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Abstract: The use of the combination of ultrafine rice husk ash (RHA) and nano silica (NS) enhances
the compactness of hardened concrete, but there is still a lack of studies that address the effects of NS
and RHA on the workability, mechanical properties and pore microstructure of concrete. This study
mainly aims to investigate the influence of the pore size distribution in multiphysics concrete model
modified by NS and RHA and to determine the workability and mechanical properties of concrete
with NS and RHA. In this work, NS and RHA were used as 0, 5, 10, 15 and 20% replacements of
ordinary Portland cement (OPC) in concrete grade M20. Concrete mixed with NS and RHA showed
improved performance for up to 10% addition of NS and RHA. Further addition of NS and RHA
showed a decrease in performance at 7, 14 and 28 days. The decrease in concrete porosity was also
found to be up to 10% when adding NS and RHA to cement. Image processing was performed on
the cement-based materials to describe the microstructure of the targeted material without damage.
The results from the experimental and tomography images were utilized to investigate the concrete
microstructure and predict its inner properties.

Keywords: image processing; nano silica; rice husk ash; pore microstructure; multiphysics concrete
model; properties

1. Introduction

NS is manufactured using thermo-decomposition, sol-gel of silica fume and vapor-
phase reaction. It is used in several applications such as ceramics, chemicals/catalysis
analysis, and biological science [1]. NS is synthesized using chemicals that control the
shape, size, and purity of the materials. RHA is an agricultural by-product that contains
a high amount of silica. In recent years, the construction industry has attempted to
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incorporate NS and RHA in the production of concrete to reduce the cost of the structure [2].
Conventional concrete is mainly composed of cement, coarse aggregate, fine aggregate,
and an adequate amount of water. The rapid growth in the construction industry and the
vast formation of waste have pushed the development of sustainable products using RHA,
micronized biomass silica, ground granulated blast-furnace slag, crumbed rubber, NS,
different fibers, superplasticizers, and different admixtures, among others, in conjunction
with concrete [3]. In general, the use of admixtures, minerals, or artificial waste materials
can provide sustainable concrete with moderate cost and several benefits in terms of
avoiding environmental pollution by effectively disposing of waste or by-products, which
could pollute lands, water, and air to a large extent [4]. In this investigation, RHA and NS
are considered waste, which could potentially be used to partially replace fine aggregate to
improve concrete strength.

After a comprehensive survey, it was observed that the addition of RHA to con-
crete or mortar increased their durability, compressive strength, workability and flexural
strength [5]. It was also found that incorporating NS with RHA dramatically decreases the
compressive strength at an early age but increases at a later age. NS increases the heat of
hydration of concrete or mortar and hardens the cement paste by forming calcium silicate
hydrate (C-S-H). The optimum use of RHA with NS enhances the chloride permeability,
electrical resistivity, and capillary absorption in concrete mixes or mortar [6]. The colloidal
NS decreases the workability of concrete but increases its compressive and tensile strength
compared to the nominal mix. It was also found that a high dosage of RHA decreases
the strength with the addition of NS in concrete. Ultrafine RHA of particle size between
5 and 95 µm increases the strength but reduces water absorption capacity in concrete [7].
NS distributes uniformly in concrete with higher water permeability resistance, which
is identified from the microstructural analyses [8]. An optimum dose of 30% of RHA
unfavorably influences concrete workability, strength, and water permeability [9]. The use
of ultrafine RHA enhances the compactness of concrete. An optimum dosage increased the
workability of concrete with RHA and its compressive strength was improved by adding
NS [10].

The 2D X-ray image processing techniques are performed using a linear traverse for
predicting air-voids. The high accuracy of 3D is used to predict the distribution of air-voids
in the hardened concrete. Thus, the pore microstructure of concrete without damage was
investigated by means of a non-destructive method. We note that X-ray imaging tech-
niques have been previously used to characterize pore microstructure and compressive
strength of cement-based materials and organic foams [11,12]. However, there is a lack of
investigating the effect of NS and RHA on the workability, mechanical properties, and pore
microstructure of concrete. In particular, this study focuses on the determination of the
optimum dosage of RHA and NS. We also compare the properties of conventional concrete
with RHA and NS concrete. Our main interest is to develop sustainable concrete with
the use of RHA and NS. Therefore, the investigation of the influence of NS and RHA on
concrete, with the aid of image processing, will help to understand their combined proper-
ties and microstructure. The inclusion of RHA as a partial replacement of cement shows
significant pozzolanic and filler effects on the mechanical properties and microstructure of
concrete [13,14]. The porosity of the resulting samples was shown to be the most important
element influencing concrete strength qualities; nevertheless, pores with radii less than
10 nm had only a minor impact on the final strength [15]. The strength of the equivalent
porosities increased as the amount of hydrate phases increased. There is no considerable
effect on strength due to the specific surface area. The increasing water-to-cement ratio and
sand-to-cement ratio increased the probable pore size and threshold radius. In addition,
existing multiphysics models of pore size distribution in cement-based materials were
examined and compared to the test results [16]. Finally, the extended Bhattacharjee model
was built to examine the relationship between compressive strength and pore structure. A
novel multiphysics empirical model was proposed to relate the in situ strength of concrete
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to its porosity, pore size characteristics, cement concentration, aggregate type, exposure
conditions, and other factors [17].

2. Experimental Program
2.1. Materials

Dalmia cement of 53 Grade OPC according to IS: 269-2015 was used for this study.
Agricultural waste or by-product RHA and NS was commercially purchased in Tamilnadu,
India. The NS product is organic and has super-pozzolana with high silica content with a
particle size of 25 µm mostly. RHA was manufactured by controlled burning the agriculture
waste such as rice husk in between 600 and 700 ◦C. NS is a fluffy white powder made
up of amorphous silica powder of high purity, which is procured from Astra Chemicals.
The physical and chemical characteristics of RHA and NS are given in Tables 1 and 2,
respectively. The fine natural aggregate conforming to zone II and coarse aggregate of
maximum 20 mm size according to IS: 383-2016, IS: 2386-1 and IS: 2386 was used in
this study. As per Indian Standards, the portable water free from impurities available
in the laboratory was used for mixing and curing purposes. The physical and chemical
properties of NS are shown in Table 1, and the chemical composition of RHA is shown in
Tables 2 and 3.

Table 1. Physical and chemical properties of NS.

Description Values Chemical Composition Contents (%)

Particle size (µm) 15–20 Silicon dioxide (SiO2) 94.3
Surface area (m2/g) 640 Aluminium oxide(Al2O3) 0.06
Bulk density (g/cm3) 0.08–0.10 Ferric oxide (Fe2O3) 0.46
Molecule SiO2 Calcium oxide (CaO) 0.51
Molecular weight 60.08 Titanium dioxide (TiO2) 2.31
Porosity (mL/g) 0.6 Loss of Ignition 2.25
Morphology Porous and spherical - -

Table 2. Physical composition of RHA.

Physical Properties Values

Microscopic Investigation Crystalline Structure
Burning Temperature 400–700 ◦C
Grinding Time 90 min
Fineness Passing 200–325 µ Sieves
Specific Gravity 2.14

Table 3. Chemical composition of RHA.

Chemical Properties Value (%)

Silicon dioxide (SiO2) 88.32
Aluminium oxide (Al2O3) 0.46
Ferric oxide (Fe2O3) 0.67
Calcium oxide (CaO) 0.51
Magnesium oxide (MgO) 0.44
Sodium Oxide (Na2O) 0.12
Potassium Oxide (K2O) 2.91

2.2. Mix Design and Mixing Procedure

Indian Standard IS: 10262-2009 procedure was adopted for the mix design of M20
concrete grade. Based on the water–cement ratio, the workability of concrete is adjusted for
each trial. Super-plasticizer is prepared separately prior to mixing with a dry mix of fine
aggregates, coarse aggregates, cement, RHA, and NS (Figure 1). The solution of water and
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polycarboxylate super-plasticizer, which was procured from Astra Chemicals, was added
to the dry mix in the mixer, and mixing was continued until the materials were distributed
uniformly. The mixing was carried out at the atmospheric temperature of 27 ± 2 ◦C for
half an hour from the time of addition of water to the dry ingredients with 90% relative
humidity until the experiment was completed.
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Figure 1. Materials, mix design and mixing procedure.

After the concrete was mixed, the standard cube mold of the size of 150 × 150 × 150 mm3,
a cylindrical mold of 200 mm height and 100 mm diameter, and a prism mold of size
500 × 100 × 100 mm3 were immediately filled with concrete and placed for vibration
until concrete was compacted. Concrete specimens were cast with different ratios of RHA
and NS. The obtained NS was added to improve the performance of concrete, because
NS contains pozzolanic reacting to blended concrete, besides the pore-filling effects in
concrete. The incorporation of nano silica increases the compressive strength of concrete
with optimum usage of nano silica up to 2% with 15–80 nm particle size. The ambient
temperature conditions were maintained, and specimens were kept free from vibration.
After 24 hr, the specimens were removed from molds and submerged immediately into
water until testing. Depending on the tests, specimens were cured in clear water for 3, 7,
and 28 days, respectively.

2.3. Testing

In this experimental work, the properties of fresh and hardened concrete mixes were
measured according to the Indian Standards IS: 1199-1959, IS: 516-1959, and IS: 55816-1999.
Compaction factor and slump cone test comprise the workability test for concrete. Fresh
concrete workability with various proportions of NS at 0, 0.5, 1.0, 1.5, and 2.0% and RHA
combined at 0, 5, 10, 15, and 20% by weight of cement was assessed by slump cone testing
and compaction factor testing, as shown in Figure 2. Hardened concrete specimens were
tested for compressive strength, split-tensile strength, and flexural strength at 3, 7, and
28 days, respectively, as shown in Figure 3.
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2.4. Workability

Slump refers to the average diameter of the concrete after the typical slump cone
has been released, and it is one of the most essential indicators for determining concrete
plasticizing performance [13]. The slump cone test is a very critical test for evaluating
concrete workability. Concrete slump cone testing was conducted for different amounts
of NS and RHA. The slump cone results of NS and RHA with different ratios are shown
in Table 4. Nano-silica modified concrete has a slump value which is 40–60% lower than
that of ordinary concrete, according to Björnström and Quercia et al. [14,15]. During the
slump test, a tiny amount of water was found leaking from the fresh concrete [16,17].
Because of its high specific surface area and the huge number of unsaturated bonds, NS
has a super-high reaction capacity when it replaces cement. This makes it easier to attract
nearby water molecules to form chemical bonds. As a result, there is no water segregation
or exudation from the nano-silica mixture [18–20]. Because silica particles have a higher
specific surface area than cement, they absorb more water and lessen the slump of concrete,
according to Beigi et al. [21].

Table 4. Slump cone test results.

No. of Sample NS and RHA in Concrete (%) Slump Value (mm)

1 0% 75
2 0.5% NS & 5% RHA 70
3 1.0% NS & 10% RHA 65
4 1.5% NS & 15% RHA 60
5 2.0% NS & 20% RHA 55

The compaction factor test was performed to determine the degree of compaction
of concrete. The compaction factor test was carried out using the Slump Cone Test for
different replacement levels of NS and RHA. Table 5 shows the compaction factor results
obtained using NS and RHA. The additions of NS and RHA to M20 grade concrete were
improved workability up to 10%. With a higher percentage of NS and RHA, workability
was lower due to the higher water absorption rate of NS and RHA.

Table 5. Compaction factor test results.

No. of Sample NS and RHA in Concrete (%) Slump Value (mm)

1 0% 0.90
2 0.5% NS & 5% RHA 0.88
3 1.0% NS & 10% RHA 0.86
4 1.5% NS & 15% RHA 0.85
5 2.0% NS & 20% RHA 0.83
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3. Results and Discussions
3.1. Compressive Strength

The compression test was conducted using a compression testing cm3. Cube specimens
were 15 cm in size. Aggregate size did not exceed 20 mm. For different replacement levels
of NS and RHA, the compressive strength of all the mixes were determined at the ages
of 7, 14, and 28 days. For traditional categories, three samples were measured, and the
mean compressive strength of the three samples was considered to be the compressive
strength of the specified category. Table 6 and Figure 3 show the compressive strength
test results. Figure 4 shows a comparison of the compressive strength of concrete with
different proportions of NS and RHA. Here we can observe that the addition of NS and
RHA increased the compressive strength for 28 days up to 10% and decreased at further
increase. The pozzolanic reaction between nano silica and calcium hydroxide, which
promotes the development of hydrated calcium silicate, is the fundamental reason for the
increase in concrete compressive strength.

Table 6. Compressive strength of concrete.

No. of Sample NS and RHA in Concrete (%)
Compressive Strength (N/mm2)

7 Days 14 Days 28 Days

1 0% 17.8 20.7 24.5
2 0.5% NS & 5% RHA 18.3 23.1 27.3
3 1.0% NS & 10% RHA 19.9 26.2 31.3
4 1.5% NS & 15% RHA 19.1 25.5 30.7
5 2.0% NS & 20% RHA 18.6 22.8 26.1
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Figure 4. Comparison of compressive strength of concrete with different proportions of NS and RHA.

On the other hand, concrete without NS can only hydrate to a minimum of cal-
cium silicate hydrate by relying on cement. One of the essential components that con-
tribute to strength is hydrated calcium silicate. As a result, concrete without NS has a low
compressive strength [22,23]. Jalal and Abdellahi et al. [24,25] discovered that the early
strength improvement effect of nano-silica modified concrete is more prominent due to
the greater pozzolan activity of nano-silica particles [26–29]. In natural pozzolan-based
polymers, nanosilica not only speeds up the polymerization reaction, but also encourages
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the formation of calcium silicate hydrates (C-S-H) and sodium aluminosilicate hydrates
(N-A-S-H) [30].

3.2. Flexural Strength

In these experiments, a prism size of 150 × 150 × 700 mm3 was used. For different
replacement levels of NS and RHA, the flexural strength of all the mixes was determined
at the ages of 7, 14, and 28 days [31]. Table 7 and Figure 5 show the flexural strength
of concrete test results. Figure 4 shows the flexural strength of concrete with different
proportions of NS and RHA. The addition of NS and RHA improved the flexural strength
at 28 days for a NS and RHA content up to 10%. The flexural strength of NS concrete
similarly varies in comparison with the compressive strength. The flexural strength of the
mortar increased when the NS concentration was increased from 3% to 10%, according to
Ltifiy et al. [31]. When the nano-SiO concentration was 6–10%, Rong et al. [32] discovered
that the nano silica concrete offered the highest flexural strength after curing of 3 days,
7 days, 28 days, and 90 days. Huu-Bang Tran et al.’s experimental results show that the
strengths significantly increased when NS content increased from 0 to 1.5%; however, the
strength decreased with a further increase in NS content [33]. Thus, the appropriate NS
content was to be found close to 1.5%. These results were similar to the previous findings
reported by many researchers worldwide [34–46].

Table 7. Flexural strength of concrete.

No. of Sample NS and RHA in Concrete (%)
Compressive Strength (N/mm2)

7 Days 14 Days 28 Days

1 0% 3.16 3.412 3.71
2 0.5% NS & 5% RHA 3.21 3.60 3.91
3 1.0% NS & 10% RHA 3.34 3.842 4.2
4 1.5% NS &15% RHA 3.28 3.789 4.15
5 2.0% NS & 20% RHA 3.23 3.58 3.83
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Figure 5. Comparison of flexural strength of concrete with different proportions of NS and RHA.

3.3. Split Tensile Strength

In these experiments, cylindrical specimens of 30 cm height and 15 cm diameter were
considered. For different replacement levels of NS and RHA, all the mixes’ split tensile
strength was determined at the ages of 7, 14, and 28 days. Table 8 and Figure 5 show the
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split tensile strength test results. Figure 6 shows the split tensile strength of concrete with
different content of NS and RHA. The addition of NS and RHA resulted in an increase
of the split tensile strength at 28 days. This trend was observed up to 10% for all NS and
RHA content mechanical properties, which can be explained by the rapid consumption
of calcium hydroxide produced during the hydration process. After 10% NS and RHA
content, the reduced concrete strength values can be attributed to the proportions of NS
and RHA, which are higher than the amount needed during the hydration process to be
combined with the released lime. Redaelli et al. [10] tested the splitting tensile strength
of nano-SiO concrete. When 3% nano-SiO replaced cement, the tensile strength of NS
modified concrete was improved by 16.10% over that of ordinary concrete. Fallah et al. [33]
tested the splitting tensile strength of nano-SiO concrete. When 8% nano-SiO replaced
cement, the tensile strength of NS modified concrete was improved by 16.10% over that of
ordinary concrete. Nano-SiO enhances the interfacial strength between the concrete matrix
and the aggregate, which causes this behavior [21]. The addition of nano-SiO to concrete
serves as both a nano-reinforcement and a filling agent, filling the holes in the concrete
matrix [34].

Table 8. Split tensile strength of concrete.

No. of Sample NS and RHA in Concrete (%)
Compressive Strength (N/mm2)

7 Days 14 Days 28 Days

1 0% 1.98 2.32 2.56
2 0.5% NS & 5% RHA 2.16 2.50 2.73
3 1.0% NS & 10% RHA 2.70 2.96 3.28
4 1.5% NS & 15% RHA 2.34 2.71 3.07
5 2.0% NS & 20% RHA 2.03 2.35 2.66
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Figure 6. Split tensile strength of concrete with different proportions of NS and RHA.

3.4. Material Properties

A standardized 2D SEM image technique was implemented to measure the pore size
distribution [47] and pore characteristics of materials [48,49]. The 2D morphological prop-
erties of concrete were determined using 2D projections. 3D morphological properties were
obtained using reconstructed multiphysics models. The SEM images were captured using
a JOEL scanning electron microscope (JSM-IT800). The image processing technique was
adapted to analyze the percentages of air gaps, cement matrix, and aggregate distribution in
the concrete. A series of 2D X-ray images are used to create 2D and 3D multiphysics model
images. Images in 2D and 3D can be utilized to analyze a specimen’s interior structure [47].
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The specimen is rotated between an X-ray source and an X-ray detector on a rotating table.
For each location of the revolving table, X-rays are transmitted through the specimen. Each
slice gets 2D X-ray transmission images as a result of this. Special algorithms are used to
rebuild the images of the slices, resulting in a 3D data set for the specimen structure. A
deep mapping algorithm from MATLAB image processing toolbox was adopted. Image
processing is a technique for implementing operations on an image in order to improve
it or extract valuable information from it. It is a form of signal processing in which the
input is an image, and the output is either that picture or its characteristics/features. Image
processing converts an image into digital form and applies a procedure to it to obtain a
better image or extract useful information. The first one is the enhancement of visual data
for human interpretation, and the second one is scene data processing for autonomous ma-
chine perception. Such examination is one of the most popular non-destructive techniques
to describe concrete microstructure without damaging the material. The first image on
the top left position of Figures 7–9 show an original 2D SEM image [46–56] which allows
the user to generate a binary image shown immediately on the right. This binary image
represents the pore phase in the target component of this investigation. One of the main
novelties of this study is the quantitative use of SEM images to detect and measure the size
of concrete pore spaces using a watershed segmentation algorithm. The optimum dosage
of NS 1.0% and RHA 10% [57,58] was chosen for this image processing.
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Figure 7. 2D SEM images of concrete microstructures.

The binary image consists of clustered pores that should be separated from the sample.
A modified deep mapping algorithm was used to identify the clear pore segments. The next
image on the right shows different colors denoting every single pore which generates the
next pore size segmental image on the right. The pore space segmentation characterization
is an important method to understand the mechanical properties of concrete [35,59–63].
Table 8 shows the output of MATLAB Analysis of different images of NS and RHA.

Image processing is a non-destructive technique that can be used for predicting the
compressive strength of concrete with various applications in the construction sector. The
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SEM image technique was used to analyze the concrete samples’ binary segmentation and
pore space segmentation. The grayscale images provide the edge formation in concrete. In
the final step, the histogram identifies the points that are the graphical representation of
image pixel values. Such interface image processing is used to determine the percentage of
air space, aggregate, and cement distribution in the concrete [36,37,64–66].
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Figure 8. 2D SEM image processing of concrete microstructures.

Using the standard EN 480-11, the two-dimensional pore size distribution was de-
termined. The scanning electron microscope was utilized to process the images without
damaging the material properties. The gray color particles in the binary segmentation
represent the pores in the sample. Therefore, special care was paid to the gray images.
The measured porosity values are given in Figure 9. It can be observed that the average
pore radius and cracking surface show consistency, which confirms the effectiveness and
accuracy of the image processing technique. The measured areas tend to increase when the
air gap increases for all the samples. The size distribution of each pore showed a similar
pattern in different cases, and such measured distribution is compared using the image
processing technique. The histogram image of the original SEM provides the distribution
of intensity of each material. Various materials such as aggregates, cement portions, and
air-voids in concrete make different noises [56,57]. However, the micro image shows a
similar trend and better understanding.

There are air-voids, capillary pores, and gel pores in the pore microstructure of cement-
based materials, and the pores are randomly sized, organized, and related to each other.
Porosity is a well-known characteristic that affects strength and durability directly. As a
matter of fact, a reduction in concrete porosity with adequate binding material content
will contribute to increasing concrete strength [50–55]. In this experimental investigation
and image processing, the same was adopted, such as samples A (concrete with RHA and
without NS), B (concrete with RHA and sonicated NS), and C (concrete with RHA and
unsonicated NS) have been analyzed with SEM techniques for predicting the properties of
concrete incorporated with NS and RHA. Table 9 presents the results of image processing
for the Sample A, B, and C.



Crystals 2021, 11, 1230 13 of 17

Crystals 2021, 11, x FOR PEER REVIEW 13 of 18 
 

 

  
Original Image Binary Segmentation 

  
Deep Mapping Pore Space Segmentation 

 

 

 

Edge Image Pore Size Distribution and Histogram 

Crystals 2021, 11, x FOR PEER REVIEW 14 of 18 
 

 

 
Surface Plotting 

Figure 9. 2D SEM image processing of concrete microstructure. 

In general, pore microstructure affects the physical characteristics of engineering ma-

terials (such as strength, fracture energy and toughness, elastic properties, permeability, 

and efficient diffusivity) and environmental stability (such as durability and reliability) 

and is an important means of regulating the life expectancy and the cost-effectiveness of 

materials and structures. Table 9 presents the results obtained using MATLAB. 

Table 9. The output of MATLAB Analysis. 

 Sample A Sample B Sample C 

Porosity % 0.1784 0.0693 0.1397 

Average pore radius (µm) 18.8447 17.0092 20.7707 

Standard deviation of pore radius 14.7276 11.7858 16.9897 
* Sample A—(concrete with RHA and without NS), Sample B—(concrete with RHA and sonicated 

NS) and Sample C—(concrete with RHA and unsonicated NS) [46]. 

4. Conclusions 

The conclusions of the present work are summarized in the following. 

 NS added to cement as a supplementary component accelerates the heat of hydration 

and hydration degree of cement. Depending on the NS content, it significantly in-

creases the water demand in the cement paste, which decreases the setting time com-

pared to conventional concrete. 

 NS lowers the water demand in the mixing process of concrete, delaying the setting 

times and reducing the heat of hydration generated in concrete. This is related to a 

reduction of the mechanical strength. The addition of NS and RHA influenced con-

crete workability. It can be observed that, with the rise in the percentage of NS and 

RHA, the workability decreased. The voids and porosity of concrete were minimized 

by incorporating the NS and RHA. 

 When NS is added to the concrete mix, the amount of CSH gel formed in the matrix 

increases, which helps to fill the pores in concrete. Inactive NS also acts as a filler. 

Through these factors, NS minimizes pore volume and helps concrete to be well com-

pacted. As a result, NS modify concrete is extremely durable. 

 The mechanical qualities of concrete combined with RHA and NS have improved by 

up to 10% over the control mix. Due to its greater specific surface, particle sizes, and 

Figure 9. 2D SEM image processing of concrete microstructure.



Crystals 2021, 11, 1230 14 of 17

Table 9. The output of MATLAB Analysis.

Sample A Sample B Sample C

Porosity % 0.1784 0.0693 0.1397
Average pore radius (µm) 18.8447 17.0092 20.7707

Standard deviation of
pore radius 14.7276 11.7858 16.9897

Sample A—(concrete with RHA and without NS), Sample B—(concrete with RHA and sonicated NS) and Sample
C—(concrete with RHA and unsonicated NS) [46].

In general, pore microstructure affects the physical characteristics of engineering
materials (such as strength, fracture energy and toughness, elastic properties, permeability,
and efficient diffusivity) and environmental stability (such as durability and reliability)
and is an important means of regulating the life expectancy and the cost-effectiveness of
materials and structures. Table 9 presents the results obtained using MATLAB.

4. Conclusions

The conclusions of the present work are summarized in the following.

− NS added to cement as a supplementary component accelerates the heat of hydration
and hydration degree of cement. Depending on the NS content, it significantly increases
the water demand in the cement paste, which decreases the setting time compared to
conventional concrete.
− NS lowers the water demand in the mixing process of concrete, delaying the setting times
and reducing the heat of hydration generated in concrete. This is related to a reduction
of the mechanical strength. The addition of NS and RHA influenced concrete workability.
It can be observed that, with the rise in the percentage of NS and RHA, the workability
decreased. The voids and porosity of concrete were minimized by incorporating the NS
and RHA.
− When NS is added to the concrete mix, the amount of CSH gel formed in the matrix
increases, which helps to fill the pores in concrete. Inactive NS also acts as a filler. Through
these factors, NS minimizes pore volume and helps concrete to be well compacted. As a
result, NS modify concrete is extremely durable.
− The mechanical qualities of concrete combined with RHA and NS have improved by
up to 10% over the control mix. Due to its greater specific surface, particle sizes, and
porous structure, the matrix contains SF, which absorbs a large quantity of moisture and
leads to the creation of CSH. The RHA absorbs moisture, which reacts with Ca2+ ions in
cementitious materials, enhancing the pozzolanic reaction and leading to concrete’s early
and long-term growth in compressive strength, splitting tensile, and flexural strength.
− When increasing NS and RHA content up to 1.0% and 10%, respectively, the compressive,
flexural, and tensile strength at 28 days increased, respectively. Above 1.0% NS and 10%
RHA content, strength decreased. It is suggested that 1.0% NS and 10% RHA are the
optimum dosages to incorporate in concrete compared to the other NS- and RHA-based
concrete. Furthermore, an increase of NS and RHA led to a decrease in the compressive
strength of concrete.
− The microscopic test confirms that RHA particles collapse the porous structure during
the grinding process, resulting in pore volume reduction. Direct or indirect sonication of
NS improves the dispersion capacity of the cement matrix. Furthermore, when using direct
sonication, NS is more homogenized rather than using indirect sonication.
− The gray tone threshold values of aggregate and cement can be used to predict the
compressive strength of concrete using an image-processing tool.
− The 3D multiphysics model image can be effectively utilized for defining the pore
size distribution. In addition, peaks represented by the large pore size were used to
characterize materials.
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− The proposed systematic evaluation process verifies the accuracy of predicting the pores
of materials. Furthermore, the correlation between the compressive strength of concrete
and pore size distribution confirms the cracking of materials.

The above findings reveal the potential of using NS and RHA in concrete to enhance
its efficiency and strength. Other natural fibers can also be used to improve load transfer,
compressive strength, flexural strength, and ductility in concrete. This will represent
the subject of a future investigation. Furthermore, the continuation of this research is
in progress to perform numerous experimental tests that focus on the TGA-DTG, FT-IR
comparing the results before incorporating SN and RHA and after the incorporation.
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