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Abstract: In order for bioceramics to be further used in composites and their applications, it is
important to change the surface so that the inert material is ready to interact with another material.
Medical grade alumina and zirconia ceramic powders have been chemically etched with three
selected acidic mixtures. Powder samples were taken for characterization, which was the key to
evaluating a successful surface change. Changes in morphology, together with chemical composition,
were studied using scanning electron microscopy, phase composition using X-ray diffraction methods,
and nitrogen adsorption/desorption isotherms are used to evaluate specific surface area and porosity.
The application of HF negatively affected the morphology of the material and caused agglomeration.
The most effective modification of ceramic powders was the application of a piranha solution to
obtain a new surface and a satisfactory degree of agglomeration. The prepared micro-roughness
of the etched ceramic would provide an improved surface of the material either for its next step
of incorporation into the selected matrix or to directly aid in the attachment and proliferation of
osteoblast cells.

Keywords: alumina; zirconia; surface treatment; bioceramics modification; medical applications

1. Introduction

Ceramic biomaterials are widely used in medicine, mainly in orthopedic and dentistry
applications [1,2]. This is due to their high hardness, resistance to wear, chemical inert-
ness, lack of inflammatory reaction on the host organisms, their ability to form complex
shapes, and aesthetic effects of prostheses, which are important for dental prosthetics [2–4].
Ceramics such as alumina and cubic zirconia are used for acetabulum joints, auditory ossi-
cles, bone scaffolds, dental prostheses (such as crowns), bridges and prosthetic implants,
and abutments [5,6]. Ceramics are popular in biomedical applications and allow for the
elimination of problems that occur with the use of metal implants, such as metallosis and
corrosion, which can cause inflammation, colonization by pathogenic microorganisms,
rejection of the implants by the human body, and in extreme cases can lead to cancer [7,8].
The main constituents of dental ceramics are Si-based inorganic materials, such as feldspar,
quartz, and silica. Traditional feldspar-based ceramics are also referred to as “Porcelain”.
The crucial difference between a regular ceramic and a dental ceramic is the proportion
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of feldspar, quartz, and silica contained in the ceramic. Because feldspar-based ceramics
were prone to failure owing to their inherent brittle nature, ceramics with higher crystalline
content such as alumina (aluminium trioxide), Al2O3, and zirconia (zirconium dioxide)
ZrO2, were developed to improve the mechanical properties [9].

The adverse effects of metallic implants are associated with the accumulation of
harmful metallic ions in detoxification organs [10,11]. Important problems are further
associated with inflammation caused by pathogenic microorganisms, most often Candida
albicans, Typhylococcus aureus group [12], Aggregatibacter actinomycetemcomitans [13],
and Eikenella corrodens. It is assumed that over 65% of all human infections have been es-
timated to be biofilm-related [14–16]. Bacterial and fungal inflammations, and their related
issues, are the most noticeable in metal biomaterials and alloys [16–18]. Inflammations,
and bone loss, are problems that can be avoided with the use of ceramic biomaterials.

Despite the numerous advantages, the application of ceramics brings some issues that
arise from the physicochemical nature of this group of materials. This is analogous to the
zirconium drawbacks connected with its metastable nature, which a significant amount
of work has been dedicated to [19–23]. Other disadvantages of ceramics are their high
fragility and a relatively time-consuming and expensive production process, metastable
phase’s stabilization, and dopant selection [24–29].

There are many ways to develop a sufficiently large surface area on the ceramic
surface: oxidation, application of characteristic functional groups, silanization, thermal
treatment in a gas atmosphere, melt infiltration, ionic liquid etching, sol-gel process, and
co-precipitation [30–35]. For example, the chemical etching processes have a large amount
of literature focused on chemical etching concerns for the preparation of the ZrO2 surface
in a way that enables permanent bonding to hard dental tissues or composite materials [35].
One of the important aspects required for the success of ZrO2 ceramics is the establishment
of proper adhesion between substrate and adherent. The gold-standard protocol for resin
bonding to glass-ceramics is etching with hydrofluoric acid, followed by the application of
a silane coupling agent (chemical and mechanical adhesion) [35,36]. Acid etching applying
various concentration and times has been shown to change the surface micro-morphology
of glass and oxide ceramics with many surface defects. The resin adhesion, the increase of
HF concentration, and the etching time is responsible for the increase of the surface area
available to adhesion with resin [35].

The morphology study effect via micro-roughness of etched ceramics is important for
further application and next step incorporation into the selected matrix or directly helps the
osteoblast cell attachment and proliferation [37–39]. Morphology roughness is important
for other inorganic modifications; e.g., precipitation of apatite ceramics [40–42].

Here, we report a simple and low-cost surface modification process for medical-grade
ZrO2 and Al2O3 ceramics using chemical acids. This treatment was carried out to prepare
surface of ceramic fillers for a further modification or for incorporation into selected matrix.
For the etching process, we used sulphuric acid, nitric acid, peroxide, and hydrofluoric
acid. The performed research concerns the assessment of the impact of prepared etching
baths on the surface development, chemical and phase composition.

2. Materials and Methods
2.1. Samples Preparation

The test samples were prepared from ceramic powders of alumina (Al2O3 99.9%, CAS
1344-28-1, Sigma Aldrich/Merck KGaA, Darmstadt, Germany) and zirconia (ZrO2 99% purity
excludes ~2% HfO2, CAS 1314-23-4, Sigma Aldrich/Merck KGaA, Darmstadt, Germany).

Concentrated Sulphuric acid 98% H2SO4 (CAS 7664-93-9), nitric acid 65%HNO3 (CAS
7697-37-2), hydrofluoric acid HF (CAS 7664-39-3) and hydrogen peroxide (CAS 7722-84-
1) 35% H2O2. All reagents were purchased from Avantor Chemicals, Radnor, PA, USA.
The samples were prepared in 3 g batches. Powder samples without any pre-treatment
were chemically etched in the following solutions: (I) hot, fresh Piranha solution (98%
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H2SO4 + 35% H2O2), (II) sulphuric 98% H2SO4 and nitric 65% HNO3 acid mixture, and
(III) hydrofluoric acid 45% HF.

The work with all concentrated acids and their mixtures are dangerous and relevant
precautions must be applied. Acid resistant protective clothing and gloves and safety
goggles or a combination of safety goggles and a face shield where splashing is a possibility
is recommended.

The sample names, process times, and etching baths are given in Table 1.

Table 1. All sample’s experimental conditions and description for both ceramic samples.

Agent,
Cp% Etching Time, (s) Concentration Cp% Sample Name

ALUMINA
Sample Name

ZIRCONIA

98% H2SO4:
35% H2O2

60
100

ZrO2_PS1_60 Al2O3_PS1_60

120 ZrO2_PS1_120 Al2O3_PS1_120

98% H2SO4:
65% HNO3

1:3

60
100

ZrO2_SN1_60 Al2O3_SN1_60

120 ZrO2_SN1_120 Al2O3_SN1_120

45% HF
60

15
ZrO2_HF0.15_60 Al2O3_HF0.15_60

120 ZrO2_HF0.15_120 Al2O3_HF0.15_120

Note: key for sample name: ceramics _ abbreviation of etching agent with concentration _ etching time.

The ceramic powder samples were placed in a beaker with an etching solution and
mixed with a magnetic stirrer. The time of etching was set to 60 s and 120 s. After etching,
the samples were quantitatively transferred to a paper filter and washed with deionized
water (3 × 200 cm3) and filtered under pressure through filter with a ceramic membrane
to remove the remaining etching solution. The samples were then transferred to a dryer
and dried at natural airflow at 80 ◦C for 24 h. After cooling the samples were added to a
beaker with 2-propanol (Merck KGaA, Darmstadt, Germany) and placed in an ultrasonic
bath to homogenize them for 15 min. The samples were then again transferred to a dryer
and dried at natural airflow at 80 ◦C for 24 h. The samples thus prepared were then used
to characterize the materials.

2.2. Characterization

The prepared samples were tested in terms of their morphology, phase composition
and structure, chemical composition, and specific surface development. The morphology
and initial elemental composition analysis using Scanning Electron Microscopy JEOL JSM-
7610F+ (JEOL, Tokyo, Japan) with Schottky cathode equipped with energy-dispersive X-ray
spectroscopy Aztec Ultima Max 65 (Oxford Instruments, Abingdon, UK) (SEM/EDS) were
performed. Both secondary and back scattered electrons regimes were employed to take
the best electron micrographs of area of interests and EDS mapping was applied to uncover
elemental composition. Samples were placed on the stubs covered with carbon tape and
coated with platinum (20 nm) to reach best resolution and avoid possible charging.

The analysis of characteristic bonding interactions using Fourier transform infrared
(FTIR) spectroscopy was performed. The FTIR spectra of all samples were measured using
the attenuated total reflectance technique. The samples were pressed using a pressure
device on the single-reflection diamond crystal, and spectra were collected using an FT-IR
Nicolet iS50 (Thermo Scientific, Waltham, MA, USA) spectrometer with a Smart Orbit
ATR accessory and a deuterated triglycine sulphate detector. The measurement conditions
were as follows: spectral region = 4000–400 cm−1; spectral resolution = 4 cm−1; 64 scans;
Happ-Genzel apodisation.

The X-ray powder diffraction (XRD) analysis was performed using a RIGAKU Ultima
IV diffractometer (Rigaku, Tokyo, Japan), with a scintillation detector, CuKα radiation
source, NiKβ filter, and Bragg-Brentano arrangement. Samples were measured in ambient
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atmosphere using reflexion mode (conditions: 40 kV, 40 mA, 2◦/min, 0.05 step). The
database used for qualitative phase analysis was ICDD PDF-2/Release 2011 RDB.

Specific surface was determined via nitrogen adsorption/desorption isotherms, which
were measured using Autosorb (Quantachrome Instruments iQ2, Boynton Beach, FL, USA).
Prior to the analysis, all samples were degassed for 3.6 h at 300 ◦C. The specific surface area
was calculated using the Brunauer–Emmett–Teller (BET) method. Porosity and pore size
distribution was determined using the Barrett–Joyner–Halenda (BJH) method, applying
the software from the producer of the apparatus. Approximate pore shapes were specified
based on de Boer adsorption hysteresis classification.

3. Results and Discussion
3.1. Morphology Evaluation and Elements Mapping of the Surface

One of the most important approaches in our study was to characterize the surface
of studied ceramics after acid etching. Microscopy observations allowed determining
morphology changes and agglomeration of ceramic particles caused by acidic etching. In
addition, EDS measurements confirmed the chemical composition of the selected areas of
interest.

The initial powders of alumina and zirconia are shown in Figure 1.
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Figure 1. SEM pictures of original powders of zirconia (left) and alumina (right).

Zirconia ceramics has round particles of non-uniform particle size. Based on SEM
observation the individual spheres are in range 1–5 µm. All particles are fused to form
stable agglomerates. Contrary to ZrO2 the alumina is exposing small platelet-like particles
morphology surrounded with small round particles. The size of the particles can be
approximated to be 10 µm as the longest diameter and less than 1 µm as the shortest.

The microscopy study focuses on the morphology and shapes of ceramic particles,
and on particles interactions. Here, we can evaluate the state of interacting particles. The
aggregation of particles is understood through the process of classical nucleation, growth,
collision, and attachment, where aggregated particles form among the generated concrete
nano particles. The route to form agglomerated particles is through cluster aggregation,
nucleation, and growth. Then, the agglomerated particles are generated from atomic
clusters of different components, but eventually form particles with uniform components.

Additionally, the force among particles in aggregation and agglomeration is different
because the direct force among particles caused by aggregation is a van der Waals force, but
the force existing in agglomerated particles is due to chemical bonding such as hydrogen
bonding, which is much stronger than the force in aggregated particles. The final shape
of the inorganic nano particles resulting from aggregation and agglomeration is different.
The shape caused by aggregation is an undefined one, whereas the shape caused by
agglomeration is usually spherical.
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Furthermore, the general size of the particles generated by agglomeration is on the
micro-scale. We expect the particles to be agglomerated rather than only aggregated in our
case of chemical etching since the particles of ceramics are appearing compact and it is not
easy to disintegrate via simple laboratory mechanical approaches.

The zirconia samples displayed a general tendency to agglomerate independently
on the etching agent, and there are no significant differences between concentration and
etching time. Among all etching agents, the largest degrees of agglomeration were ob-
served when using a mixture of sulphuric and nitric acids, and we could observe stable
agglomerates about 30 µm regularly. The lowest agglomeration noted following the use of
hydrofluoric acid where brittle agglomerates are visible. The variability of the agglomerates
is presented on Figure 2.
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Figure 2. SEM images comparing the degree of agglomeration of zirconia powders after etching with different acids.

In general, less agglomeration was observed in alumina samples Figure 3, because
these powders were more dispersed and therefore less susceptible to agglomeration. How-
ever, the dependence of alumina agglomeration on the etching agent was similar to that
observed for the zirconia samples. Specifically, most alumina agglomerates were observed
at treatments with a mixture of sulphuric and nitric acid, while less were observed for
hydrofluoric acid, and the least for Piranha solution.
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For observation of the changes in chemical composition of surfaces, the EDS mapping
was employed. All combination of etching was checked, and case samples are shown in
Figures 4 and 5.
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ground from mounting carbon tape, Pt is conductive coating).

Observing the zirconia surface, places with certain concentrations of sulphur were
found; however, the amount in total was not higher than 0.5 wt%. Other elements, except
original ceramics, were not found on the surface of zirconia. Only the samples treated with
Piranha solution had the traces of sulphur that was not visibly crystalline Figure 4. The
remainder of the samples was not enriched with other elements.

A different situation lies in the case of alumina ceramics (Figure 5). The visibly crystalline
phase of sulphur compound is detected at EDS mapping, where smooth and flat crystals of
other phase are ingrowth to the fine grains of alumina ceramics. The sulphur compound’s
crystals seem to be arranged randomly; however, some of them are placed often on the edges
of alumina agglomerate or creating bridge so that particles are joined together.
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Figure 5. Chemical analysis of example Al2O3_PS sample using EDS mapping (detected C is background from mounting
carbon tape, Pt is conductive coating).

Evaluating the elemental composition of the map we can presume that the crystals are
sulphate, which is later confirmed via XRD analysis as Al(HSO4)3·6H2O.

The observation of the microstructure of zirconia powders led to the clear conclusion
that they were most altered in the Piranha solution environment, while the intensity
of morphology disturbance corresponded to the concentration of reagents and the time
of contact.

The situation was similar after etching alumina samples with a mixture of sulphuric
and nitric acid, although these surfaces were etched to a lesser degree than those subjected
to Piranha solution.

3.2. Structural Characterization of Etched Samples

The FTIR spectra for all selected samples are shown in Figure 6. For zirconia samples
etched in Piranha solution ZrO2_PS1_120 and ZrO2_PS1_60, several characteristic bands
were identified. The absorption bands that appear at 1633, 1031, and 1030 cm−1 are related
to the vibration, stretching, and deformation of the O–H bonds present due to absorption
and coordination of water in the samples. The peaks at 1088 (1089) cm−1 result from the
bending vibrations of hydroxyl groups bound to zirconium oxide. However, the absorption
bands at 724(725), 485, 482, 447, and 444 cm−1 correspond to Zr-O bond vibrations in
both zirconia samples [35,36]. Zirconia sample ZrO2_PS1_60 FTIR spectrum contains
characteristic absorption bands at 722 and 483 cm−1, which are associated with the Zr-O
bending vibration [42–44]. In addition, it was determined that the bands at 450–550 cm−1

and 750–950 cm−1 correspond to tetragonal zirconia. The monoclinic phase cannot be
determined decisively from the FTIR spectrum [35]. Samples etched in hydrofluoric acid
exhibited bands at 721, 485 (486), and 447 cm−1, which all originate from bending vibrations
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of Zr-O [42–45]. The band at 666 cm−1 is due to fluoride adsorption. For alumina etched in
Piranha solution, the bands at 2984 and 2979 cm−1 were identified as being associated with
Al2O3 stretching vibrations, along with those in the region of 2950–2850 cm−1 (which are
not shown in the spectra in Figure 6). This is likely due to so-called “bulk-like” droplets
in the pores, or a thin film adsorbed on the surface of the alumina. Other bands observed
at 634, 555, 551, 494, and 406 cm−1 are associated with the bending vibrations of Al-O
and Al-O-Al in the γ-Al2O3 and Al-O-H moieties [44]. The alumina sample etched with a
mixture of sulphuric and nitric acid had characteristic absorption bands at 589, 416, and
412 cm−1, corresponding approximately to the range previously determined to contain
Al-O and Al-O-Al bending motions within γ-Al2O3 and Al-OH [46]. The FTIR spectra for
alumina samples etched with hydrofluoric acid were interpreted similar to the spectrum of
alumina sample etched with the mixture of sulphuric and nitric acid.
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Figure 6. FTIR spectra of modified samples with denoted most intensive bands (a) samples of zirconia ceramics, (b) samples
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Evaluation of the structure and changes at the etching process was performed using XRD
measurements, and a summary of samples diffractograms is presented in Figures 7 and 8.
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phases are mentioned in the pattern.
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3.3. Specific Surface Area and Porosity Evaluation

To evaluate the surface of etched ceramics the porosity measurement and specific
surface area (SSA) analysis (Figure 9) was employed. Treatment of the ceramics with
Piranha solution and HF acid was evaluated. Table 2 presents the data of measured specific
surface area, porosity, and pore volume of selected samples. In general, the zirconia
samples underwent greater surface development than alumina after etching with any of
the respective acids tested herein. As for zirconia, the samples’ pore volumes tended to
be greater than 0.4 cm3g−1, which indicates more opportunity for further modification or
embedding in selected matrix. Similar tendency is visible in the case of SSA, ZrO2 particles
are representing larger SSA than the Al2O3 surface. The alumina samples in this study
exhibited a lesser degree of surface development in each case. This can be explained by
the fact that the initial zirconia has a lower susceptibility to etching and greater fineness
than the original alumina. In the case of sample ZrO2_HF0.15_120 (Table 2), no reliable
pore data was obtained to allow comparison to other samples. Measurement of the ceramic
samples after H2SO4/HNO3 treatment was not possible to perform using available device,
due to very small undetectable SSA.
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Figure 9. Example of BJH plots for zirconia sample ZrO2_PS1_60.

Table 2. Surface area development, pore volumes, and pore diameters.

Powder Sample Specific Surface
Area, [m2g−1]

Pore Volume,
[cm3g−1]

Pore Diameter,
[nm]

Zirconia

ZrO2_PS1_60 11.842 0.437 214.681

ZrO2_PS1_120 7.369 0.072 17.658

ZrO2_HF0.15_60 13.455 0.425 183.673

ZrO2_HF0.15_120 12.745 0.431 206.289

Alumina

Al2O3_PS1_60 3.543 0.165 186.250

Al2O3_PS1_120 0.220 0.006 3.069

Al2O3_HF0.15_60 0.316 0.008 3.817

Al2O3_HF0.15_120 0.610 n.d. n.d.
n.d.—not possible to obtain data.
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4. Conclusions

Medical grade zirconia and alumina were treated in 3 types of etching agents. For this
purpose, three etching agents were used: (I) fresh hot Piranha solution, (II) a mixture of
98% H2SO4 and 65% HNO3 acids, and (III) 45% hydrofluoric acid. Based on the observed
morphologies, and the chemical and phase composition studies, the following relationships
were elucidated. The most changed morphology of the ceramic surfaces was observed in
case zirconia treated with Piranha solution, whereas the H2SO4/HNO3 solutions had the
least influence on surface changes. In the case of HF, the effect is indirect. Depending on
the acid’s oxidation power, different degrees of agglomeration were introduced, and as
the oxidation power decreased, the least agglomeration was observed (using HF in both
zirconia and alumina samples). Regardless of the acid used, a larger extent of agglomeration
was always observed in zirconia, relative to alumina. Based on BET specific surface
area measurements and their correlation with SEM results, the highest specific surface
development was observed for zirconia etched in HF and slightly lower values were
obtained after using Piranha solution. For alumina, the BET results revealed a more
complicated relationship. Since these ceramic powders were already larger than zirconia,
the alumina tiles were broken down into agglomerates, and it was difficult to disintegrate
them. The sulphur impurities were detected in samples etched with Piranha solution.
Phase analysis using XRD found phases of hydrated sulphate compounds, especially
Al2O3 particles which were decorated with micrometers of large, hydrated Al(HSO4)3
crystals. In case of zirconia, it is only amorphous coating.

The findings of the articles are important for next step in fabrication of composite
implants in the dentistry and/or other prosthetics. The potential of surface modification to
make zirconia or alumina a successful implant material in the future is highly dependent
on the establishment of successful in in-vitro and in-vivo studies [47,48] and various
body fluids’ stability [49]. Hence, further effort should be made in order to deepen the
understanding of tissue response to the implant and tissue regeneration processes.
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3. Nakonieczny, D.S.; Ziębowicz, A.; Paszenda, Z.K.; Krawczyk, C. Trends and perspectives in modification of zirconium oxide for a
dental prosthetic applications–A review. Biocyber. Biomed. Eng. 2017, 37, 229–245. [CrossRef]

4. Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [CrossRef]
5. Sanon, C.; Chevalier, J.; Douillard, T.; Cattani-Lorente, M.; Scherrer, S.S.; Gremillard, L. A new testing protocol for zirconia dental

implants. Dent. Mater. 2015, 31, 15–25. [CrossRef] [PubMed]

http://doi.org/10.1016/j.nano.2019.102143
http://doi.org/10.1016/j.cobme.2019.07.003
http://doi.org/10.1016/j.bbe.2016.10.005
http://doi.org/10.1016/S0142-9612(98)00010-6
http://doi.org/10.1016/j.dental.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25262212


Crystals 2021, 11, 1232 14 of 15

6. Ferrari, M.; Vichi, A.; Zarone, F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater.
2015, 31, e63–e76. [CrossRef] [PubMed]

7. Cheng, F.T.; Shi, P.; Man, H.C. Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Mater. Lett. 2005, 59,
1516–1520. [CrossRef]

8. Jin, W.; Wang, G.; Qasim, A.M.; Mo, S.; Ruan, Q.; Zhou, H.; Li, W.; Chu, P.K. Corrosion protection and enhanced biocompatibility
of biomedical Mg-Y-RE alloy coated with tin dioxide. Surf. Coat. Tech. 2019, 357, 78–82. [CrossRef]

9. Ho, G.W.; Matinlinna, J.P. Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry. Silicon 2011, 3,
109–115. [CrossRef]

10. Sullivan, S.J.L.; Madamba, D.; Siva, S.; Miyashiro, K.; Dreher, M.L.; Trépanier, C.; Nagaraja, S. The effects of surface processing on
in-vivo corrosion of Nitinol stents in a porcine model. Acta Biomater. 2017, 62, 385–396. [CrossRef]

11. Talha, M.; Ma, T.; Kumar, P.; Lin, Y.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants-A review. Coll.
Surf. B Biointer. 2019, 176, 494–506. [CrossRef] [PubMed]

12. Bapat, A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application
of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C 2018, 91, 881–898. [CrossRef]

13. Noronha, V.T.; Paula, A.J.; Duran, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in
dentistry. Dent. Mater. 2017, 33, 1110–1126. [CrossRef] [PubMed]

14. Pazourková, L.; Reli, M.; Hundáková, M.; Pazdziora, E.; Predoi, D.; Simha Martynková, G.; Lafdi, K. Study of the Structure and
Antimicrobial Activity of Ca-Deficient Ceramics on Chlorhexidine Nanoclay Substrate. Materials 2019, 12, 2996. [CrossRef]

15. Garcia Silva-Bailão, M.; Lobato Potenciano da Silva, K.; Raniere Borges Dos Anjos, L.; de Sousa Lima, P.; de Melo Teixeira, M.;
Maria de Almeida Soares, C.; Melo Bailão, A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fung. Biol.
2018, 122, 526–537. [CrossRef] [PubMed]

16. de Avila, E.D.; Castro, A.G.B.; Tagit, O.; Krom, B.P.; Löwik, D.; van Well, A.A.; Bannenberg, L.J.; Vergani, C.E.; van den Beucken,
J.J.J.P. Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components.
Appl. Surf. Sci. 2019, 488, 194–204. [CrossRef]

17. Uhlmann, E.; Schweitzer, L.; Kieburg, H. The Effects of Laser Microtexturing of Biomedical Grade 5 Ti-6Al-4V Dental Implants
(Abutment) on Biofilm Formation. Procedia 2018, 68, 184–189. [CrossRef]

18. Frutos, E.; Alvares, D.; Fernandez, L.; González-Carrasco, J.-L. Effects of bath composition and processing conditions on the
microstructure and mechanical properties of coatings developed on 316 LVM by hot dipping in melted AlSi alloys. J. Alloy. Comp.
2014, 617, 646–653. [CrossRef]

19. Chevalier, J.; Gremillard, L.; Virkar, A.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and
Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [CrossRef]

20. Graziani, G.; Barbaro, K.; Fadeeva, I.V.; Ghezzi, D.; Fosca, M.; Sassoni, E.; Vadalà, G.; Cappelletti, M.; Valle, F.; Baldini, N.; et al.
Ionized jet deposition of antimicrobial and stem cell friendly silver-substituted tricalcium phosphate nanocoatings on titanium
alloy. Bio. Mater. 2021, 6, 2629–2642.

21. Guo, X. Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules. Chem.
Mater. 2004, 16, 3988–3994. [CrossRef]

22. Gremillard, L.; Melle, S.; Chevalier, J.; Zhao, J.; Fridrici, V.; Kapsa, P.; Geringer, J.; Uribeet, J. Degradation of Bioceramics. In
Degradation of Implant Materials; Eliaz, N., Ed.; Springer: New York, NY, USA, 2012; pp. 195–252.

23. Nakonieczny, D.S.; Basiaga, M.; Sambok, A.; Antonowicz, M.; Paszenda, Z.K.; Ziębowicz, A.; Krawczyk, C.; Ziębowicz, B.;
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