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In the 1950s, borohydrides arose as promising components of new rocket and aviation
fuels. This led to the discovery of a new class of compounds—polyhedral boron hydrides
and the creation of a new chapter in the chemistry of organoelement compounds, which
are intrinsically attractive structures. It was one of the most important discoveries of the
20th century in the field of chemistry.

Polyhedral boron hydrides lie at the intersection of organic and inorganic chemistry.
The main theoretical interest in the chemistry of these compounds is due to their unusual
type of chemical bond and their three-dimensional aromaticity. The aromatic nature of
polyhedral boron hydrides determines many properties that distinguish them from most
boron hydrides and organoboron compounds: high thermal stability, kinetic stability of the
borane cluster, a pronounced tendency towards substitution reactions and isomerisations.

The replacement of one or more boron atoms in a polyhedral cluster by atoms of
other elements enables further diversification. The formation of carboranes, i.e., the in-
clusion of one or two carbon atoms in a boron cluster, leads to some radical changes. On
one hand, it is the acidic character of the CH protons that makes it possible to replace
the hydrogen atom(s) with various functional groups using standard organic synthesis
methods. On the other hand, it becomes possible to remove one or more boron vertices,
which significantly expands the range of structural types of carboranes. Thus, in ad-
dition to closed (closo-carboranes) structures, open (arachno- and nido-carboranes) ones
become accessible. Moreover, open structures, such as the 7,8-dicarba-nido-undecaborate
anion (nido-carborane) and its derivatives, are very promising ligands for the synthe-
sis of metal complexes. The deprotonated form of nido-carborane (dicarbollide dianion
[7,8-C2B9H11]2−) is a three-dimensional cluster with an open pentagonal face capable of
forming strong π-bonds with transition metal cations, which makes it a unique ligand
with unusual steric, electronic and chemical properties that are sometimes inaccessible for
organic ligands.

For more than half a century, scientists from all over the world have been studying
the properties of carboranes, as well as the possibility of obtaining new substances and
materials with desired properties. The study of these compounds significantly expanded
the modern understanding of molecular structures and the nature of chemical bonds, such
as Wade–Mingos rules and the three-dimensional aromaticity concept, which is currently
used to describe the structure of not only polyhedral boron hydrides but also transition
metal clusters, fullerenes and their derivatives, etc.

One of the scientists who made a significant contribution to the development of the
chemistry of carboranes is the British chemist Alan Welch.

Alan Welch undertook his PhD with Mike Hursthouse (who established the National
Crystallography Service in the UK), then a postdoctoral degree in heteroboranes with
FGA Stone in Bristol, and another postdoctoral degree with H-B Bürgi at ETH Zürich.
From a lectureship at Edinburgh University, he joined Heriot Watt University in 1994 and
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established the crystallography facility at Heriot Watt, as well as leading his internationally
recognized research group in heteroborane chemistry.

Later, Alan Welch worked on the synthesis of new heteroborane compounds, in partic-
ular, metallacarboranes. His group investigated their spectroscopic and structural character-
ization and studied their isomerisations and reactivity. The chemistry of supraicosahedral
heteroboranes, bis(carboranes), nitrosocarboranes, and non-Wadian metallacarboranes was
significantly expanded by Prof. Alan Welch’s group.

These eight papers form a Special Issue of Crystals to commemorate the excellent
contribution made to carborane chemistry by Prof. Alan Welch, who retired from Heriot
Watt University, Edinburgh, this year.

The papers illustrate the very comprehensive world of heteroborane chemistry, from
liquid crystals to BNCT agents, di-halogen bonding to quantum chemical calculations of
tetrel complexes of the carbonium ylide CB11H11, nickellacarboranes as potential acid-base
sensors to revealing how the selective formations of metallacarborane diastereomers can arise
and metallacarboranes as radical cation salts with dielectric or semiconductor properties.

A computational study by Drahomír Hnyk and co-workers used DFT to successfully
describe the reactions of experimentally known closo-C2B8H10 with bases such as hydrox-
ides and amines. The formation of [arachno-4,5-C2B6H11]− was established computationally
when this was not demonstrable experimentally [1].

Laskova and co-workers developed BNCT (boron neutron capture therapy) agents
that incorporate amino acids that are potentially taken up by malignant brain tumour cells.
The recent synthesis and biological evaluation of m-carboranyl-cysteine as an agent for
boron neutron capture therapy inspired the group to synthesize the analogue based on
readily available 1-mercapto-o-carborane. The synthesis was optimised by using the “free
of base” method [2].

Mandal was one of Alan Welch’s PhD students, and his work is on bis(nickelation)
of bis(o-carborane), which forms diastereoisomeric mixtures on metalation of the second
carborane cage and additionally undergoes isomerisation. It was found that stereospeci-
ficity was influenced by intramolecular dihydrogen bonding, whereas a specific isomerisa-
tion outcome was related to the stereo-electronic nature of bis(phosphine) ligands [3].

Liquid crystals incorporating carboranes were explored by Núñez and co-workers.
They varied substituents on o-carborane to tune liquid crystal properties employing the
mesogen cholesteryl benzoate. They found that the methyl substituent produced a blue
phase, whilst the phenyl substituent species was not mesogenic [4].

Stogniy, Sivaev and co-workers synthesized half-sandwich nickel(II) complexes with
amidine ligands where breakage of the Ni–N bond on acidification results in a colour
change, which gives these complexes potential as acid-base indicators [5].

High-level quantum-chemical computations (G4MP2) were employed by Oliva-Enrich
and co-workers to examine tetrel bonding (interaction between any electron donating
system and a group of 14 elements acting as a Lewis acid) to predict the formation of tetrel
complexes between the icosahedral carbonium ylide CB11H11 and a set of simple molecules
and anions. The electronic structure of the complexes was analysed with AIM and ELF
methods, showing the C_ _ _ X sharing and closed-shell interactions in the complexes [6].

Intermolecular halogen bonding, in this case, the diiodo bond, was investigated
by Sivaev and co-workers. They obtained 1,12-diiodo-ortho-carborane, and its crystal
structure was determined by X-ray diffraction, which revealed the existence of the I_ _ _ I
halogen bond in its crystal structure. Such dihalogen bonding is not found in 1,12-dibromo-
ortho-carborane. Quantum chemical calculations determined the noncovalent interaction
preferences in 1,12-diiodo- and 1,12-dibromo-ortho-carboranes, which were in agreement
with experimental findings [7].

Radical-cation salts based on tetramethyltetrathiafulvalene (TMTTF) and tetramethyl-
tetraselenefulvalene (TMsTSF) with metallacarborane anions were also explored by Sivaev
and co-workers. The iron bis(1,2-dicarbollide) and chromium bis(1,2-dicarbollide) salts
were synthesized by electrocrystallisation, and their characterisation revealed that the re-
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sulting TMTTF radical-cation salts are dielectrics, whilst the TMTSF species is a narrow-gap
semiconductor [8].

Thus, this Special Issue combines the latest achievements in the field of theoretical
and experimental chemistry of carboranes. We thank all the authors who took part in this
issue and look forward to further fruitful and impressive developments in the chemistry of
carboranes.

Conflicts of Interest: The authors declare no conflict of interest.
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