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Abstract: Experimental and geometrical approaches of new systems of mesomorphic 1:1
supramolecular H-bonded complexes (SMHBCs) of five rings are discussed. The H-bonding
between 4-alkoxyphenylimino benzoic acids (An, as proton acceptor) and 4-(4′–pyridylazophenyl)
4′′-alkoxybenzoates (Bm, as proton donor) were investigated. Mesomorphic behaviors were analyzed
by differential scanning calorimetry (DSC) and mesophase textures were identified by polarized light
microscopy (POM). H-bonded assembly was established by FT-IR spectroscopic measurements via
Fermi band discussion. Thermal and theoretical factors were predicted for all synthesized complexes
by density functional theory (DFT) predictions. The results revealed that all prepared complexes were
monomorphic, with a broad range of smectic A phases with a high thermal stability of enantiotropic
mesophase. Furthermore, DFT stimulations illustrated the experimental results in terms of the
influence of the chain length either of the acid or the base component. Many parameters, such
as the calculated stability, the dipole moment and the polarizability of the H-bonded complexes,
illustrate how these parameters work together to enhance the smectic mesophases with the obtained
stability and range.

Keywords: supramolecular H-bonding complexes; rod-like liquid crystals; mesomorphic behavior;
geometrical aspects

1. Introduction

Supramolecular hydrogen-bonding liquid crystal complexes (SMHBLCs) were first made in the
20th century [1]. The first reported SMHBLC dimers were made between 4-n-alkoxycinnamic acids and
4-n-alkoxybenzoic acids that showed stable smectic and nematic mesophases [2–4]. A huge number
of liquid crystalline materials have been investigated using different synthetic methods, however,
the design of SMHBLCs through intermolecular interactions between complementary components are
of great interest. The types of interactions might be H-bonding [5–7] or halogen bonding [8–13] and
both have the advantage of easy accessibility compared to covalently bonding liquid crystals.

Thermotropic LCs based on intermolecular hydrogen bond interactions are mostly used in display
devices and sensor applications [14–18]. Molecular geometry in LC H-bonded complexes can be
assembled between different conformations depending on the investigated hydrogen bond donors
and acceptors. Recently, several SMHBLCs were formed using different types of H-donors and
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H-acceptors to afford varied varieties of structural geometries, such as rod-like complexes [19,20],
angular complexes [21–24] polymeric architectures [25], modular hierarchical complexes [26] and
non-symmetric dimers possessing nematic mesophases [27] or showing the heliconical twist-bend
nematic phase [28] or supramolecular polycatenars of chiral cubic phases [29]. Modification of efficient
materials to be in a novel architecture is an attractive area of interest [30–32].

Azo and azomethine-functionalized LC linkers are of great interest for the technology of
light-responsive compounds [33–35]. Later, more types of azobenzene and azomethine-based LCs
were reported [36–42]. Azopyridines are of research interest since they possess the ability of assembly
by intermolecular H-bonding and the unique property of trans-cis photo-isomerization and thermal
isomerization because of the existence of the azo linkage. In addition, calamitic Schiff base liquid
crystals possess a unique mesomorphic character [43].

Recently, many researchers [5,31,44–54] have reported the mesophase characteristics of new
supramolecular H-bonded complexes (SMHBCs) between acids and pyridines as base one [55,56].
In order to better understand the structural effect relationship of SMHBC-based azopyridines, two groups
of H-bonded complexes (1:2) based on pyridine as the H-acceptor were investigated [55,57,58]. In another
study, the 1:1 SMHBCs prepared between the nitrogen atom of the azomethine derivative and
4-alkoxybenzoic acids [59] has been reported and characterized. In recent research, it has been
described [60] that the mesomorphic properties and geometrical expectations can be impacted in
a different way by exchanging the azo core group in the base part with an azomethine one [59].
These findings have encouraged us to study the preparation and analysis of another SMHBC
based on the azo and azomethine calamitic derivatives. Furthermore, the mixing of computational
simulations of geometrical calculations with experimental findings is also interesting [55,61–63]
and, in our studies concerning SMHBCs, new calamitic SMHBCs based on the H-bonding
interaction between the proton donor, 4-alkoxyphenylimino benzoic acids [45] (An), and the proton
acceptor, 4-(4′-pyridylazophenyl) 4′′-alkoxybenzoates [19] (Bm), were prepared. The study aims to
examine their mesomorphic characteristics and their geometrical parameters by density functional
theory (DFT) simulation. Moreover, this study aims to correlate the experimental outcomes
of the mesomorphic properties with their estimated thermal and geometrical outcome values.
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Scheme 1. Preparation of the acid An, the base Bm and their complexes An/Bm. 
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with alkoxy chain lengths m = 10, 12 and 14. The mix was melted with stirring till the intimate blend, 
then allowed to cool, as shown in Scheme 1. The characteristics of the prepared supramolecular 
complexes (An/Bm) were studied by differential scanning calorimetry (DSC) measurements, as well 
as FT-IR spectroscopy (see Supplementary Materials). 
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1735 cm−1. The replacement of the dimeric H-bond between the alkoxy acid A6 and the nitrogen 
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Preparation of Complexes An/Bm

The acid An and the base Bm were prepared according to the previous reported methods in [64]
and [19], respectively. Supramolecular complexes An/Bm were synthesized by mixing 1:1 molar ratios
of alkoxy Schiff acids (An) with different chain lengths of n = 6, 8 and 16 and the azo base (B) with
alkoxy chain lengths m = 10, 12 and 14. The mix was melted with stirring till the intimate blend,
then allowed to cool, as shown in Scheme 1. The characteristics of the prepared supramolecular
complexes (An/Bm) were studied by differential scanning calorimetry (DSC) measurements, as well as
FT-IR spectroscopy (see Supplementary Materials).

3. Results and Discussion

3.1. FT-IR Characterizations

The formation of the supramolecular complexes An/Bm was proved via FT-IR, X-ray and NMR
spectral analysis [65–69]. However, FT-IR measurements proved to be an effective tool for such
confirmation [40,60,69–71]. The spectral data were measured for the individual compounds A6,
B12 and their complex A6/B12 and are given in Figure 1.
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As shown in Figure 1, the peak at 1678 cm−1 was attributed to C=O groups of the dimeric the
alkoxy Schiff acid A6. On the other hand, the ester linkage C=O group of the base B12 appeared at
1735 cm−1. The replacement of the dimeric H-bond between the alkoxy acid A6 and the nitrogen
atom of the base (B12) affects the strength of the C=O of either the acid or the base, and consequently,
their stretching vibration is affected. This information could be proved by the FT-IR spectral data.
The new H-bonding decreases the C=O stretching vibration of the ester linkage of the base B12 to
1728 cm−1, however, it increases that of the C=O of the COOH group of the alkoxy acid A6 to 1737 cm−1.

One of the important reported proofs of the SMHBC formation is the OH Fermi vibrational
stretching bands [28,69–74]. It has been reported that the existence of the three Fermi resonance
stretching vibration peaks, A-, B- and C-type, of the H-bonded OH functional group is a proof for the
formed SMHB complex. The Fermi peak of the A-type of the complex A6/B12 was below the C–H
vibrational frequency at 2922 to 2852 cm−1. Moreover, the band at 2504 cm−1 (A6/B12) is attributed to
the B-type of the in-plane bending stretching vibration of the O–H. On the other hand, the 1919 cm−1

peak of the C-type Fermi band is due to the interaction between the overtone of the torsional influence
and the essential influence of the OH stretching vibration.

3.2. Mesomorphic and Optical Studies

Mesomorphic behaviors for the present 1:1 SMHBCs (An/Bm) were investigated. Phase transition
temperatures (T), associated enthalpy (∆H) and their normalized entropy (∆S/R), as well as the
mesomorphic range based on DSC measurements for all prepared SMHBCs, An/Bm, are summarized
in Table 1. Examples of DSC cycles upon second heating and cooling scans are depicted in Figure 2.
In addition, a textural observation example under polarized light microscopy (POM) is represented in
Figure 3. A graphical representation of the chain length/transition temperature dependences of the
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characterized complexes is illustrated in Figure 4, in order to study the effect of the length of alkoxy
acid and base chains on the mesomorphic characteristics.

Table 1. Phase transitions: temperatures (T, ◦C), enthalpy (∆H, kJ/mol), normalized entropy (∆S/R)
and mesomorphic range (∆T) for the SMHBCs An/Bm.

System TCr-SmA * ∆HCr-SmA * TSmA-I † ∆HSmA-I † ∆SSmA-I †/R ∆TSmA

A6/B10 135.4 41.61 255.6 6.85 1.56 120.2

A6/B12 136.8 54.54 243.2 8.17 1.90 106.4

A6/B14 128.8 48.39 225.3 5.93 1.43 96.5

A8/B10 147.4 62.98 237.5 6.68 1.57 90.1

A8/B12 148.3 55.51 234.8 6.77 1.60 86.5

A8/B14 129.0 54.47 230.7 5.59 1.33 101.7

A16/B10 127.1 67.13 227.1 9.05 2.18 100.0

A16/B12 128.7 66.73 226.0 8.81 2.12 97.3

A16/B14 125.3 71.04 215.1 7.08 1.74 89.8

* Cr-SmA = crystal to smectic A phase transition; † SmA-I = smectic A phase to isotropic liquid transition.
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The azomethine benzoic acids (An) used to prepare the present SMHBCs form smectic A and narrow
nematic (N) phases depending on the length of their alkoxy chain terminals [64]. The azopyridine
derivatives (Bm) are mesomorphic, exhibiting only SmA mesophases [19]. As can be seen from
Table 1 and Figure 4, all formed calamitic SMHBCs (An/Bm) exhibit a broad enantiotropic range of
SmA phases and the N phase is not observed for any prepared mixture. In addition, the melting
temperatures of complexes have irregular values. Furthermore, the thermal stabilities of the SmA
phase are decreased with increments in the length of the terminal chain. Generally, the mesogenic
core and the length of the terminal chain of the H-donor molecule influence the stability of the formed
mesophase. In addition, the polarity difference between H-donors and H-acceptors affects the strength
of H-bonding interactions and enhances the molecular anisotropy, as well as promotes a broadening of
the mesomorphic range [75]. However, the length of the terminal alkoxy chain of the mixture does not
affect the polarity of each component.

In order to study the structural relationship in liquid crystalline materials further, theoretical
calculations were performed by the DFT method (see Supplementary Materials) at B3LYP 6-31G (d, p)
for selected series of the SMHBCs An/Bm to show the chain length effect of the acid and the base
moieties. Evidence for the geometrical stability of all SMHBCs is the absence of imaginary frequencies.
Although these calculations offer an expectation of the favored molecular structure in the gas phase,
the existence of these derivatives in a liquid crystalline condensed phase means that the least energy
might be changed and the more lengthened species with the longer chain length will be preferred [76].
Figure 5 shows the most favorable geometries of the H-bonded complexes An/Bm.
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Since both components of the hydrogen-bonded complex are completely in its planar geometry,
their SMHBCs are also linear with very little bending. Figure 5 emphasizes that the length of the
chains does not significantly affect their structural geometries. However, this small structure change
could affect the mesomorphic behavior of liquid crystal complexes, which is highly dependent on the
terminal length of wings [31]. SmA transition peaks (Figure 2) are affected by increasing the order
parameter coupling during liquid crystal mixing that leads to broadening their peak transition in some
cases [77]. Mesomorphic stability of the prepared 1:1 supramolecular complexes An/Bm decreases
in the order An/B10 > An/B12 > An/B14, while the mesophase ranges change with the length of the
terminal alkoxy chains. The A6/Bm series showed an SmA phase with a wide range for the complex
A6/B10 (~120.2 ◦C) and a narrow range for A6/B14 (~96.5 ◦C). For series A8/Bm, the highest range
was observed for the complex A8/B14 (~101.7 ◦C) while the lowest value was observed for A8/B12
(~86.5 ◦C). Finally, the A16/Bm set exhibit a higher mesomorphic range for A16/B10 (~100.0 ◦C) and a
lower one for the A6/B14 (~89.8 ◦C) mixture.

3.3. Thermal Parameters

The projected thermal factors were predicted by DFT by using the same method and base set for
both chain lengths of the acid and the base component of the prepared H-bonded complexes An/Bm,
and the results are presented in Table 2. The results of the calculated thermal parameters revealed that
there is no significant effect of the chain length of the acid or the base component on the estimated
theoretical thermal stability, compare A6/B12 and A8/B10. These complexes are of the same length,
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with different lengths with respect to the acid and the base and they showed the same energy with
∆E = 0.0082 kcal/mole. However, as could be expected, the longer chain length affords highly stable
molecules. The extra stability could be explained in terms of a high degree of packing with longer
chain lengths. The increase in the length of the alkoxy chains of individuals enhances the calculated
stability of the mixtures. The longer terminal length increases the Van der Waals interactions of the
flexible chains and thus lowers the estimated energy of the complexes.

Table 2. Thermal parameters (Hartree/particle) of both conformers of the H-bonded complexes An/Bm.

Parameter A6/B10 A6/B12 A6/B14 A8/B10 A16/B10

Ecorr 0.957322 1.014402 1.071444 1.014393 1.242606

ZPVE −2532.136516 −2610.703606 −2689.270726 −2610.703625 −2924.972062

Etot −2532.078335 −2610.642704 −2689.207085 −2610.642717 −2924.900273

H −2532.077391 −2610.641759 −2689.206140 −2610.641773 −2924.899329

G −2532.246843 −2610.818015 −2689.389523 −2610.818111 −2925.103243

Abbreviations; ZPVE: Sum of electronic and zero-point energies; Etot: Sum of electronic and thermal energies;
H: Sum of electronic and thermal enthalpies; G: Sum of electronic and thermal free energies.

The alteration of the mesophase behavior and temperature ranges (∆T) for the stable SMHBCs
An/Bm for alkoxy chain length are summarized in Table 3. It is obvious from Table 3 that the total
smectic mesophase range and stability are decreased with alkoxy chain length either of the acid or
the base. Moreover, the high dipole moment of the H-bonded complex could be an illustration of
the formation of the smectic mesophase. The high dipole moment of the compounds enhances the
molecular packing of the compounds in a highly ordered smectic mesophase. The lateral molecular
interaction enhancement that is facilitated by the high dipole moment permits the smectic mesophase
to be predominant.

Table 3. Dipole moment (µ), polarizability (α) and the mesophase parameters of SMHBCs An/Bm.

System A6/B10 A6/B12 A6/B14 A8/B10 A16/B10

TCr-SmA 135.4 136.8 128.8 147.4 127.1

TSmA-I 255.6 243.2 225.3 237.5 227.1

∆SSmA-I/R 1.56 1.9 1.43 1.57 2.18

∆Tc 120.2 106.4 96.5 90.1 100

µ Total 7.72 7.71 7.69 7.66 7.61

Polarizability α 719.44 743.29 767.05 743.74 839.47

As shown in Figures 6 and 7, the predicted polarizability of the H-bonded supramolecular
complexes An/Bm is significantly affected by the length of the alkoxy chain on the acid and base
components. Increments in the alkoxy chain length increases the H-donor impact on the polarizability
successively. The increment in the alkoxy chains resulted in higher space filling and so increased the
polarizability. Alternatively, the dependence of the mesophase thermal stability on the polarizability is
shown in Figures 6 and 7. The increments in the polarizability accordingly decreases the mesophase
stability and its range. The smectic mesophase range and stability decrease with longer chain lengths,
where, with the elongation of the chain lengths, the enhanced mesophase gradually became unstable
due to the steric aspect. Moreover, that abnormal trend proposes that the geometrical structure
alterations play a significant role. This behavior could be attributed to the dual role of increments
in the length of the terminal alkoxy chain that led to an enhancement of the shape anisotropy of the
complex, thus diluting the intermolecular interaction between the mesogenic parts [78,79]. Furthermore,
the steric effect impacts the stability and the range of the mesophase rather than the polarizability,
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which has a different trend. It is clear that we could control the characteristics of the H-bonding,
which could improve the properties of the individual components, by changing the parameters that
are needed for special applications, such as the polarizability of the liquid crystalline material to be
suitable for electro-optical applications [80–82].
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3.4. Frontier Molecular Orbitals (FMOs) and Polarizability

Figures 8 and 9 demonstrate the predictable plots of the FMOs’ highest occupied molecular orbital
(HOMO) and the lowest unoccupied one (LUMO of the prepared SMHBCs An/Bm. As shown from
the figures, it is obvious that the electron densities in the sites that participate in the formation of
the HOMOs of the prepared SMHBCs showed sharing of the phenyl ring of the alkoxy acid in the
formation of their HOMOs with the predominance of the pyridyl base in the formation of their LUMOs.
Moreover, there was no obvious effect of the length of the alkoxy group of either the base or the acid
on the location of the electron density of the FMOs. The energy difference between the FMOs could
be used in the prediction of the ability of electron transformation from HOMO to LUMO during any
electronic excitation process. It is clear from Table 4 that there is no significant impact of the alkoxy
chain on the energy difference between the frontier orbitals. The global softness (S) = 1/∆E is the
parameter that predicts the polarizability and the sensitivity of materials for the photoelectric property.
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Table 4. Frontier Molecular Orbitals (FMO) energies a.u., polarizability α, and dipole moment µ (Debye)
of conformers of the di-nicotinate base and SMHBCs An/Bm.

Parameter A6/B10 A6/B12 A6/B14 A8/B10 A16/B10

ELUMO −0.11545 −0.11543 −0.11542 −0.11541 −0.11530

EHOMO −0.21456 −0.21455 −0.21454 −0.21457 −0.21450

∆EHOMO-LUMO 0.09911 0.09912 0.09912 0.09916 0.09920

S Softness 10.090 10.089 10.089 10.085 10.081

3.5. Molecular Electrostatic Potential (MEP)

The simulation of the distribution of charges in molecular electrostatic potential (MEP) of the
structure of the SMHBCs An/Bm was done by the same method and with the same basis sets (Figure 10).
The red region is considered the negatively charged atomic center and was estimated to be localized
on the ester linkage of the H-bonds of the alkoxy acid carboxylate. On the other hand, part of the base
and the electron donor alkoxy chains of the acid were expected to be blue regions and show atomic
sites of the lowest negative charge. As shown in Figure 10, the length of the alkoxy group of the acid,
as well as the base, does not affect the distribution of the charge mapping for An/Bm.
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3.6. Entropy Changes

The transition entropy changes (∆S/R) of all prepared 1:1 SMHBCs were estimated from DSC
measurements and are collected in Table 1. Small magnitudes of entropy changes for an SmA-I
transition are observed in addition to an irregular trend for all series with the length of the terminal
flexible alkoxy groups. According to previous reports [83–86], the lower values of estimated entropy
changes for conventional mesogens of low molar mass are due to the thermal cis/trans isomerization
of the linkage. Furthermore, the enhanced shape anisotropy of molecules to pack more closely in
the liquid crystal phase will result in higher transition temperatures and affect the change of the
entropy [87].

4. Conclusions

New five-membered rings of 1:1 SMHBLC complexes were reported. Mesomorphic and
geometrical aspects were investigated. Optical measurements were carried out by DSC and POM,
whereas the geometrical characterizations were performed by the DFT method. Mesomorphic
investigations revealed that the mesogenic core (azomethine group) of the acid molecule has a role
in the formation of enantiotropic SmA mesophase with wide smectogenic range and high thermal
stability. DFT results revealed that the geometrical shapes of the present complexes are rod-like
(calamitic structural shape). Moreover, the theatrical investigations revealed that the high dipole
moment of the H-bonded complex illustrates the enhancement of the smectic mesophases. On the other
hand, increasing the alkoxy chain length enhances the acid component and affects the polarizability
successively. Finally, there was no obvious effect of the length of alkoxy group of either the base or the
acid, the position of the electron density of the FMOs nor their energy gap.
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