2.25

(3)

where

Pe =
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2 (EI)e

(KL)2

where Ai, Ao and Ac are the cross-sectional areas of the outer tube, inner tube, and infilled
concrete, respectively.

According to AISC design rules, for all CFDST samples with inner steel tubes, the
mean, standard deviation, and coefficient of variation (COV) were 1.29, 0.07, and 0.08,
respectively. However, for samples with inner PVC tubes, these values were measured as
1.21, 0.07, and 0.09, respectively.

3.7.2. Han’s Equation

Experimental results of CFDST columns were compared with the axial strength pro-
posed by HAN et al. [58] for short square CFDST columns with an inner CHS. The predicted
design strength (PHAN) was given by Equation (4). This equation was based on regression
and did not consider the effect of outer tube geometry.

PHAN = Posc, u + Pi, u (4)

where Pi, u = Asi. f yi is the compressive capacity of the inner tube, while Posc, u is the
combined capacity of the outer tube and infilled concrete. Posc, u could be determined by
f scy. Aosc with Aosc = Aos + Ac, in which Aos and Ac was cross-sectional areas of the
outer tube and infilled concrete. The strength fscy was given by Equation (5):

f scy =

[
1.212 +

{
0.138

f yo
235

+ 0.7646
}

ζ +

{
−0.0727

f c
20

+ 0.0216
}

ζ2
]

f (5)

where
f c = 0.67 f ′c

and
ζ =

Aso. f yo
Ac. f c

According to the GB code, for all CFDST samples with inner steel tubes, the mean,
standard deviation, and coefficient of variation (COV) were found to be 1.36, 0.11, and 0.09,
respectively. However, for samples with inner PVC tubes, these values were measured as
1.11, 0.07, and 0.08.

3.7.3. Euro Code 4

Dissimilar to an AISC, in Euro Code 4, the buckling curves for the steel section were
used without considering the element imperfection. According to EC4 [59], the design
strength of CFDST columns was predicted by Equation (6) given below:

PEC4 = χ.Pu (6)

where
Pu = f yo.Aso + f ′c.Ac + f yi.Asi

The critical buckling load was determined using Pc =
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The critical buckling load was determined using 𝑃𝑐 = Л2(𝐸𝐼)𝑒/(𝐾𝐿)2, where KL is 
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2(EI)e/(KL)2, where KL is
the effective length of the member. It should be noted that in the calculations, the effective
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length was taken to be the actual length. The reduction factor (χ) used in Equation (3) was
given in Equation (7):

χ =
1(

∅+

√(
∅2 +
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ratio (ρs). The steel ratio of all the specimens used in this research laid within the range of
5 to 9%.

According to EC4 design rules, for all CFDST samples with inner steel tubes, the
mean, standard deviation, and coefficient of variation (COV) were 1.36, 0.07, and 0.09,
respectively. However, for samples with inner PVC tubes, these values were measured as
1.29, 0.07, and 0.09.

3.7.4. Comparison of Axial Capacity

The aforementioned equations lacked the clear description of the CFDSTs and CFSPTs,
and had certain limitations. In order to check the accurateness and applicability of the
design equation, it was necessary to analyze the experimental results against the predicted
results of the described equations. Figure 8 presents the comparison between the exper-
imental and predicted ultimate axial capacity of CFDST and CFSPT columns. It can be
observed that all prediction equations over predicted the strength of CFDST columns with
slender outer sections. Figure 8 shows that the AISC equation predicted more accurate
results for CFDST columns, while Han’s equation prediction accuracy stood well for CFSPT
columns. Overall, Han’s model showed the best results. The Eurocode gave higher error
values for both CFDSTs and CFSPTs, which might have been due to the Eurocode’s element
imperfection factor.
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4. Conclusions and Recommendations

This paper analyzed the use of PVC pipes in place of the inner steel tube in CFDSTs.
Experimental investigations were carried out to study the effect of different parameters
on the compression behavior of square CFDST columns. Moreover, the results obtained
through experiments were compared with design equations presented by AISC, Han,
and the Eurocode. The predicted strengths were found to be in good agreement with
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the experimental results. The parameters considered were the outer tube slenderness,
outer-to-inner tube dimension ratio, and type of inner tube. Results obtained through
experimental investigation came to the following conclusions.

1. Almost a similar reduction in the axial load capacity of CFDST and CFSPT columns
was noted with a similar reduction in the outer tube width to the outer tube thickness
ratio (Bo/t). The average strength of CFDSTs and CFSPTs was reduced by 42% and
47%, respectively, with the reduction in Bo/t by 25%.

2. Generally, the increasing trend in the strength of CFDST columns was observed with
an increase in the outer-to-inner tube dimension ratio. This increase may have been
due to the availability of a smaller area for the proper placement and compaction of
infilled concrete.

3. No significant variation occurred in the ultimate axial capacity of CFDST columns
with the inner PVC pipe compared to the steel inner tube. With the replacement of the
inner tube of steel with a PVC pipe, on average, less than 10% strength was reduced,
irrespective of the size and dimensions of the steel tube.

4. No eminent variation in the strength index and concrete contribution ratio was
observed with the inner PVC pipe compared to the steel inner tube. For both groups
of samples (CFDSTs and CFSPTs), the strength index was lesser than 1.

5. The capacity of CFDST columns with an inner steel tube was well predicted by the
AISC strength equation, while the estimation of strength by Han’s equation showed
more accurate results for CFSPTs.

Only limited research was conducted on CFDST columns containing PVC as an inner
tube. It is further recommended to study the influence of the slenderness, inner-to-outer
dimension ratio, and exposure to fire on the strength of CFDSTs.
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