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Abstract: Herein, the effect of nanocrystal percentage in bulk-ZnO varistors was studied. The structure
of ZnO nanocrystals was examined using X-ray diffraction (XRD) and field-emission scanning electron
microscopy (FE-SEM). The XRD studies showed that the nanocrystals were indexed with the hexagonal
wurtzite structure of ZnO nanostructures. The average crystallite size deduced from XRD analysis
ranged between 135 and 273 nm, eight-fold lower than that of the nanoparticles observed in FE-SEM
micrographs (1151–2214 nm). The percentage of nanocrystals added into the ZnO varistor was
increased from 0 to 100%. Electrical measurements (I–V profiles) showed that the non-linear region,
breakdown field, and activation energy were found to decrease with the addition of ZnO fine crystals
up to 10% and then increased upon a further increase in fine crystals. However, the electrical
conductivity measured at room temperature was improved, and the highest value of 2.11 × 10−5

was observed for 10% fine crystals and then decreased upon a further increase in the fine crystal
concentration in bulk ZnO. The breakdown field decreased with the increase in the percentage of
ZnO nanostructures in the varistor up to 10% and then increased upon the further addition of ZnO
nanostructures. The nonlinear coefficient (α) was decreased from 18.6 for bulk ZnO and remained
close to unity for the samples that contained fine crystals. The electrical conductivity was generally
improved with the increase in the concentration of the ZnO fine crystals. The activation energy was
found to be 128, 374, and 815 meV for the bulk samples and 164, 369, and 811 meV for the samples that
contained 100% fine crystals for the three temperature regions of 300–420, 420–580, and 580–620 K,
respectively. These results will provide a pathway toward the determination of a correlation between
the electrical and microstructural properties of ZnO-based varistors for future device applications.
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1. Introduction

Over the past decades, ZnO has been used in various applications including varistors, transparent
electrodes, gas sensors, and photocatalysis [1–8]. ZnO polycrystalline nanostructures show nonlinear
I–V characteristics due to the potential barriers formed at the inter-grain boundaries [9–11].
The formation of the nonlinearity, in parallel with high current densities and breakdown fields,
is the most significant property of varistors. The increase in current is more rapid than that in voltage;
the I–V curve shows an upturn region at current densities beyond 103 A/cm2 and breakdown fields
(≤5000 V/cm). This upturn region indicates that the voltage drops at the grains and controls ZnO for
varistor applications. Generally, the nonlinearity phase depends on the density, chemical composition
of the compound, and nanostructure development [12–15].

Nanotechnology is of increasing importance in many research branches due to the interesting
properties associated with the sizes of small particles [16–18]. Although the bulk ZnO material is
well known for having a wurtzite hexagonal structure, ZnO nanocrystals have different crystalline
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structures depending on how they are prepared [19]. It has been reported that the ZnO distributed
nanoparticles have an enhanced luminous intensity compared to the ZnO bulk [20]. Moreover,
cubic ZnO nanoparticles can be formed by flash evaporation [21]. In addition, it is accepted that fine
nanoparticles of face-centered-cubic structure of a few hundred nanometers in size can form multiple
nanoparticles with a diamond structure [22–27]. In the last few years, extensive studies on the synthesis,
characterization, and physical properties of nanomaterials have been conducted. Enormous research
has been focused on metal oxide nanoparticles owing to their unusual properties upon entering the
nanoscale regime [28,29].

The electrical characteristics of ZnO ceramic varistors are dependent on their microstructural
features as follows: (i) the grain boundaries between the ZnO grains, which have nonlinear
current–voltage characteristics with an optimum break-down voltage, can be low—or the grain
boundary may not exhibit varistor behavior at all, possess ohmic characteristics, and define the
characteristics of the varistor in the pre-break-down region, and (ii) the ZnO grains and their
sizes—which define the number of grain boundaries between the electrodes and thus the break-down
voltage of the varistor—and their conductivity define the performance of the varistor at high currents
in the upturn region of the current–voltage characteristics [30]. Previous studies showed that some
dopants have a significant effect on the pre-break-down and the upturn current–voltage characteristics
of varistors even with minute amounts of additives. For example, in very small amounts, aluminum
is a potential dopant for increasing the conductivity of the ZnO grains and enhancing the varistor’s
performance at high currents [31–34]. Various physicochemical properties of ZnO nanostructures can
be strongly affected by the presence of deep and shallow defect-related in-gap states, which depend on
the material’s growth conditions in a way that is still far from being understood. Thus, a relationship
or the effect of the dopant on the electrical properties of ZnO varistors needs to be studied.

However, to the best of our knowledge, the effect of nanocrystals on the characteristics of bulk
ZnO varistors and their correlation have not been reported. Therefore, in this work, we studied
the effect of increasing the fine crystal amount in the bulk-ZnO varistor on the electrical properties.
The variation in the breakdown field (EB) versus fine crystal content is well studied. The electrical
conductivity of the bulk and mixed phase ZnO was investigated. The activation energy versus ZnO
fine crystal amount was determined. The structure and morphology were characterized by using XRD
and FE-SEM techniques.

2. Experimental Details

2.1. Preparation

The experiment was started with raw ZnO (Sigma-Aldrich ZnO powder, <5 µm particle size,
99.9%) with an average crystallite size of 273 nm and particle size of 2214 nm. In advance, ZnO powder
was milled (using RETSCH-Planetary Ball milling PM400) for several hours to obtain fine crystals with
a size of 144 nm. Then, the samples were prepared by mixing the raw powders with these fine crystals
in determined percentages of 0.0, 5, 10, 30, 50, 75, and 100%, using the conventional solid-state reaction
method. The obtained mixture was then calcined for 900 ◦C in air for 12 h. The as-obtained powder
was then pressed into a disk (diameter, 1.0 cm, and thickness, 0.3 cm). These disks were sintered for
10 h at 1000 ◦C in air. The disks were then cooled down to room temperature. The densities of the bulk
samples were measured in terms of volume and weight.

2.2. Characterizations

Microstructure analysis of the obtained products was performed using an X-ray diffractometer
(XRD-Philips Type PW 1710, Amsterdam, The Netherlands) with CuKα radiation of 1.5406 Å.
The surface morphologies were studied using FE-SEM (FE-SEM-Model JEOL JMS-7000, Peabody,
MA, USA). The I–V characteristics were measured with a Keithley meter (Model 6517, Beaverton,
OR, USA), DC power supply of 5.0 kV, and digital multimeter. The products were polished well and
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inserted into copper electrodes. The current was measured relative to the applied voltage at room
temperature. For the electrical contacts, high-quality silver paste was used on the sample surfaces.
Then, electrical resistivity (ρ = (R`/A)) as a function of the temperature measurements was determined
in the range of 300–620 K, and the electrical conductivity was calculated (σ = (1/ρ)). The values of
electrical conductivity were used to calculate the activation energy of the considered samples.

3. Results and Discussion

3.1. Structural Analysis of ZnO Nanomaterials

The XRD patterns (Figure 1a–f) show that all the samples exhibited a hexagonal wurtzite crystal
structure; no other impurity lines can be observed, implying that the ZnO fine crystal content was 100%.
The standard peaks of ZnO (100), (002), (111), (102), (110), (103), (200), and (112) are observed [35–37].
To further confirm whether the ZnO fine crystals were localized for ZnO in the cell, the lattice parameters
of the samples were calculated using c = 2d(002), a= d((100))/(Cos30) and are listed in Table 1. However,
we could not find any significant changes in the lattice parameters a and c with the addition of ZnO
fine crystals. The values ranging from 3.20 to 3.22 Å for the lattice parameter a and 5.145 and 5.17Å for
the c parameter are in agreement with the previous data based on ZnO ceramics [36,38]. Additionally,
the average crystallite size Dhkl was calculated using Scherer’s equation [28]:

D_hkl = kλ/(∆θ cosθ) (1)

where λ is the X-ray wavelength (λ = 1.5418Å), ∆θ is the half maximum line width, θ is the Bragg
angle, and k is a constant (k = 0.9 for this type of ceramic). The average crystallite size (D(111)) against
the percentage of fine crystal content for all the samples is listed in Table 1. It is clear that D(111) was
reduced with the addition of fine crystals into the bulk up to 100% with 10% fluctuation. The values of
average crystallite size range from 143 to 273 nm for fully raw powder (0.0% sample).
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Table 1. Lattice parameters, and average crystallite and particle sizes for ZnO mixed samples.

Fine Crystal
Percent

Lattice Parameters Crystallite Size
(nm)

Particle Size
(nm)A (Å) C (Å)

0 3.203 5.145 273 2214
5 3.214 5.149 163 1572

10 3.223 5.163 143 1277
30 3.226 5.170 153 1450
50 3.222 5.159 154 1623
75 3.222 5.166 173 2040
100 3.224 5.171 174 1750

FE-SEM images for the mixed powder are shown in Figure 2a–f. In the raw powder product,
the shape of the grains was quite dissimilar, and there was a precipitation of grains on the main grains.
With the incorporation of fine crystals, the shape and average size of the grains changed but they
were still uniformly distributed on the original particles. With the further increase in the fine crystal
content, the original particles appeared with a larger size and were connected to each other. These fine
crystals may be responsible for a good link between the grains and the homogenous distribution
within the matrix. Generally, the particles appeared with two different sizes: micro- and nano-size.
The micro-sized particles belong to the bulk ZnO phase, while the nano-sized ones belong to the fine
crystal phase.
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Figure 2. FE-SEM images of samples; (a) bulk-ZnO, (b) 10%, (c) 30%, (d) 50%, (e) 75%, and (f) 100% of
fine crystals.

The average particle size (D) can be determined from the lineal intercept method using the
equation D = (1.56 L)/MN, where L is the random line length, M is the magnification, and N is the
number of grain boundaries intercepted by the lines on the micrograph [34]. The average particle
size, listed in Table 1, ranged from 1277 to 2214 nm, which is eight times higher than the crystallite
size obtained from XRD analysis. This variation can be explained by the FE-SEM images showing the
plates containing multiple crystallites. The average crystallite and particle sizes are shown in Figure 3.
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3.2. I–V Characteristics

Figure 4 shows the I–V curves of the samples containing various concentrations of fine crystals.
It is obvious from the I–V curves of the bulk ZnO that there are three regions; the first region and third
one exhibit ohmic behavior, while the second region clearly shows nonlinear performance (upturn
region). Additionally, this second region (nonlinear region) disappears for samples with ZnO fine
crystals. This indicates that the potential barrier was completely deformed upon the addition of ZnO
fine crystals even at very low doping contents (5%). The electric current densities generally shifted to
higher values compared to those in the bulk sample. The breakdown field EB is defined by the field
applied when the current through the varistor is 1 mA/cm2 [39,40]. The variation in EB versus the fine
crystal content is shown in Figure 5. The value of EB decreased with the addition of ZnO fine crystals
up to a content of 10%, followed by an increase with a content of 100%, but its value was generally
lower than that for bulk-ZnO. This is, of course, logical and consistent with the absence of nonlinearity
in the I–V curves for all the mixed phases.

The I–V relationship of a varistor is described by the following [38,39]:

J = (E/C)α (2)

where J is the density of current, E is the electric field, C is a proportionality constant corresponding to the
resistance of the ohmic resistor (nonlinear resistance), and α is the nonlinear coefficient (α = logV/logI).

The value of α was calculated from the slope of the I–V curves plotted on a log scale, as described
in [6]. Figure 6 shows the variation of α with doping percentage in three regions.
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Figure 6. Nonlinear coefficient for ZnO samples.

Table 2 depicts a similar result. Apparently, the values of α decreased from 18.6 for the bulk
phase and remained close to 1.5 for the samples with fine crystal percentages in the second region,
which was also the same in the first and third regions. If one looks at the above results, one can see a
good correlation between the crystallite size and nonlinear coefficient. Evidently, a non-ohmic feature
of the bulk-ZnO varistor was suppressed upon adding ZnO fine crystals, shifting the breakdown fields
to lower values.

Table 2. Breakdown field and nonlinear coefficient for bulk and mixed ZnO samples.

Fine Crystal Content (%) EB (V/cm) α1 α2 α3

0 1580 0.53 18.6 1.36
5 62 1.00 1.39 2.06

10 51 1.08 1.32 1.88
30 170 1.11 1.16 1.93
50 173 1.07 1.13 2.60
75 113 0.83 0.99 1.76
100 410 0.35 2.75 1.62
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3.3. Electrical Conductivity

The electrical conductivity of the bulk and mixed phase ZnO was controlled by defects generated
at high temperatures and the presence of doping, whether they were specifically added to the materials
or not. During the cooling, defects may have migrated to the grain boundaries and disappeared
(intrinsic defects) or accumulated if the solubility limit (extrinsic defects) was reached.

This process of migration is slow and thermally activated, indicating that defects near grain
boundaries are efficiently eliminated at temperatures not much lower than the sintering temperature.
Thus, the concentration affects the electrical properties of the ZnO varistor [34]. The samples were
cooled to room temperature. Here, we assume that the defects were uniformly distributed in the
materials at room temperature, and their concentration was the same as the concentration at sintering
temperature, except for electrons and holes, which can easily spread at room temperature. Additionally,
the electrical conductivity (σ) across the first ohmic region at room temperature was calculated using
the relation J = σ E. The electrical conductivity for the ZnO varistors doped with ZnO fine crystals is
shown in Figure 7 and in Table 3. Except for the 10% sample, it can be seen that σ is improved by fine
crystal addition, in good agreement with the I–V measurements.
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Figure 7. Electrical conductivity at room temperature for ZnO samples.

Table 3. Electrical conductivity and activation energy of ZnO samples.

Fine Crystal
Content (%) σ (S/cm) Ea (meV)

(300–420 K)
Ea (meV)

(420–580 K)
Ea (meV)

(580–620 K)

0 2.20 × 10−7 128 374 815
5 1.02 × 10−6 81 232 614
10 2.11 × 10−5 33 38 398
30 8.00 × 10−6 53 210 265
50 2.06 × 10−6 17 228 447
75 4.31 × 10−6 55 242 534

100 2.47 × 10−7 164 369 811

The resistivity-versus-temperature measurements were performed at high-temperature ranges
(300–620 K). From the values of resistivity, the electrical conductivities were calculated and are shown
in Figure 8; the conductivity–temperature dependence was found to obey Athenian’s relation:

Σ = σ0 exp(−Ea)/(KB T) (3)

lnσ = lnσ0 − 11.594 Ea (eV)(1000/T) (4)
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where σ and σo are the electrical conductivities at temperatures T and To, respectively, and Ea

is the activation energy. Evidently, σ increases with temperature for all samples. Through the
temperature range chosen for the conductivity measurement, it was possible to differentiate the
regions corresponding to various activation energies. The profile was separated into three regions
according to the following temperature intervals: (300 K ≤ T ≤ 420 K), (420 K ≤ T ≤ 580 K), and (580 K ≤
T ≤ 620 K). The values of Ea were calculated from the slope of each plot by using the above logarithmic
relation. Figure 9 shows the activation energy versus the ZnO nanoparticle doping content across the
above three regions. Similar values are listed in Table 3. It is clear that Ea generally decreased with the
addition of fine crystals up to 5%, followed by an increase upon increasing the fine crystal content to
100%. However, the values of Ea remain lower than those of the bulk ZnO sample.
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Decreasing the activation energy will decrease both the potential barrier and band gap.
The interesting point here is that the values of Ea for the bulk-ZnO sample, in the second and
third regions, are consistent with those obtained for the 100% fine crystal sample (Ea = 128, 374, and 815
meV for the bulk sample, and 164, 369, and 811 meV for the 100% sample).

As compared to numerous previous investigations [41,42] based on microphase ZnO varistors,
Ea varied between 500 and 1300 meV at high temperatures (T > 673 K) and was less than 100 meV at low
temperatures (T > 373 K). These values are comparable to the data obtained for ZnO nanocrystalline
compounds (Ea = 570 meV) [41,42]. Furthermore, the behavior of Ea with the addition of ZnO fine
crystals is similar to that of the grain size (Figure 2b).
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Based on the above results, the probability of the ZnO fine crystals moving into the grain
boundaries is considered to be very high at the sintering temperature. The nanosized crystals are able
to localize at the edge of the grain and help in creating some other sensitive inter-grain conduction
paths. The conduction paths can work in parallel [1,43] over the grain boundary and entirely deform
the potential barrier that builds up between the grains. This is in good agreement with the I–V
characteristics, where the linear behavior for the ZnO varistor is established. By contrast, a good
correlation between the behaviors of the grain size, nonlinear coefficient, breakdown field, and
activation energy with ZnO fine crystal addition can be reported.

Generally, the variations in the nature of the grain boundary and arrangement are well expected.
In previous work, by measuring large numbers of individual grain boundaries, Einzinger et al. [44]
reported that there can be considerable variation in the breakdown voltage from one boundary to
another. They also showed that some boundaries were ohmic and some were nonlinear, while others
were insulating. These results indicated above revealed that varistor properties closely depend on the
microstructure features.

3.4. Discussion

Various efforts have made to present the fact that physiochemical properties of ZnO nanostructures
can be strongly affected by the presence of deep and shallow defect-related in-gap states, which depend
on the material’s growth conditions. However, controlling the conductivity in ZnO has remained a
major concern [45,46]. Even relatively small concentrations of native point defects and impurities
(down to 10−14 cm−3 or 0.01 ppm) can significantly affect the electrical and optical properties of
semiconductors [47–50]. Therefore, understanding the role of native point defects (i.e., vacancies,
interstitials, and antisites) and the incorporation of impurities is key for controlling the conductivity
in ZnO. For a long time, it has been postulated that the unintentional n-type conductivity in ZnO is
caused by the presence of oxygen vacancies or zinc interstitials [51–53]. However, recent state-of-the-art
density functional calculations corroborated by optically detected electron paramagnetic resonance
measurements on high quality ZnO crystals have demonstrated that this attribution to native defects
cannot be correct [54–60]. It has been shown that oxygen vacancies are actually deep donors and cannot
contribute to n-type conductivity [56,59,60]. In addition, it was found that the other point defects
(e.g., Zn interstitials and Zn antisites) are also unlikely causes of the observed n-type conductivity in
as-grown ZnO crystals [57,58]. Instead, the cause would be related to the unintentional incorporation
of impurities that act as shallow donors, such as hydrogen, which is present in almost all growth and
processing environments [61,62].

4. Conclusions

In summary, the structure, I–V characteristics, and electrical conductivity dependence temperature
of a bulk ZnO varistor modified with nanosized crystals of less than 200 nm are well studied, and
their relationship has been established. It was observed that only average crystallite and particle
sizes were affected by the addition of ZnO fine crystals; however, the hexagonal wurtzite structure of
bulk ZnO ceramics remained unchanged. Different varistors were prepared with the bulk ZnO and
bulk-mixed fine crystals of ZnO, and the electrical measurements of the varistors were performed
under different conditions. As seen in the I–V characteristics, a linear behavior for mixed ZnO was
observed. The non-linear region, breakdown field, and activation energy were found to decrease with
the addition of ZnO fine crystals up to 10%, and then increased upon a further increase in fine crystals.
However, the electrical conductivity measured at room temperature was improved and exhibited
values higher than that of bulk ZnO. The values of the nonlinear coefficient decreased from 18.6 to
1.5 for the samples mixed with the fine crystals. Activation energy values of 128, 374, and 815 meV
for the bulk sample and 164, 369, and 811 meV for the samples that contained 100% fine crystals for
the three temperature regions of 300–420, 420–580, and 580–620 K, respectively, were obtained. Thus,
nanosized crystals at grain boundaries of ZnO ceramics can fully deform the potential barriers of ZnO
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varistors. The results obtained in this work might be helpful in elucidating the role of dopants in the
nanoregime and establish the relationship between electrical and microstructural properties, which is a
key requirement for a ZnO varistor.
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