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Abstract: This study is an attempt to produce gadolinium-doped iron oxide nanoparticles for the pur-
pose of utilization in magnetic fluid hyperthermia (MFH). Six gadolinium-doped iron oxide samples
with varying gadolinium contents (GdxFe3−xO4, x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared
using the hydrothermal method at 180 ◦C and high vapor pressure to incorporate gadolinium ions
in the iron oxide structure. The samples were indexed as GdIO/x, with x varying from 0.0 to 0.1.
The results reveal that gadolinium ions have a low solubility limit in the iron oxide lattice (x = 0.04).
The addition of gadolinium caused distortion in the produced maghemite phase and formation of
other phases. Based on X-ray diffraction (XRD) analysis and photoelectron spectroscopy (XPS), it was
observed that gadolinium mostly crystalized as gadolinium hydroxide, Gd (OH)3 for gadolinium
concentrations above the solubility limit. The measured magnetization values are consistent with the
formed phases. The saturation magnetization values for all gadolinium-doped samples are lower
than the undoped sample. The specific absorption rate (SAR) for the pure iron oxide samples was
measured. Sample GdIO/0.04, pure iron oxide doped with gadolinium, showed the highest potential
to produce heat at a frequency of 198 kHz. Therefore, the sample is considered to hold great promise
as an MFH agent.

Keywords: gadolinium-doped iron oxide nanoparticles; hydrothermal method; SAR; magnetic
fluid hyperthermia

1. Introduction

Magnetic nanoparticles have been utilized for decades in various biomedical appli-
cations [1–5] including MFH for cancer therapy [6–8], drug delivery [9] and as contrast
agents for magnetic resonance imaging (MRI) [10,11] and as biosensors [12]. The particles
can also be utilized in radiotherapy when conjugated with radioactive isotopes [13] as well
as dual therapy with hyperthermia combined with X-ray therapy [14].

Magnetic fluid hyperthermia involves localized increase in tissue temperature; this
increase is either moderate, to about 45 ◦C (hyperthermia), or extreme (thermoablation)
and is mainly for the purpose of cancer treatment [15]. Unlike thermoablation, a moderate
temperature rise is generally used in conjunction with other therapeutic modalities such as
chemotherapy [16] and radiotherapy [17]. In both cases, the magnetic nanoparticles are
designed to function as tiny antennas that couple the energy from the alternating magnetic
field to produce heat. This potential is quantified in terms of the specific absorption rate
(SAR) value, which is defined as the heating power generated per unit mass and measured
in W/g [18]. Magnetic nanoparticles with high SAR values are desired so as to confer
efficient therapy without excessive exposure to electromagnetic fields or the administration
of large doses of nanoparticles.
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Superparamagnetic iron oxide nanoparticles (SPIONs) are used extensively in these
applications, owing to their proven biocompatibility, as various species with various
dopants are approved by the food and drug administration (FDA) [4]. Nevertheless,
there is a strong demand to enhance their magnetic properties without diminishing their
biocompatibility. Gadolinium is selected as a dopant in this work, owing to its proven
biocompatibility [19] and large magnetic moment (7.12 µB) per atom [20]. Gadolinium
ferrite has been efficiently used as an MFH agent [8], MRI [19,21] contrast agent and in
theranostics [22–24]. The spin coupling of 3d− 4 f results in modification of the various
magnetic properties of the iron oxide nanoparticles [25]. These changes are interesting and
need further investigation. The versatile properties and the continuously emerging poten-
tial biomedical applications of gadolinium-doped iron oxide species make the optimization
of the synthesis techniques and the thorough investigation of the properties of the obtained
samples a persistent requirement.

Several techniques have been utilized for the synthesis of iron oxide nanoparticles. The
sol–gel route [26] produces dry particles. Therefore, wet chemical methods are becoming
more promising. One of the techniques that produces dispersed ultrafine nanoparticles
capped with organic agents is thermal decomposition [27]. Unfortunately, the replacement
of this nonpolar capping agent with a polar counterpart is a challenging process. Other
techniques include sonochemical synthesis [28,29], the coprecipitation method [30], polyol
synthesis [31], solvothermal synthesis [32] and hydrothermal synthesis [33], which is used
in this study. The high vapor pressure and temperature attained by the hydrothermal
route, which creates a supercritical environment, are assumed to assist the formation
of the desired phase. In this environment, Ostwald ripening is favored, and relatively
large particles are formed with enhanced crystallinity [34] compared to their counterparts
prepared by the coprecipitation method.

Iron oxide nanoparticles crystallize in various compounds based on their oxidation
states [35,36]. The main compounds are: α − Fe2O3(hematite), γ − Fe2O3(maghemite),
α − FeOOH (goethite), γ − FeOOH (lepidocrocite) and Fe3O4 (magnetite) [37]. Among
those five structures, only magnetite contains both Fe2+ and Fe3+ ions; the remaining
four compounds contain only Fe3+ ions. The symbol α denotes that all the trivalent
iron ions are octahedrally coordinated, whereas γ denotes that only 3/4 Fe3+ ions are
octahedrally coordinated and the rest are tetrahedrally coordinated [38]. Upon oxidation,
magnetite changes to maghemite, which then changes into hematite Fe2O3 [39], and finally
into goethite and lepidocrocite [40]. The latter is a less stable form than goethite and is
generally not observed in the final product. Goethite is mostly yellow in color [29] and
adopts an orthorhombic crystal structure with space group Pbnm [39,41]. Hematite is
reddish brown and exhibits a hexagonal lattice with space group R3c [41]. Magnetite is
black and maghemite is brown [42]; they both crystallize in a face-centered cubic structure
(FCC) [42,43] giving almost identical X-ray diffraction patterns [44]. Magnetite has an
FCC crystal structure belonging to the Fd3m space group [45]. It is considered as an
inverse spinel with all the divalent iron Fe2+ ions occupying the octahedral (B) sites
and Fe3+ ions equally divided between both tetrahedral [A] sites and octahedral [B]
sites [32]. The net magnetization is caused by the divalent cations in the B site [46]. The
electronic configuration of Fe2+ and Fe3+ are [3d]6 and [3d]5, respectively; therefore, ideally,
magnetite has a magnetization of 4 uB/molecule. In this study, gadolinium is added at the
expense of Fe3+ ions. The large radius of the gadolinium ions (0.938 Å) compared to Fe3+

ions (0.67 Å) hinders their incorporation into the iron oxide lattice [24].
The various oxidation states and the large number of potentially formed crystal

phases [47] render the process of determining the obtained structure very challenging.
This is in addition to the fact that there are very few successful attempts in the literature
to produce gadolinium-doped ferrite nanoparticles and, consequently, scarce few studies
about its feasibility as an MFH agent [48]. This work focuses on the determination of
the various obtained phases upon the addition of gadolinium to iron oxide precursors
produced using the hydrothermal method. XPS is used as an analytical technique that
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effectively complements XRD to accurately investigate the produced structures. The
magnetic parameters of the samples are measured and correlated to the obtained structures.
Finally, the ability of the samples to produce heat upon exposure to AMF is tested.

2. Experimental Section
2.1. Materials

Analytical grade chemicals were used for synthesis. Ferric chloride (Fe(Cl)3 . 6 H2O), fer-
rous chloride (Fe(Cl)2 . 4 H2O), sodium hydroxide (NaOH) and polyethylene glycol (PEG)
were purchased from Loba Chemie, Mumbai, India. Gadolinium nitrate (Gd(NO)3. 6 H2O )
was purchased from Alfa Aeser, Carlsbad, CA, USA.

2.2. Synthesis

The conventional hydrothermal method was employed for the synthesis of GdxFe3−xO4
with x values of 0, 0.02, 0.04, 0.06, 0.08 and 0.1. Stoichiometric quantities of metal salts
were dissolved in water independently; then, all salts were added together and the pH was
immediately raised to 12.8 using 10 M NaOH. The samples were transferred to Teflon-lined
stainless steel sealed containers. The samples were heated for 2 h to 180 ◦C, at which they were
incubated for 15 h and then allowed to cool. The samples were then washed several times
with deionized water. The six obtained samples were indexed as GdIO/x, with x varying
from 0.0 to 0.1. For SAR measurement, the samples were functionalized by stirring overnight
in a PEG solution and then collected by magnetic decantation and washed.

2.3. Characterization

Phase identification of the prepared samples was performed using X-ray powder
diffraction (XRD). The X-ray powder diffraction patterns of the samples were collected on
a Philips diffractometer (X’pert MPD) with Cu-Kα radiation. Step-scan mode was utilized
to collect diffraction intensities (step size 2θ = 0.02◦; counting time 2 s) in the angular range
20–80◦. Quantification of the produced phases was carried out according to the Rietveld
profile method using the MAUD software package (L. Lutterotti, Maud 2.33) [49].

The X-ray photoelectron spectra were measured using a Thermo Fisher Scientific XPS
instrument utilizing a monochromatic AlKα X-ray source in the energy range 1350–0 eV.
Pressure in the analysis chamber was kept at 10−9 mbar with full spectrum pass energy,
200 eV, and at narrow spectrum, 50 eV. Magnetization curves were obtained using a
vibrating sample magnetometer (VSM; Lakeshore 7400-S Series) with a magnetic field
intensity up to 3.1T. High-resolution transmission electron micrographs were obtained (HR-
TEM, Tecnai G20, FEI, The Netherlands) to image particles and determine the morphology
and particle size.

The specific absorption rates for the six samples were obtained using DW-VHF (10 kW,
China). The working coil was the coil of the parallel tank circuit. It was a three-turn coil
cooled by a water current. The operating frequency f of the self-oscillating resonator is
given by the resonance condition using Equation (1):

f =
1

2π
√

LC
(1)

where L and C are the inductance and capacitance, respectively. The maximum value of
the AC current Imax in the coil was calculated using Equation (2):

Imax = 2π f C
(√

2 Vrms

)
(2)

where Vrms is the root mean square value of the voltage across the coil. The calibration
curve for the magnetic field versus current was obtained using a DC Teslameter (Phywe
Teslameter 13610-93) for DC currents up to 6 Amp.
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The powder samples were contained in a glass vial in a polystyrene foam jacket
inserted axially in the working coil, as shown in Figure 1. The temperature was measured
using an optical fiber probe (FOBS-2) connected to a digital meter (OMEGA-FOB101).
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Figure 1. Exposure setup AMF using the induction heater. The optical fiber thermometer, sample
holder, polystyrene foam jacket and coil dimensions are shown.

3. Results and Discussion
3.1. Structural Characterization
3.1.1. XRD Analysis

To thoroughly investigate the obtained phases, X-ray diffraction was used to determine
the crystal structure of the powdered samples. The MAUD software package [49] was
utilized for phase identification and quantitative analysis. The obtained diffraction patterns
are shown in Figure 2.

The obtained results of the powder X-ray diffraction indicate that all samples are
crystalline, as shown in Figure 2. The refinement of the diffraction patterns shows that
each of the six samples is made up of one or more of the detected four phases. The
phases are as follows: an FCC phase with a space group (Fd3m) assigned to magnetite
and maghemite [45], a hexagonal phase (space group R3c) assigned to hematite [50], an
orthorhombic phase (Pbnm) assigned to goethite [41] and another hexagonal phase (space
group P63/m) assigned to gadolinium hydroxide [51]. The main peaks indicating the FCC
structure, goethite and hematite are depicted in the patterns corresponding to samples
GdIO/0, GdIO/0.02 and GdIO/0.04.

A pure FCC structure is obtained for sample GdIO/0. For GdIO/0.02, a distorted FCC
phase is obtained along with the orthorhombic phase of goethite. For GdIO/0.04, hematite
is also observed. The hexagonal phase characteristic for gadolinium hydroxide appears for
the first time for GdIO/0.06, whereas the hematite phase disappears. The four phases are
observed for samples GdIO/0.08 and GdIO/0.1. The percentages of the obtained phases
are shown in Table 1 along with the values of the standard deviation σ and Q = Rwp/Rexp
that judge the quality of refinement [52].
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Figure 2. X-ray diffraction pattern for samples GdIO/0, GdIO/0.02, GdIO/0.04, GdIO/0.06, GdIO/0.08
and GdIO/0.1 arranged from top to bottom.

Table 1. The obtained phases and their percentages for each sample along with the refinement parameters.

Sample Code x Value Formed Phase Lattice Parameters (Å) σ Q

GdIO/0.00 0 FCC 100% 8.36 0.697 1.43

GdIO/0.02 0.02
Orthorhombic

55.43%(Goethite) a =4.42, b = 10.07, c = 2.95
0.712 1.39

FCC 44.56% 8.39

GdIO/0.04 0.04
FCC 70.832% 8.41

0.967 1.03Goethite 16.21% a =4.68, b =10.08, c = 2.95
Hematite 12.45% a =4.919, c = 14.05



Crystals 2021, 11, 1153 6 of 16

Table 1. Cont.

Sample Code x Value Formed Phase Lattice Parameters (Å) σ Q

GdIO/0.06 0.06

Hematite 66.99% a =5.04, c = 13.76

0.746 1.339
FCC 31.52% 8.41
Hexagonal

1.474%Gd(OH)3
a =6.33, c = 3.63

GdIO/0.08 0.08

Hematite 84.609% a =5.04, c = 13.77

0.905 1.104
FCC 7.122% 8.40

Goethite 4.32% a =4.63, b = 9.97, c = 3.01
Gd(OH)3 3.942% a =6.33, c = 3.63

GdIO/0.1 0.1

FCC 41.720% 8.42

0.865 1.156
Hematite 31.583% a =5.04, c = 13.77
Goethite 22.92% a =4.59, b = 9.96, c = 3.02
Gd(OH)3 3.772% a =6.329, c = 3.631

Therefore, samples x = 0, 0.02 and 0.04 are pure iron oxide samples in which Gd ions
are incorporated into the iron oxide lattice. x = 0.04 can be considered as the solubility limit
of Gd ions in iron oxide. The further increment of Gd ions is observed to be segregated as
Gd(OH)3, likely at the grain boundaries.

Magnetite crystallizes in an FCC structure that is very difficult to distinguish from
maghemite using only XRD. For this purpose, XPS is used mainly to investigate the
presence of Fe2+ based on its characteristic binding energy. The two techniques were
effectively used to determine and quantify the presence of gadolinium either incorporated
into the iron oxide structure in one of the possible phases or forming a separate oxide or
hydroxide phase.

3.1.2. XPS Spectra

Elemental analysis, oxidation states and cation distribution are determined from XPS
analysis. XPS spectra for only two samples (GdIO/0 and GdIO/0.1) are shown in Figure 3,
and the significant peaks are indexed. For sample GdIO/0, iron ions in Figure 4a show
two 2p peaks due to spin orbit coupling. The high energy peak at 725.08 eV is the Fe 2p3/2
peak. The low energy main peak for 2p1/2 appeared at 711.14 eV and was deconvoluted
into two peaks. The peaks are at 710.79 and 714.08 eV, representing Fe3+ ions occupying
the octahedral and tetrahedral sites, respectively. The Fe 2p1/2 peak is accompanied by a
satellite peak at 718.1 eV. The presence of the satellite peak implies that the formed phase
is maghemite with all the iron content oxidized to Fe3+ ions [53]. For magnetite, the Fe
2p1/2 peak appears at slightly lower energies [54]. This resolves the structural controversy
as the results rule out the formation of magnetite due to the lack of evidence for the
presence of Fe2+ in any of the compounds. Thus, it verifies that maghemite is the only
FCC phase produced in all samples. Calculation of the integral areas corresponding to the
occupation of the tetrahedral and octahedral sites revealed that 73.61% of Fe3+ occupies
the octahedral site and 26.39% occupies the tetrahedral site with a ratio that is very close to
the characteristic ratio for ideal γ− Fe2O3.

The main peak for O2− in sample GdIO/0 is represented in Figure 4b. It occurs at
530.08 eV [32,55]. The peak is deconvoluted and indexed according to Zhang et al. [56].
It is produced by the oxygen incorporated into the lattice, oxygen in the dangling bonds
at the surface of the particles and the adsorbed oxygen. Gadolinium was detected using
XPS spectroscopy for samples GdIO/0.04, GdIO/0.06, GdIO/0.08 and GdIO/0.1. Figure 5
is a high-resolution plot for the peaks of Gd3+ in samples GdIO/0.04 and GdIO/0.1. The
high energy peak (Gd 3d5/2) is observed at 1185.6 eV for sample GdIO/0.04, and the low
energy peak (Gd 4d p) appears at 142.5 and 148.5 eV for Gd 4d5/2 and Gd 4d3/2, respectively.
Correlating this result with the performed phase analysis verifies that gadolinium exists
as Gd(OH)3 for samples GdIO/0.06, GdIO/0.08 and GdIO/0.1. The gadolinium content
detected for sample GdIO/0.04 proved not to form Gd(OH)3 or else it would otherwise
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have been detected using XRD. This implies that it could have been incorporated into the
iron oxide lattice.
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It is customary to obtain various secondary phases upon attempting to dope spinel
ferrites with rare earth elements. In a very recent work by Serga et al. [57], the extraction
pyrolytic method was used to produce gadolinium-doped iron oxide nanocrystals. The
results showed that attempts to incorporate gadolinium into the iron oxide lattice resulted
in the formation of more than one phase of iron oxide and that gadolinium oxide phases
were formed at high concentrations of gadolinium.

In addition, a study aiming to produce gadolinium-doped cobalt ferrite (CoFe2−xGdxO4)
using the hydrothermal method [33] showed the presence of hematite and gadolinium
hydroxide as secondary phases in the product for high gadolinium concentrations. The
polyol [58], coprecipitation [59], sonication-assisted coprecipitation [46] and thermal decompo-
sition routes [48] were used for the synthesis of gadolinium-doped iron oxide without strong
evidence for the incorporation of gadolinium into the iron oxide lattice.



Crystals 2021, 11, 1153 8 of 16

Crystals 2021, 11, 1153 8 of 17 
 

 

peak (Gd 4d p) appears at 142.5 and 148.5 eV for Gd 4d5/2 and Gd 4d3/2, respectively. Corre-
lating this result with the performed phase analysis verifies that gadolinium exists as 𝐺𝑑(𝑂𝐻)  for samples GdIO/0.06, GdIO/0.08 and GdIO/0.1. The gadolinium content de-
tected for sample GdIO/0.04 proved not to form 𝐺𝑑(𝑂𝐻)  or else it would otherwise have 
been detected using XRD. This implies that it could have been incorporated into the iron 
oxide lattice. 

  
Figure 5. High resolution XPS plots showing the peaks for gadolinium ions for samples GdIO/0.04 (left) and GdIO/0.1 
(right). 

It is customary to obtain various secondary phases upon attempting to dope spinel 
ferrites with rare earth elements. In a very recent work by Serga et al. [57], the extraction 
pyrolytic method was used to produce gadolinium-doped iron oxide nanocrystals. The 
results showed that attempts to incorporate gadolinium into the iron oxide lattice resulted 
in the formation of more than one phase of iron oxide and that gadolinium oxide phases 
were formed at high concentrations of gadolinium. 

In addition, a study aiming to produce gadolinium-doped cobalt ferrite 
(𝐶𝑜𝐹𝑒 𝐺𝑑 𝑂 ) using the hydrothermal method [33] showed the presence of hematite 
and gadolinium hydroxide as secondary phases in the product for high gadolinium con-
centrations. The polyol [58], coprecipitation [59], sonication-assisted coprecipitation [46] 
and thermal decomposition routes [48] were used for the synthesis of gadolinium-doped 
iron oxide without strong evidence for the incorporation of gadolinium into the iron oxide 
lattice. 

In another study [24], gadolinium was suggested to replace Fe in the A site upon 
preparation using the polyol method; 𝐺𝑑 𝑂   was detected in the iron oxide lattice by 
other authors who also utilized the polyol method [19]. Gadolinium-doped iron oxide was 
synthesized by microwave-assisted polyol synthesis [23], and the orthorhombic goethite 
phase was also observed for some gadolinium concentrations. When the hydrothermal 
method was modified by adding polyethyleneimine [21], gadolinium ions were detected 
in the form of gadolinium hydroxide. In general, a small amount of gadolinium ions are 
incorporated into the iron oxide cubic lattice. This may be attributed to the large size of 
the gadolinium ions compared to iron ions and the higher energy of the bond between 
Gd3+ and O2− than the energy of the bond between Fe3+ and O2− [60,61]. 

3.2. Magnetic Measurements 
The magnetization curves for the six samples are shown in Figure 6. The curves re-

veal the superparamagnetic nature of the samples. The values of saturation magnetization 
can be understood on the basis of the obtained crystal phases. Sample GdIO/0 gives the 
highest magnetization as it is formed of pure maghemite, which possesses the highest 

138 140 142 144 146 148 150 152 154

Gd 4d3/2

148.5 eV  

Gd 4d

In
te

ns
ity

 (C
PS

)

Binding Energy (eV)

Gd 4d5/2

142.5 eV  
GdIO/0.04

138 140 142 144 146 148 150 152 154

Gd 4d

In
te

ns
ity

 (C
PS

)

Binding Energy (eV)

GdIO/0.1

Figure 5. High resolution XPS plots showing the peaks for gadolinium ions for samples GdIO/0.04 (left) and GdIO/0.1 (right).

In another study [24], gadolinium was suggested to replace Fe in the A site upon
preparation using the polyol method; Gd2O3 was detected in the iron oxide lattice by
other authors who also utilized the polyol method [19]. Gadolinium-doped iron oxide was
synthesized by microwave-assisted polyol synthesis [23], and the orthorhombic goethite
phase was also observed for some gadolinium concentrations. When the hydrothermal
method was modified by adding polyethyleneimine [21], gadolinium ions were detected
in the form of gadolinium hydroxide. In general, a small amount of gadolinium ions are
incorporated into the iron oxide cubic lattice. This may be attributed to the large size of the
gadolinium ions compared to iron ions and the higher energy of the bond between Gd3+

and O2− than the energy of the bond between Fe3+ and O2− [60,61].

3.2. Magnetic Measurements

The magnetization curves for the six samples are shown in Figure 6. The curves reveal
the superparamagnetic nature of the samples. The values of saturation magnetization
can be understood on the basis of the obtained crystal phases. Sample GdIO/0 gives the
highest magnetization as it is formed of pure maghemite, which possesses the highest
magnetization. Hematite has a lower magnetization, whereas goethite and gadolinium
hydroxide are nonmagnetic phases [62].
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shown in Figure 7. From the Arrott plots, Ms was determined through the linear extrapola-
tion of the high field magnetization data, which is indicated by the dashed lines [63]. The
obtained Ms values from the Arrott plots are listed in Table 2, along with the measured
magnetization values and coercivities for all samples.
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Table 2. Magnetization and coercivity values for samples GdIO/0, GdIO/0.02, GdIO/0.04, GdIO/0.06,
GdIO/0.08 and GdIO/0.1.

Sample Code Measured
Magnetization (emu/g)

Magnetization
Calculated from Arrott

Plots (emu/g)
Coercivity (G)

GdIO/0 56.9 52.9 52.87
GdIO/0.02 37.7 31.6 10.5
GdIO/0.04 30.9 25.9 42.05
GdIO/0.06 21.7 15.9 40.986
GdIO/0.08 17.9 15.8 32.172
GdIO/0.1 26.9 23.8 25.6

Sample GdIO/0 is pure maghemite, and samples GdIO/0.02 and GdIO/0.04 are formed
of gadolinium-doped iron oxide. Consequently, only these three samples will be subject to
further investigation.

The contribution of the various phases to the obtained samples is graphically rep-
resented in Figure 8. The bars representing the two magnetic phases, maghemite and
hematite, are patterned. The saturation magnetization of bulk maghemite is 60 emu/g [35],
whereas hematite is weakly ferromagnetic at room temperature [64]. Taking into account
the lowering in magnetization that occurs due to the evolution of a dead magnetic layer on
the surface of the particles at the nanoscale [65], it is observed that the magnetization is
consistent with the crystal structure of the samples.

3.3. Measurement of Particle Size

TEM micrographs of the samples GdIO/0, GdIO/0.02, and GdIO/0.04 are shown in
Figure 9. The micrographs show that all three samples are formed of almost spherical
particles and no considerable variation in size among samples is observed. The calcu-
lated average sizes of samples GdIO/0, GdIO/0.02, and GdIO/0.04 are 13.6 ± 1.2 nm,
12.8 ± 1.4 nm and 13.9 ± 1.6 nm, respectively.
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3.4. Assessment of SAR

In this section, SAR values will be determined only for the maghemite sample GdIO/0
and the two samples with gadolinium ions incorporated into the iron oxide lattice, namely
GdIO/0.02 and GdIO/0.04. The exposure frequency was 198 kHz, and the field intensity
was 9.27 kA/m. The temperature rise versus exposure time (50 s) for the three samples is
depicted in Figure 10. SAR values are determined from Equation (3) [65].

SAR =
(cwmw + cIOmIO)

mIO

∆T
∆t

(3)

where cw, cIO and mw, mIO are the specific heat and mass of water and iron oxide particles,
respectively.
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The highest obtained value of SAR is 97.0 W/g for GdIO/0.04 followed by 67.4 W/g
for GdIO/0 and finally, 16.64 W/g for GdIO/0.02. Thus, GdIO/0.04 gave almost a sixfold
enhancement in SAR value compared with GdIO/0.

For superparamagnetic particles with KV ≤ kBT, where V is the particle volume
and kB and T are the Boltzmann constant and temperature, respectively, two relaxation
mechanisms contribute to the AC loss of the particle: the Neel relaxation and the Brown
rotation. The time constant for the Brownian relaxation τB [66] is given by

τB =
3ηVH
kBT

(4)

where η is the viscosity coefficient of the fluid, kB is Boltzmann’s constant, T is the absolute
temperature and VH is the hydrodynamic volume of the particle. It is the volume of the
core V and the adsorbed surfactant layer of thickness ζ, VH =

(
1 + ζ

R

)
3V [67]. The time

constant for the Neel relaxation τN [68] is given by

τN = τoe
KV
kBT (5)

where K is the effective anisotropy and the term KV represents the energy barrier to the
magnetization reversal. The exponent is the ratio between the anisotropy barrier and the
thermal energy possessed by the particle at a specific temperature. τo is the characteristic
time in the order of 10−12 − 10−9s [69].



Crystals 2021, 11, 1153 12 of 16

For relaxation loss to be the major loss mechanism and hysteresis loss to be ignored,
the particles should exhibit superparamagnetic behavior. In such a state, the ambient
temperature T should be above the blocking temperature TB of the particles [70]. It is
worth noting that the values of coercivity for all samples are relatively low, as shown in
Table 2. TB can be further lowered by application of an external magnetic field according
to Bruvera et al. [71].

TB =
KV(1− h)2

klog (τm/τ0)
(6)

where h = H
Hk

and Hk = µo Ms/2K and τm is inversion time of the particles that can be
considered as equivalent to the measurement time.

In addition, the particles in the sample exhibit a size distribution, as shown by the
TEM micrographs. Because the small particles exhibit lower blocking temperature values,
they subsequently heat up first, raising the temperature of the solution and resulting in the
transfer of the larger blocked particles to the superparamagnetic state.

Since both mechanisms take place in parallel, the shorter time prevails. The effective
relaxation time τ [72] is given by

1
τ
=

1
τB

+
1

τN
(7)

The power dissipation density for a monodisperse sample [68] is given by

P = πµoχo H2
o f

2π f τ

1 + (2π f τ)2 (8)

χo, H2
o and f are the equilibrium susceptibility and Ho is the amplitude and fre-

quency of the applied. The power dissipation reaches its maximum when ωτ = 1. The
equation shows that conducting the measurement away from resonance results in an
underestimation of the loss capability of the magnetic specificities in question.

Comparing the measured SAR values with those of previously conducted studies
proves difficult as there is no consensus about measurement conditions. As mentioned
above, the selection of the frequency is very crucial, and increasing the field may also lead
to an enormous increase in the SAR value [73]. It is also important to consider whether
the mass involved in an SAR calculation is the mass of the entire particle or only that of
the iron content. Nevertheless, some of the previously obtained SAR values are stated
herein. Maghemite uncoated nanoparticles with a diameter of 13 nm dispersed in agar
gave 56 W/gFe at a frequency of 522.3 kHz and a field of 7.5 kA/m [73]. Cobalt ferrite
nanoparticles (13.56 nm) were also heated by a field of 9.4 kA/m at 198 kHz and gave an
SAR value of 82.6 W/g [8]. Another study on 35 nm manganese ferrite nanoparticles of
concentration 3 mg/mL at a field intensity of 350 G and a frequency of 765.95 kHz showed
that the particles gave an SAR value of 70 W/g [74], while Muhammad Nauman et al.
studied gadolinium silicide nanoparticles and calculated an SAR value of 3.7 W/g for
43 nm particles at a field of 171 Oe and a frequency of 327 kHz [75]. Finally, a recent study
using nanoparticles of different diameters based on La-Sr manganites, and with a low
Curie temperature, gave SAR values ranging from 5.6 to 30 W/g [70].

Comparing the obtained results with those reported in the literature shows that
sample GdIO/0.04 can be efficiently used for hyperthermia without violating the safety
criteria f .H = 5× 109 kA/ms [76] and that the SAR value of maghemite was enhanced by
gadolinium doping.

4. Conclusions

This work attempts to utilize the hydrothermal method for the synthesis of gadolinium-
doped magnetite. Being a wet method, it is suitable for preparing samples used in biomed-
ical applications. The samples can be easily functionalized and dispersed. A thorough
investigation of the obtained phases revealed the low solubility limit of the gadolinium ions
in the iron oxide lattice (x = 0.04) prepared using this method. Increasing the gadolinium
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concentration merely resulted in a disturbed maghemite phase and the evolution of other
phases in most of the samples. Gadolinium is observed to form a gadolinium hydroxide
phase that is likely aggregated at the grain boundaries. The study showed that the magne-
tization values depend on the formed phases. GdIO/0.04 showed a sixfold enhancement in
its ability to produce heat at 198 kHz. This allows the utilization of the sample as an MFH
agent without the violation of safety guidelines.
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