
crystals

Article

Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based
on Twinning and Coplanar Slip

Shih-Chieh Hsiao, Sin-Ying Lin, Huang-Jun Chen, Ping-Yin Hsieh and Jui-Chao Kuo *

����������
�������

Citation: Hsiao, S.-C.; Lin, S.-Y.;

Chen, H.-J.; Hsieh, P.-Y.; Kuo, J.-C.

Rolling Texture of Cu–30%Zn Alloy

Using Taylor Model Based on

Twinning and Coplanar Slip. Crystals

2021, 11, 1351. https://doi.org/

10.3390/cryst11111351

Academic Editor: Wojciech Polkowski

Received: 27 October 2021

Accepted: 5 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
sshawnnccatt@hotmail.com (S.-C.H.); annie30207@gmail.com (S.-Y.L.); ironcobra@livemail.tw (H.-J.C.);
freeonmaxs@yahoo.com.tw (P.-Y.H.)
* Correspondence: jckuo@mail.ncku.edu.tw

Abstract: A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-
Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the
shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model
considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and
coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first
approximation, texture simulation using the MTCS-model revealed brass-type textures, including
Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental
textures. Single orientations of C(1 1 2)

[
1 1 1

]
and S’(1 2 3)

[
4 1 2

]
were applied to the MTCS-model

to understand the evolution of Y and Z components. For the Y orientation, the C orientation
rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by
coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward
T’(3 2 1)

[
2 1 4

]
by twinning after 30% reduction and then toward Z(1 1 1)

[
1 0 1

]
by coplanar slip

after over 30% reduction.

Keywords: brass-type shear band; twin–matrix lamellae; coplanar slip; Taylor model; Cu–Zn alloy;
cold-rolling texture; X-ray diffraction

1. Introduction

In the industry applications, the formability of metals plays a significant role, which
mainly depends on the crystallographic texture and microstructure [1]. Moderate-strain
metals and alloys including copper exhibit laminar microstructures called shear bands
(SBs), a form of plastic instability. Duggan et al. [2] and Fargette et al. [3] investigated
the formation mechanism of SBs in Cu–Zn alloys. In rolled metals, the SBs form as thin
planar sheets that are parallel to the transverse direction (TD) and inclined at ~35◦ to the
rolling direction (RD). Brass-type SBs and copper-type SBs have been found in low stacking
fault energy (SFE) and intermediate to high SFE materials [2,4], respectively. Hatherly and
Malin [5] defined low SFE as <20 mJ/m2, intermediate SFE between 20 and 40 mJ/m2 and
high SFE as >40 mJ/m2. Considering the low stacking fault energy (SFE) of fcc metals,
the SBs exhibit the structure of twin–matrix lamellae (TML) composed of twin and matrix
lamella layers. The TML structure was reported in the observation of deformed Cu–30%Zn
by Duggan et al. [2] and Fargette et al. [3]. Malin and Hatherly [6] reported the TML
structure in pure copper. An abnormal slip system parallel to twinning planes also occurs
in the lamellar layer structure [2].

After large thickness reductions for α-brass, the SBs substantially change the texture
from copper-type to brass-type because of the formation of the fine TML structure [2].
Wassermann et al. [7] reported that cold-rolled α-brass with C{1 1 2} <1 1 1>-oriented grains
exhibit twin orientation T{5 5 2} <1 1 5> after twinning; consequently, the T-oriented grains
rotate toward the B{1 1 0} <1 1 2> orientation by dislocation slip. Hirsch et al. [4] found
that the T-oriented grains rotate to the transition orientation of {1 1 1} <1 1 2> (brassR) due
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to mechanical twinning (MT) after small reduction, and the brassR grains rotate to the G
{1 1 0} <0 0 1> orientation through shear banding after large reductions. Paul et al. [8,9]
studied low-SFE fcc single crystals initially oriented with copper and revealed that the two
coplanar slip systems adjusted by the initiation of shear banding play an important role in
the formation of brass-type textures.

Sevillano et al. [10] and van Houtte et al. [11,12] predicted copper-type texture using
full constraint (FC)- and relaxed constraint (RC)-Taylor models, respectively. Leffers [13,14],
Hirsch and Lücke [15] and van Houtte [16] estimated the brass-type texture using various
Taylor models that consider MT. According to Chin’s study [17], Kallend [18] and van
Houtte introduced MT into FC- [16] and RC-Taylor models [11,12]. Hirsch et al. [15] quan-
titatively compared the rolling texture between FC and RC Taylor models. Leffers [19,20]
used a modified Sachs model to predict brass-type texture. Kalidindi [21] proposed a crystal
plasticity model considering deformation twinning and observed that twinning is difficult
to occur in the twinned regions. In addition, Kalidindi [22] modelled with shear banding
to predict the texture transition from Cu-type to brass-type. Lebensohn and Tomé [23,24]
utilized the VPSC model to simulate brass-type texture including comprehensive relative
activity of slip and twin systems. Toth et al. [25] used a Taylor version of the VPSC model
considering dislocation slip and twinning to simulate the deformed texture of TWIP Steel
with fcc structure. Chalapathi et al. [26] proposed a modified LAMEL model to simulate
the rolling texture of an fcc steel. Among all models, the present work aimed to incorporate
the experimental observations of TML [27–31] in the Taylor model while considering MT to
predict the rolling texture of Cu–30%Zn. The modified Taylor model was compared with
conventional Taylor models such as FC and RC Taylor models in terms of rolling texture.

2. Materials and Methods

The dimensions of the as-received Cu–30%Zn alloy were reduced to 60.0 × 20.0
× 20.0 mm3 by using an abrasive cutting machine and annealed at 600 ◦C for 1 h to
homogenize, and then cold-rolled up to 90% thickness reduction. A two-high non-reversing
mill with roll diameter of 590 mm was set with rolling speed of 9 rpm to conduct the cold
rolling experiment. Drops of lubricant oil were applied on the rolls to reduce to friction
and heat during rolling. The alloy was rolled 10 times to reduce the thickness from 20.0 to
14.0 mm (30% reduction). Then, 1/3 length of the alloy was cut off and continued to roll
12 times to reduce the thickness from 14.0 to 8.0 mm (60% reduction). Finally, 1/2 length
of the alloy was cut off and continued to roll 15 times to reduce the thickness from 8.0 to
2.0 mm (90% reduction). The middle regions of the rolled materials were selected and cut
out in dimensions of 20.0 mm width and 20.0 mm length for further texture analysis. The
specimens were prepared by grinding using #400, #800, #1500, #2500, and #4000 SiC papers.

The texture of Cu–30%Zn alloy was examined on the surface parallel to the out-
of-plane direction called ND direction by using Bruker (Germany) D8 ADVANCE in
NCKU with CuKα radiation of λ = 1.5406 Å at 40 kV and 40 mA. Three incomplete pole
figures of {1 1 1}, {2 0 0}, and {2 2 0} were recorded by varying the tilting angle of 0◦–70◦

and the rotation angle of 0◦–360◦ with a scanning step of 5◦. Defocusing correction was
then employed on the measurement of random powder Cu–30%Zn alloy. Orientation
distribution function (ODF) and complete {1 1 1} pole figure were calculated using LaboSoft
(Poland) LaboTex ver.3.0 software in NCKU.

3. Modelling

The rolling texture of Cu–30%Zn alloy was modelled using modified Taylor models in
the Matlab software. FC-Taylor model, RC-Taylor model, RC-Taylor model considering
MT called MT-model, and RC-Taylor model considering MT and coplanar slip called
MTCS-model were constructed as follows.
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3.1. FC-Model

According to the method of van Houtte et al. [12,32] for establishing the FC-Taylor
model, a given displacement gradient eij in a grain is composed of a symmetric matrix
εij (called the strain tensor) and an antisymmetric matrix ωij (called the rotation tensor).
Here, the given strain tensor εij of 90% reduction (corresponding true strain,

∣∣ln 2.0
20.0

∣∣ = 2.3)
is expressed in the macroscopic frame for plane strain condition as follows:

εij =

 2.3 0 0
0 0 0
0 0 −2.3

 (1)

An incremental strain of 0.01 was set for each step in the simulation. In the crystal
frame, the symmetric matrix εS

ij, which relates the shear on the slip system s, is described
for the slip systems of {1 1 1} <1 1 0> by:

εs
ij =

ns

∑
s=1

γs

2
(bs ⊗ms + ms ⊗ bs) and (2)

εij = εs
ij (3)

where, bs, ms and γs denote the direction of the Burgers vector, the normal to the slip plane,
and the shear on the slip system s, respectively, in the crystal frame. The symbol ⊗ denotes
the dyadic product of two vectors. The antisymmetric matrix ωS

ij is expressed by:

ωs
ij =

ns

∑
s=1

γs

2
(bs ⊗ms −ms ⊗ bs) (4)

and
ωij = ωs

ij + Ωs (5)

where Ωs is the lattice rotation in the macroscopic frame.
Five linear equations are needed to solve Equation (2) with 792 combinations for a

given strain. According to the Taylor assumption [33], the minimum work corresponds to
the minimum sum of the activated five absolute shears and is expressed as:

w =
ns

∑
s=1

τs
c |γs| (6)

The critical resolved shear stress is denoted as τs
c for all 12 slip systems, and the

number of the activated slip systems is ns = 5. The lattice rotation Ωs in the macroscopic
frame can be obtained using Equation (5). As a result, the new orientation matrix g∗ is
expressed by:

g∗ = (I −Ωs)g (7)

where g is the initial orientation matrix before deformation.

3.2. RC-Model

After high reduction, the deformation texture shows discrepancies from that predicted
by FC-Taylor model. Van Houtte [11] proposed the concept of partly constrained defor-
mation of crystallites and labelled it as RC-model because of the observation that grains
become flattened and elongated after high rolling reduction. In the RC-Taylor model, only
four slip systems are activated. Hence, the relaxed constraint of εXZ shear strain can be
calculated in Equation (1), where the X direction is the rolling direction and Z the normal
direction, and the number of the activated slip system is ns = 4 in Equations (2) and (4).
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The given strain tensor εij is expressed in the macroscopic frame for plane strain condition
as follows:

εij =

 2.3 0 εXZ
0 0 0

εXZ 0 −2.3

 (8)

where the εXZ shear strain is unconstrained. Equations (2)–(7) are the same in the case of
the FC-Taylor model.

3.3. MT-Model

Following their observation of MT in low-SFE metals, van Houtte [16] and Chin et al. [17]
proposed a modified Taylor model that assumes that the shear in the crystal frame is due
to the MT in {1 1 1} <1 1 2> twin systems for FC- and RC-models and not {1 1 1} <1 1 0>
slip systems. Following the concept of van Houtte [16], the present study employed an
RC-model combining three slip systems and one twin system. This model is referred to as
the MT-model and differs from the RC-model in that the latter considers four slip systems.
The flowchart of the subroutine is shown in Figure 1.
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In the MT-model, the strain tensor resulting from three slip systems and one twinning
system is expressed in the crystal frame as follows:

εst
ij =

ns

∑
s=1

γs

2
(bs ⊗ms + ms ⊗ bs) +

nt

∑
t=1

γt

2
(
bt ⊗mt + mt ⊗ bt) (9)

where the numbers of the activated slip and twin systems are ns = 3 and nt = 1, respectively.
The former and latter parts of the symmetric matrix corresponding to the shear on the
slip systems of {1 1 1} <1 1 0> in Equation (2) and the twin systems of {1 1 1} <1 1 2> are
expressed as:

εt
ij =

γt

2
(
bt ⊗mt + mt ⊗ bt) (10)

where bt, mt, and γt denote the direction of the Burgers vector, the normal to the twin
plane, and the shear on the twin system t, respectively. The slip and twin systems used in
the models are listed in Table 1. The rotational antisymmetric matrix in the crystal frame is
expressed as:

ωst
ij =

ns

∑
s=1

γs

2
(bs ⊗ms −ms ⊗ bs) +

nt

∑
t=1

γt

2
(
bt ⊗mt −mt ⊗ bt)|γs| + Ωst (11)

where Ωst is the lattice rotation in the macroscopic frame.

Table 1. Twelve slip and twin systems of fcc metals used in the models.

Slip System Slip Plane Slip
Direction Twin System Twin Plane Twin

Direction

SS1 (1 1 1)
[
0 1 1

]
TS1 (1 1 1)

[
1 1 2

]
SS2 (1 1 1)

[
1 0 1

]
TS2 (1 1 1)

[
2 1 1

]
SS3 (1 1 1)

[
1 1 0

]
TS3 (1 1 1)

[
1 2 1

]
SS4

(
1 1 1

)
[0 1 1] TS4

(
1 1 1

)
[1 1 2]

SS5
(
1 1 1

)
[1 0 1] TS5

(
1 1 1

) [
2 1 1

]
SS6

(
1 1 1

) [
1 1 0

]
TS6

(
1 1 1

) [
1 2 1

]
SS7

(
1 1 1

) [
0 1 1

]
TS7

(
1 1 1

) [
1 1 2

]
SS8

(
1 1 1

)
[1 0 1] TS8

(
1 1 1

)
[2 1 1]

SS9
(
1 1 1

)
[1 1 0] TS9

(
1 1 1

) [
1 2 1

]
SS10

(
1 1 1

)
[0 1 1] TS10

(
1 1 1

) [
1 1 2

]
SS11

(
1 1 1

) [
1 0 1

]
TS11

(
1 1 1

) [
2 1 1

]
SS12

(
1 1 1

)
[1 1 0] TS12

(
1 1 1

)
[1 2 1]

Considering the contributions of slip and twinning, the minimum work of the MT-

model is expressed in terms of α = τt
c

τs
c

as follows:

w = τs
c

(
ns

∑
s=1
|γs|+ α

nt

∑
t=1

γt

)
(12)

where the numbers of the activated slip and twinning systems are ns = 3 and nt = 1,
respectively, and the critical resolved shear stresses for twinning and slip in all 12 twin
and slip systems are denoted τt

c and τs
c , respectively. The CRSS values of the slip and twin

systems are assumed to be identical, that is, α = 1. Thus, the new orientation of matrix g∗

is expressed by:
g∗ =

(
I −Ωst)g (13)

where g is the initial orientation matrix prior to deformation.
After twinning deformation, the orientation number of the fine TML structure in-

creases twofold after each simulation step, which leads to increases in computation time.
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To address the problem of time-consuming computations, van Houtte assumed a simplified
method with only one orientation; here, either the matrix orientation or the twin orientation
is selected as the new orientation of the matrix and twin area in the TML region. This
orientation depends on the relation between a random number R ranging from 0 to 1 and
the volume fraction of the twin region f t, which is expressed as:

f t =
γt

γ0
(14)

where the constant of the twinning shear of fcc metals is denoted γ0 = 1√
2

. If R is greater

than f t, then the new orientation is determined by Equation (11). If R < f t, then the new
orientation g∗ is given by Equation (11). The twinned orientation gt obtained after twinning
is given by Equation (13):

gt = Θtg∗ (15)

where g∗ is the new matrix orientation and Θt is a matrix that transforms the matrix
orientation into a twin orientation, which is expressed as follows:

Θt = 2mt ⊗mtT − I (16)

where T denotes the transpose of the matrix mt.

3.4. MTCS-Model

Considering the coplanar slip in the TML region reported by Hirsch et al. [4,34], the
current work presents another modified Taylor model, hereafter referred to as the MTCS-
model, that combines the MT-model with the concept of coplanar slip in the TML region.
A major difference between the MTCS- and MT-models is the addition of two assumptions
resulting in different textures in the former. The first assumption in the MTCS-model is
that further twinning is forbidden in a priori twinned regions. The second assumption
in this model is that the deformation of twinned grains contributes to two coplanar slip
systems. The former assumption is based on the perspective that twinning cannot easily
occur in previously twinned areas, as reported by Kalidindi [21]; in other words, secondary
or further twinning is forbidden in previous twinning areas. The latter assumption is based
on the coplanar slip observed in the TML region by Hirsch et al. [4]. The coplanar slip forms
on the plane of activated twin systems. The two other slip systems were selected from non-
coplanar slip systems. Therefore, the key difference between the MT- and MTCS-models
lies in changes in the twinned orientation.

Following the procedures of the MT-model, we calculate rigid body rotation for
the MTCS-model by taking the plastic strain and minimum work into account using
Equations (10)–(12), as shown in Figure 2. After each deformation step, a new orientation
is determined at random by selecting a number R between 0 and 1. Here the possibility
of twinning is equal to the fraction of the twinning area f t. When R ≤ f t, the new
orientation is determined by twinning by using Equations (7) and (15); when R > f t, the
new orientation is calculated by applying Equation (7) because of the deformation of the
slip, as shown in Figure 2. This procedure for orientation determination leads to indicating
the twinned and non-twinned orientations.
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The two assumptions are then implemented in the MTSC-model. The first assumption
is that secondary twinning, that is, further twinning in a previously twinned orientation, is
excluded. For the non-twinned orientation indicated, rigid body rotation is calculated by
considering the plastic strain and minimum work by using Equations (8)–(10). However,
the twinned orientation indicated does not change according to Equation (13) but follows
the right route in Figure 2 to avoid the formation of secondary twinning. This phenomenon
corresponds to the assumption that the twinning orientation occurs only once. The second
assumption is that the coplanar slip occurring in the TML region is implemented in the
reorientation calculation of the twinned orientation. The activated systems in twinned
orientations occur on twinning planes called coplanar slip systems at the first twinning.
Thus, the 12 slip systems used in the models could be classified into coplanar and non-
coplanar slip systems on the basis of the twinning planes. Therefore, two activated slip
systems are selected from the coplanar slip systems, and another two slip systems are
selected from the non-coplanar slip systems by using the RC-model. Thus, in addition to
non-coplanar slip, coplanar slip can contribute to the plastic strain of twinned orientations
via the relation:

εt
ij = εCP

ij + εnon−CP
ij (17)

where εCP
ij and εnon−CP

ij are the plastic strains resulting from the coplanar slip and non-
coplanar slip, respectively.

Considering the contribution of coplanar and non-coplanar slips, the optimization of

the minimum work in the MTCS-model is expressed in terms of β = τnon−CP
c

τCP
c

as:

wt = τCP
c

(
nCP

∑
s=1

∣∣∣γCP
∣∣∣+ β

nnon−CP

∑
s=1

∣∣∣γnon−CP
∣∣∣) (18)

where the numbers of the activated slip and twinning systems are nCP = 2 and nnon−CP = 2,
respectively, and the critical resolved shear stresses for the coplanar and non-coplanar
slip systems are denoted τCP

c and τnon−CP
c , respectively. The CRSS values of the slip and

twin systems are assumed to be identical, that is, β = 1. The antisymmetric matrix ωt
ij is

expressed as:
ωt

ij = ωCP
ij + ωnon−CP

ij + Ωt (19)

where Ωt is the lattice rotation in the macroscopic frame.
Thus, the new orientation of matrix g∗t is expressed as:

g∗t =
(

I −Ωt)gt (20)

where gt is the twinned orientation matrix before deformation resulting from the coplanar slip.
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For the four simulation models, the orientation number of grains is 5000, each strain
step is 0.01, the total strain is 90% reduction, and the 5000 grains initially show random
orientations. The simulated textures were analyzed, including ODF, complete {1 1 1} pole
figures, and volume fraction by using LaboTex software. The Euler angles follow the
definition of Bunge.

Single crystal C(1 1 2)
[
1 1 1

]
and S’(1 2 3)

[
4 1 2

]
orientations were also employed for

the initial orientations in MTCS-model to predict the components of Y and Z, respectively.

4. Results and Discussion

This section is divided by subheadings. It provides a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn.

4.1. Effect of Twinning on the Rolling Texture

FC-, RC-, MT- and MTCS-models were applied to understand the influence of twinning
on the rolling texture. The shear mechanism of FC- and RC-models is related to pure slip,
and that of MT- and MTCS-models is related to a combination of partial slip and twin.
The {1 1 1} pole figures of FC-, RC-, MT-, and MTCS-models are shown in Figure 3a–e,
presenting the {1 1 1} pole figure of Cu–30%Zn obtained from XRD measurements after
90% cold rolling. The {1 1 1} pole figures of FC- and RC-models belong to a typical copper
texture, and those of MT and experiment show a typical brass texture. In addition, the
{1 1 1} pole figure of MTCS-model indicates a combination of copper and brass textures.

ODFs were obtained from simulation and experiment to quantify the orientation distri-
butions of four models. As shown in Figure 4, the blue symbols indicate the orientations of
C{1 1 2} <1 1 1>, S{1 2 3} <6 3 4>, B{1 1 0} <1 1 2>, and G{1 1 0} <0 0 1>, and the red symbols
indicate the orientations of T{2 5 5} <5 1 1>, Y{1 1 1} <1 1 2>, and Z{1 1 1} <1 1 0>. Table 2
shows the preferred orientations simulated by the four models. The FC- and RC-models
predict a β-fiber after cold rolling in Figure 4a,b, the MT-model shows an α-fiber, and the
MTCS-model exhibits a combination of α- and β-fibers in Figure 4c,d. Comparison of pole
figures and ODFs revealed that the FC- and RC-models show β-fiber, the MT-model reveals
α-fiber, and the MTCS-model indicates α-and β-fibers.

The relative activities of the slip and twin systems were analyzed. Figure 5 shows
the relative activity of the systems as a function of deformation strain for the slip or
twin systems considered in the MT and MTCS models. The relative activities of slip and
twin systems for each step of simulation are determined using Equations (21) and (22),
respectively [28].

In the case of the RC-model, only slip systems were activated, that is, the activity of
slip has a constant value of 1. In addition, the activity of the 12 slip systems generally
ranges from 8% to 9% throughout the simulation.

In the case of the MT-model, the activity of the twin system calculated from the
simulation results is larger than that of the slip system at ε < 0.2; by contrast, the activity
of the slip system is greater than that of the twin system at ε > 0.2. These results
indicate that the deformation mechanism of the MT-model is dominated by twinning
at ε < 0.2. Under the condition of ε < 0.2, the deformation mechanism of the MT-
model is dominated by the twinning of slip system TS1(1 1 1)

[
1 1 2

]
. The deformation

mechanism of the MT-model is dominated by the slipping of slip systems SS4(1 1 1)[0 1 1]
and SS5(1 1 1)[1 0 1] at ε > 0.2 and by the slipping of slip systems SS1(1 1 1)

[
0 1 1

]
and

SS2(1 1 1)
[
1 0 1

]
at ε > 0.7. At ε > 0.7, the activities of the slip and twin systems are

stabilized in the MT-model. Overall, in the case of the MT-model, the respective activated
shear fractions of the dominant slip systems of SS4(1 1 1)[0 1 1] and SS5(1 1 1)[1 0 1] are
24.5% and 24.5% of the slip and twin contribution, corresponding to 27.9% and 27.9% of the
slip contribution, respectively. The activated shear fraction of the dominant twin system of
TS1(1 1 1)

[
1 1 2

]
is 12.3% of the slip and twin contribution, which corresponds to 99.9% of

the twin contribution.
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Table 2. Major orientation components predicted with random orientations using FC-, RC-, MT-, and MTCS-models after
90% reduction.

Reduction Model
Preferred Orientation

C S B T Y Z

90%

FC
(90.0, 24.9, 45.0)

≈
(1 1 3)

[
3 3 2

] (64.9, 30.0, 65.0)
≈

(2 1 4)
[
6 8 5

] (34.6, 45.2, 0.0)
≈

(1 0 1)
[
1 2 1

] - - -

RC
(90.0, 35.1, 45.0)

≈
(1 1 2)

[
1 1 1

] (54.9, 35.1, 65.0)
≈

(6 3 10)
[
7 16 9

] (19.8, 45.1, 90.0)
≈

(1 0 1)
[
1 4 1

] - - -

MT -
(50.1, 40.0, 65.0)

≈
(6 3 8)

[
3 10 6

] (24.8, 45.0, 90.0)
≈

(1 0 1)
[
1 3 1

] - - -

MTCS
(90.0, 35.2, 45.0)

≈
(1 1 2)

[
1 1 1

] (50.8, 40.0, 65.0)
≈

(11 5 14)
[
9 25 16

] (25.2, 45.1, 90.0)
≈

(1 0 1)
[
1 3 1

]
(85.1, 80.1,

45.0)
≈

(3 5 1)
[
0 1 5

]
(75.4, 60.2,

45.0)
≈

(5 5 4)
[
1 3 5

]
(49.8, 55.1,

45.0)
≈

(1 1 1)
[
2 11 9

]
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Relative activity o f slip =
∑5000

k=1

(
∑12

i=1
∣∣γs

ik

∣∣)
∑5000

k=1

(
∑12

i=1
∣∣γs

ik

∣∣+ ∑12
j=1

∣∣∣γt
jk

∣∣∣) (21)

Relative activity o f twin =
∑5000

k=1

(
∑12

j=1

∣∣∣γt
jk

∣∣∣)
∑5000

k=1

(
∑12

i=1
∣∣γs

ik

∣∣+ ∑12
j=1

∣∣∣γt
jk

∣∣∣) (22)

The deformation mechanism of the MTCS-model is dominated by the slipping of
slip systems SS1(1 1 1)

[
0 1 1

]
and SS2(1 1 1)

[
1 0 1

]
, which show similarly stable activities

of approximately 50% throughout the simulation. The activity of twin systems is close
to zero throughout the simulation (i.e., ~10−18) because of the model’s assumption of
restricted secondary twinning (i.e., twinning may occur only once). Madhavan et al. [35]
reported that the evolution of Cu-type rolling textures after up to 95% reduction may
be completely attributed to slip. Overall, in the case of the MTCS-model, the activated
shear fractions of the dominant slip systems of SS1(1 1 1)

[
0 1 1

]
and SS2(1 1 1)

[
1 0 1

]
are

approximately 50% and 50%, respectively, of the slip and twin contributions; these values
correspond to approximately 50% of the slip contribution. The activated shear fraction
of the dominant twin system of TS11(1 1 1)

[
2 1 1

]
is 0% of the slip and twin contribution,

which corresponds to 33.2% of the twin contribution.
The volume fraction of major components was calculated to quantify the orientation

components of the four models. Given their pure slip mechanism, the volume fractions
of C and S orientations are 15.52% and 11.81% for FC-model and 13.07% and 12.56% for
RC-model, as shown in Figure 6a,b. In both cases of FC- and RC- models, the volume
fraction of B and G components are relatively low because twinning mechanism was not
considered. When considering partial slip and twinning for the MT-model, the volume
fraction of C and S are reduced to 0.75% and 8.04%, while the volume fraction of brass-
type components, B and G components, increase. Furthermore, taking the coplanar slip
mechanism into account in the MTCS-model, the C and S orientations are stabilized due to
the restriction of secondary twinning, which leads to higher volume fractions than those in
MT-model. The major volume fraction of 10.95% calculated from MTCS-model in Figure
6d reveals the S orientation, while in the case of MT-model in Figure 6c that of 11.36% is
the B orientation. This observation suggests that the deformation mechanism of coplanar
slip may lead to the orientation change from B to S orientation because the deformation
mechanism of coplanar slip is considered in the MTCS-model. Furthermore, the volume
fraction of T orientation is 0.37% for MT-model (in Figure 6c), and those of T, Y, and Z
orientations are 1.64%, 2.34%, and 2.36%, respectively, for the MTCS-model (in Figure 6d).
The results reveal that the difference between MT- and MTCS-models lies on the orientation
prediction of Y and Z, where the volume fractions of both orientations are small.

Wassermann et al. [7] observed that on cold-rolled α-brass, the twin orientation
T{5 5 2} <1 1 5> is formed after twinning and consequently rotates to B{1 1 0} <1 1 2>.
Hirsch et al. [4] observed that in the low SFE Cu–Zn alloys, texture transition occurs at the
intermediate of high strains; a decrease in C orientation leads to an increase in T orientation.
The experimental result indicates the onset of twinning by the decrease of C orientation
and the increase of G. After 70% reduction, the G orientation is stable and the rest of T
orientation shifts toward Y. Madhavan et al. [35] observed the texture evolution of cold-
rolled Ni–40%Co. At the early stage, the deformation is achieved by slip and MT. At higher
reductions, high fraction of Cu-type shear bands was observed, which leads to final G
orientation with high volume fraction.
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For FC- and RC-models, we only assume that the plastic deformation results from
slipping on the slip systems. For MT- and MTCS-models, we consider that deformation
occurs due to MT. This finding suggests that the deformation mode, either due to slip or
twinning, changes the texture. The MTCS-model can predict the orientation components
of Y and Z with the initial random orientations.

With the use of a single crystal, the development and formation of Y and Z orienta-
tions were successfully estimated. Thus, the MTCS-model in combination with the initial
orientations of C and S’ was employed in the following sections.

4.2. Formation of Y Orientation

Hirsch et al. [4] reported that the T orientation is formed at low strain of <60% re-
duction due to the twin mechanism in Cu–30%Zn. At 70% reduction, this T orientation
rotates oppositely to Y orientation due to coplanar slip instead of rotating toward G.
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Duggan et al. [2] observed that the T orientation and the matrix orientation of C rotate
toward Y orientation. On this basis, the present work used the MTCS-model with the C ori-
entation of (1 1 2)

[
1 1 1

]
to understand the development of Y orientation. Figures 7 and 8

show the simulated {1 1 1} and {2 0 0} pole figures of 30%, 60%, and 90% reductions with
initial single C orientation using the MTCS-model.
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At 30% reduction, some of the initial C orientations either stay close to the C orientation
of (90◦, 37.7◦, 45◦) with 2.7◦ [1 0 1] misorientation or rotate to the orientation (270◦, 69◦,
45◦) near T with 5.2◦ [1 0 1] misorientation due to twinning. The rotation angle and axis
between simulated C and T is 60.0◦ [9 8 9] after 30% reduction.

At 60% reduction, most of the orientations rotate close to Y(270◦, 63.6◦, 45◦) with a
misorientation of 8.9◦ from the Y orientation because of slip. According to Asbeck et al. [36]
and Hirsch et al. [4], the orientation of (270◦, 74.2◦, 45◦)rotates toward the Y orientation
of (270◦, 54.7◦, 45◦) instead of moving toward the G orientation of (270◦, 90◦, 45◦). The
simulation results obtained from the MTCS-model are in agreement with those reported
by Asbeck et al. and Hirsch et al. After 90% reduction, the major orientations rotate
toward the Y orientation of (270◦, 57.1◦, 45◦) with a misorientation of 2.4◦. This path of
orientation change is in agreement with the study of Hirsch et al. [4]. In summary, the C
orientation of (1 1 2)[1 1 1] rotates to the T orientation on (1 1 1) plane due to twinning at
30% reduction. After 60% reduction, the T orientation rotates toward Y orientation, which
requires the coplanar slip systems of SS1(1 1 1)[0 1 1], SS2(1 1 1)[1 0 1], and SS3(1 1 1)[1 1 0]
on the (1 1 1) plane. This change in orientation is shown in Figure 9.

4.3. Formation of Z Orientation

The formation of Z orientation is attributed to the twinning of S’(133.1◦, 36.7◦, 26.6◦),
which is close to S(121.0, 36.7, 26.6). Hirsch et al. [4] reported that after twinning, the S’
orientation leads to T’(313.1◦, 36.7◦, 26.6◦), one of the symmetrically equivalent variants
of S’. As a result, the TS’ and S’ orientations rotate toward Z orientation by coplanar slip.
Thus, the MTCS-model with the S’ orientation of (1 2 3)

[
4 1 2

]
was used to understand

the development of Z orientation. Figures 10 and 11 show the simulated {1 1 1} and {2 0 0}
pole figures of 30%, 60%, and 90% reductions with an initial single S’ orientation using the
MTCS-model. After 30% reduction, some of the initial S’ orientations remain near S’(131.3◦,
38.8◦, 26.7◦) with 2.9◦ [4 3 5] from the initial orientation. Owing to twinning, the other
orientations rotate near T’(294◦, 70.9◦, 55.4◦) with 4.0◦ [9 6 11] from the S’ orientation. The
rotation angle and axis between simulated S’ and T’ is 60.0◦ [9 8 9] after 30% reduction.
At 60% reduction, the S’ orientation of (127.5◦, 38.7◦, 26.8◦) is still observed, and the other
orientation is close to T’(294.3◦, 68.7◦, 53.2◦). The former has a misorientation of 5.3◦

away from the S’ orientation, and the latter has a misorientation of 6.9◦ away from the T’
orientation. With increasing reduction from 30% to 60%, the T’ orientation rotates toward
Z and decreases the misorientations from 18.7◦ to 16.3◦.

At 90% reduction, most of the orientations rotate close to Z(292.8◦, 63.1◦, 48.9◦) with a
misorientation of 10.4◦, and the orientation of S’ is still found. The increase in reduction
from 60% to 90% decreases the misorientations between T’ and Z. Hirsch et al. [4] observed
that the peak shift of S orientation leads to a large ϕ2 angle and a small ϕ1 angle. In the
present simulation of the MTCS-model, theϕ2 angle increases from the initial 26.7◦ to 31.5◦,
and the ϕ1 angle decreases from the initial 133.1◦ to 116.9◦. This trend is in agreement with
the observation of Hirsch et al.

The S’ orientation of (1 2 3)
[
4 1 2

]
rotates to the T’ orientation because of twinning

on the twin plane of (1 1 1) at 30% reduction. At above 30% reduction, the T’ orientation
rotates toward the final Z orientation as explained by the coplanar slip of SS1(1 1 1)[0 1 1],
SS2(1 1 1)[1 0 1], and SS3(1 1 1)[1 1 0] further gliding on the (1 1 1) plane. This change in
orientation is shown in Figure 12. Therefore, the combination of MT and coplanar slip in
the TML region can be successfully simulated by the Taylor model to reveal the formation
of Y and Z orientations observed in the experiments.
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5. Conclusions

Conventional Taylor models including FC- and RC-models considering pure slip
mechanism simulate strong copper-type textures. Both FC- and RC-models display pre-
ferred orientations close to C, S and B. Among the components, the volume fraction of
C orientations is 2.45% higher in FC-model. With consideration of MT mechanism, the
condition of partial slip and twinning leads to partial brass-type textures. Significantly
decreased volume fraction of C and S were determined with 12.32% and 4.52%. In the
meantime, the increased volume fraction of B and G with 8.53% and 2.11% indicates the
formation of brass-type texture.

Considering MT and coplanar slip in the TML region in this study, a Taylor-based
MTCS-model is proposed to simulate the rolling texture of Cu–30%Zn. Comparing with
the results of MT-model, the volume fraction of C and S orientations was determined
with 2.87% and 2.91% increase, respectively. In the meantime, the decreased volume
fraction of B with 5.31% indicates the instability of B orientation. In addition to the β-fibers,
the simulated results of the MTCS-model display the experimentally observed texture
components including T, Y, and Z orientations, with corresponding volume fractions of
1.62%, 2.34%, and 2.36%, respectively.

Furthermore, we can successfully predict the reorientations of C-Y-T and S’-T’-Z by
additionally considering twinning and then coplanar slip in the proposed MTCS-model.
The Y and Z orientations, however, were not observed in the FC-, RC- and MT-models, but
were found in the MTCS-model. Evolution of single C and S’ orientations further suggests
the texture transition from copper-type to brass-type texture. The texture transitions
from C to Y and from S’ to Z reveal the following. Considering the texture transition
from C to Y, the C orientation of (1 1 2)

[
1 1 1

]
rotates toward T(2 2 1)

[
1 1 4

]
because of

twinning after 30% reduction, after which the T orientation rotates toward Y(3 3 2)
[
1 1 3

]
and Y(8 8 7)[10 11 24] because of continued coplanar slip after reductions of 30% and
60%, respectively. In the case of the texture transition from S’ to Z, the S’ orientation of
(1 2 3)

[
4 1 2

]
rotates toward T’(7 5 3)

[
11 4 19

]
by twinning after 30% reduction, after which

the T’ orientation rotates toward Z(4 3 2)
[
8 2 13

]
and Z(9 8 6)[2 0 3] because of continued

coplanar slip after reductions of 30% and 60%, respectively.
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