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Abstract: The influence of the anchoring forces on the Freedericksz transition in twisted ferronematics
simultaneously subjected to magnetic and laser fields is studied in this work. Using the elastic
continuum theory and Gouchen model for molecular anchoring on the cell support plates, the critical
field and the saturation field were calculated as a function of the laser intensity and anchoring
strength for two types of ferronematics based on 5CB and CCN-37 liquid crystals.
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1. Introduction

Initially developed for the display industry as LCDs, where they seem to have reached
their maximum potential, liquid crystals (LC) have now been reinvented due to the discovery of
nanomaterials leading to new systems such as QLED (Quantum dot display) or OLED (Organic led).
These technologies are consequences of years of research into nanoparticle properties. In LC research
fields, many studies have been performed on magnetic nanoparticle dispersions in nematic phases,
called ferronematics [1–12]. There is also interest in other particles and their effect on the molecular
order of the host [13–31]. Usually, research works have focused on the phenomena which occur inside
the system, and less work has focused on its edges. This has led to a loss of information regarding the
parameters that are affected by the boundary conditions. In this manuscript, we present the influence
of boundary anchoring forces on the critical and saturation fields of magnetic Freedericksz transitions,
also considering the effect of the laser radiation used for observation.

When a liquid crystal is subjected to external stimuli (such as electric magnetic or laser fields),
a molecular reorientation occurs. This is the Freedericksz transition, and the minimum value of the
field intensity when this phenomenon appears is called the critical field. The field value at which all
the molecules are reoriented according to the field direction and their magnetic or electric anisotropy
is called the saturation field. These field values were calculated for two nematic liquid crystals used as
hosts for magnetic nanoparticles: 5CB (4-Cyano-4’-pentylbiphenyl), which has a positive magnetic
anisotropy, and CCN-37 (4α,4’α-propylheptyl- 1α,1’α-bicyclohexyl-4β-carbonitrile), for which magnetic
anisotropy is negative.

For a ferronematic composite, we consider rod-like magnetic nanoparticles. Burylov&Co [9,13]
presented a detailed method to describe the liquid crystal molecule anchoring on ferromagnetic
particles and calculated the interaction energy between these particles and the nematic host. A similar
method can be used for ferroelectric particles or for any other long microparticle suspensions in LC.
In our previous experimental research performed on ferromagnetic particles such as CoFe3O4 [30], we
found that magnetic nanoparticles gather together, forming chains (about 2 µm length) when mixed
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in nematics; thus, the use of cylinder magnetic particles for theoretical characterization is feasible.
The proposed model in this paper will therefore consider a nematic liquid crystal, with cylindrical
ferroparticles inserted in it, confined between two solid walls. When applying the elastic continuum
theory [32], we should take into account all the interactions in this system: the elastic interaction
between molecules, the interaction between nanoparticles and LC molecules, the interaction with the
external field and (usually neglected in other papers) the interaction with the surface.

According to Rapini and Papoular’s model [33], the surface anchoring energy of LC molecules on
the boundary solid walls is

FS =
1
2

SAsin2θ0 (1)

where A is the anchoring strength, θ0 is is the angle between the direction of easy axe and nematic
director and S is area of the contact surface between the nematic sample and the solid support.

Several years later, Guochen and collaborators [34] found a more complex formula for the
surface energy:

FS =
1
2

SAsin2θ0

(
1 + ξsin2θ0

)
(2)

where ξ is a parameter found by the authors to be −0.20. Considering this formula and Burylov’s
theory for the interaction between the ferromagnetic nanoparticles and nematic host, critical and
saturation fields were calculated and their dependencies of anchoring strength were plotted. For the
experimental evaluation of the Freedericksz transition, a laser beam is used to detect the molecular
reorientation. Depending on the crystal anisotropy and on the external field orientation, this laser beam
may either increase or decrease the critical values by inducing a secondary Freedericksz transition.
As can be seen from this manuscript, the laser beam’s influence on these values can be significant if a
high-intensity ray is used.

2. Theoretical Considerations

Using the surface anchoring energy given in [34], we can determine the free energy density of a
ferronematic subjected to a magnetic and a laser field confined between two solid walls:

F = S
∫ +d

−d
fvdz + 2FS (3)

where
fv = fv1 + fv2 + fv3 + fv4 + fv5 (4)

is the free energy density in the bulk of the system, while the second term represents the anchoring
energy on the solid edges.

For a proper evaluation of each term, the system must be established. A liquid crystal composite
with ferromagnetic particles is confined between two solid walls, previously prepared for planar
alignment. To obtain the twisted configuration, the rubbing directions on the plates are perpendicular
to each other, meaning that the molecules rotate around the Oz axes with an angle of ϕ that increases
from 0 (on the bottom plate) to π/2 (on the top one). In the absence of any external field (magnetic
or laser), the ferromagnetic nanoparticles gather in long chains parallel with the nematic molecules’
long axes (Figure 1a), as shown in previous research [2,12]. When a magnetic field is applied to the
Oz direction, it acts both on nematic and ferroparticles. If a positive anisotropy liquid crystal is used,
the LC-molecules tend to follow the field direction and a distortion angle θ is created with the Oxy
plane. The value of the distortion angle depends on the field intensity: it tends to zero if the field
magnitude is equal to the critical threshold for the Freedericksz transition, and it reaches its maximum
value when the field intensity is equal to the saturation field. After this value, no other variation of θ

occurs. On the other side, the field action on the ferroparticle is intense and the ferromagnetic chains
are aligned parallel to the applied field. However, the anchoring forces between the LC-molecules
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and inserted particles prevent this alignment, and another distortion angle (β) appears between the
ferromagnetic chain and Oz axis. A laser beam must be sent through the sample to show the refractive
index variation induced by the molecular director reorientation. If the laser intensity is sufficiently
high, it can also affect the molecular orientation and thus the Freedericksz transition. To simplify
the theoretical model, we consider the laser effect included in the same distortion angles (θ and β);
these variables are discussed in the following part of this paper. Finally, we may conclude that when
all the external stimuli are applied, a stable configuration is obtained, as represented in Figure 1b.

In Equation (4), the term fv1 is the liquid crystal’s free energy contribution from the intermolecular
elastic interaction.

fv1 =
1
2

K1 (∇~n)2 +
1
2

K2 (~n∇×~n)2 +
1
2

K3 [~n× (∇×~n)]2 (5)

where K1 ,K2 , K3 are the splay, twist and bend elastic constant, respectively.
The second term,

fv2 = −1
2

µ−1
0 χa

(
~B~n
)2

, (6)

represents the free energy density of the action of the magnetic field ~B on liquid crystal molecules,
where µ0 is permeability of free space and χa is the magnetic anisotropy.

The term denoted by fv3 is the free energy density of the magnetic field’s action on
nanoparticles [14].

fv3 = − f Ms~m~B (7)

where f is the volumic fraction of the magnetic particles, Ms is the saturation magnetization of the
nanoparticle substance and ~m is the unit vector of the ferromagnetic nanoparticles.

By fv4, we denote the free energy density of the molecular interaction with inserted
nanoparticles [9,13].

fv4 =
W f

a
(~m~n)2 (8)

where W is the surface density of the anisotropic part of the interfacial energy of the nanoparticle
nematic boundary and a is the ferromagnetic nanoparticle’s diameter.

Finally, fv5 is the free energy density due to the interaction with the electromagnetic field given
by Pieranski in [35] and discussed in [36]. Unlike the cited reference, we used θ as the angle between
the molecular director and the solid walls instead of the angle made by molecular director with the
laser wave vector.

fv5 = −I
n0ne√

n2
0 cos2 θ + n2

e sin2 θ
(9)

where n0 is the ordinary refractive index and ne is the extraordinary refractive index. I is the mean
volume density of the electromagnetic energy of the laser beam. The connection with the laser beam
intensity J is J = cI, where c is the light speed in free space.

The twisted ferronematic is considered to be confined between two identical solid walls, parallel to
the Oxy plane, placed at z = −d and z = d. The applied field, ~B, is parallel to the Oz axis. The nematic
director~n and the magnetic moment unit vector ~m are characterized by the polar angles θ, β and the
azimuthal angles (the twist angles) ϕ and γ, respectively (Figure 1). The boundary conditions are
ϕ = 0 for z = −d and ϕ = π/2 for z = d.
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Figure 1. Molecular orientation in a twist subjected to a magnetic field B and to a laser field with wave
vector k and electric component E.

In the presence of a distorting magnetic field, these angles are changed, with different values for
different z coordinates, and so the two vectors have the following components:

nx = cos θcosϕ mx = sin βcosγ

ny = cos θ sin ϕ my = sin β sin γ

nz = sin θ mz = cos β

(10)

where β and θ angles appear as a result of the interaction of magnetic nanoparticles with liquid
crystal molecules.

Considering the geometry given in Figure 1, Equations (5)–(8) become

fv1 =
1
2

(
K1cos2θ + K3sin2θ

)
θ̇2 +

1
2

cos2θ
(

K2cos2θ + K3sin2θ
)

ϕ̇2 (11)

where θ̇ = dθ/dz and ϕ̇ = dϕ/dz.

fv2 = − χa

2µ0
B2sin2θ (12)

fv3 = −Ms f B cos β (13)

fv4 = f
W
a
(− cos θ cos ϕ sin β cos γ− cos θ sin ϕ sin β sin γ + sin θ cos β)2 (14)

From the Euler–Lagrange equation for γ, we obtain

d
dz

(
∂ fv

∂γ̇

)
− ∂ fv

∂γ
= 0 (15)

where γ̇ = dγ/dz; thus, we get γ = ϕ. The free energy density term depending on β is therefore

fβ =
f W
a

sin2 (θ − β)−Ms f B cos β (16)

The second Euler–Lagrange equation only considers the term depending on β, so the free energy
density term depending on β becomes

d
dz

(
∂ fβ

∂β̇

)
−

∂ fβ

∂β
= 0 (17)

where β̇ = dβ/dz.
From Equation (17), we obtain

sin β =
W

aMsB
sin 2 (θ − β) (18)
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Taking into account the magnitude orders for Ms, W and a ( Ms = 104 A/m, B > 10−3 T,
W = 5× 10−9 N/m and a = 10−8 m) [9,36], β is very small, and so

fβ =
f W
a

sin2θ −Ms f B (19)

The Euler–Lagrange equations for ϕ and θ have the following prime integrals:

cos2θ
(

K2cos2θ + K3sin2θ
)

ϕ̇ = C1 (20)

1
2
(
K1cos2θ + K3sin2θ

)
θ̇2 − 1

2 cos2θ
(
K2cos2θ + K3sin2θ

)
ϕ̇2

+ 1
2

(
χa
µ0

B2 − 2 f W
a

)
sin2θ + I n0ne√

n2
0 cos2 θ+n2

e sin2 θ
= C2

(21)

where C1 and C2 are constant for any θ and ϕ and can be evaluated from boundary conditions.

3. Critical Field

When the magnetic field is just above the critical field, the deviation angle θ is very small; thus,
by using a proper approximation, the prime integral of ϕ given in Equation (20) becomes

K2 ϕ̇ = C1 (22)

Considering the twisted nematic configuration, with ϕ = 0 , at z = −d , and ϕ = π/2 at z = d,
we get

ϕ =
π

4

( z
d
+ 1
)

(23)

Considering θ to be small, we then obtain

I
n0ne√

n2
0 cos2 θ + n2

e sin2 θ
= Ine

(
1− N1

2
sin2 θ +

3
8

N2
1 sin4 θ

)
(24)

where

N1 =
n2

e

n2
0
− 1 (25)

The other prime integral is

1
2
(
K1cos2θ + K3sin2θ

)
θ̇2 − 1

2 cos2θ
(
K2cos2θ + K3sin2θ

) (
π
4d
)2

+ 1
2

(
χa
µ0

B2 − 2 f W
a

)
sin2θ + Ine

(
1− N1

2 sin2 θ + 3
8 N2

1 sin4 θ
)
= C2

(26)

Since C2 is constant, it has the same value for every θ. We can evaluate it in center of the cell
where (z = 0) θ (0) = θm and θ̇ = 0; thus, we obtain

C2 = − 1
2 cos2θm

(
K2cos2θm + K3sin2θm

) (
π
4d
)2

+ 1
2

(
χa
µ0

B2 − 2 f W
a

)
sin2θm

+Ine

(
1− N1

2 sin2 θm + 3
8 N2

1 sin4 θm

) (27)

From Equation (26), we obtain

dθ

dz
=

√
Z (θ, θm)

g (θ)
(28)
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where

Z (θ, θm) = − 1
2
[
K2
(
cos4θm − cos4θ

)
+ K3

(
cos2θmsin2θm − cos2θsin2θ

)] (
π
4d
)2

+
(

χa
µ0

B2 − 2 f W
a

) (
sin2θm − sin2θ

)
+Ine

N1
2

[
−
(
sin2 θm − sin2 θ

)
+ 3

4 N1

(
sin4 θm − sin4 θ

)] (29)

and
g (θ) =

1
2

(
K1cos2θ + K3sin2θ

)
(30)

After integration, we get

d =

θm∫
θ0

√
g (θ)

Z
(
θ, θ̇
)dθ (31)

We denote

sin λ =
sin θ

sin θm

(
sin λ0 =

sin θ0

sin θm

)
(32)

and so we get

dθ =
sin θm

√
1− sin2λ√

1− sin2θmsin2λ
dλ (33)

Thus, Equation (31) becomes

d =

π/2∫
λ0

√
K1 + (K3 − K1) sin2θmsin2λ

Y (λ, θm)
× dλ√

1− sin2θmsin2λ
(34)

where
Y (λ, θm) = K2

[
2− sin2θm

(
1 + sin2λ

)] (
π
4d
)2

−K3
[
1− sin2θm

(
1 + sin2λ

)] (
π
4d
)2

+
(

χa
µ0

B2 − 2 f W
a

)
+In2N1

[
−1 + 3

4 N1
(
1 + sin2 λ

)
sin2 θm

] (35)

For the Freedericksz transition, we have θm → 0 and we obtain

π

2
− λ0 =

d√
K1

√
(2K2 − K3)

( π

4d

)2
+

(
χa

µ0
B2

c −
2 f W

a

)
− IN1ne (36)

tan λ0 = cot

[
d√
K1

√
(2K2 − K3)

( π

4d

)2
+

(
χa

µ0
B2

c −
2 f W

a

)
− IN1ne

]
(37)

where Bc is the critical field for the Freedericksz transition.
We use the boundary conditions [35](

K1cos2θo + K3sin2θ0

) (dθ

dz

)∣∣∣∣
z=±d

= A sin θ0 cos θ0

(
1 + 2ξsin2θ0

)
(38)

so (
dθ

dz

)∣∣∣∣
z=±d

=
A sin θ0 cos θ0

(
1 + 2ξ sin2 θ0

)
K1 + (K3 − K1) sin2 θ0

(39)

and from Equation (28), we obtain

(
dθ

dz

)∣∣∣∣
z=±d

=

√
Z (θ0, θm)

g (θ0)
(40)
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From Equations (39) and (40) we get√
Z (θ0, θm)

g (θ0)
=

A sin θ0 cos θ0
(
1 + 2ξsin2θ0

)
K1 + (K3 − K1) sin2θ0

(41)

Using λ0 from Equation (32), Equation (41) becomes

sin λ0
√

1− sin2λ0sin2θm√
K1 + (K3 − K1) sin2λ0sin2θm

= cos λ0

√
Y (λ0, θm) (42)

At the Freedericksz transition limit, the deviation angle is small—so θm → 0—and we get

tan λ0 =

√
K1

A

√
(2K2 − K3)

( π

4d

)2
+

(
χa

µ0
B2

c −
2 f W

a

)
− IN1ne (43)

From Equations (37) and (43), we obtain an equation from which the critical field can be calculated:

cot
Ed√
K1

=

√
K 1

A
E (44)

where

E =

√
(2K2 − K3)

( π

4d

)2
+

(
χa

µ0
B2

c −
2 f W

a

)
− IN1ne. (45)

4. Saturation Field

When the applied field is much higher than the critical one, with weak anchoring on the solid
walls, complete molecular reorientation is achieved. The minimum field for which this orientation
appears is called the saturation field. In this case, θ → π/2, so we get

C1 = cos2θ
(

K2cos2θ + K3sin2θ
)

ϕ̇ = 0 (46)

and

I
n0ne√

n2
0 cos2 θ + n2

e sin2 θ
= In0

(
1 +

N2

2
cos2 θ +

3N2
2

8
cos4 θ

)
) (47)

where

N2 = 1−
n2

0
n2

e
(48)

In this case, a prime integral for θ is

1
2
(
K1cos2θ + K3sin2θ

)
θ̇2 + 1

2

(
χa
µ0

B2 − f W
a

)
sin2θ+

+In0

(
1 + N2

2 cos2 θ +
3N2

2
8 cos4 θ

)
= C2

(49)

As performed in the previous case, we can evaluate C2 in the center of the cell where z = 0;
we have θ (0) = θm and θ̇ = 0. Thus, we get

1
2

(
χa

µ0
B2 − 2 f W

a

)
sin2θm + In0

(
1 +

N2

2
cos2 θm +

3N2
2

8
cos4 θm

)
= C2 (50)
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With this value, Equation (49) gives

dθ

dz
=

√
Z1 (θ, θm)

g (θ)
(51)

where
Z1 (θ, θm) =

1
2

(
χa
µ0

B2 − 2 f W
a

) (
cos2θ − cos2θm

)
+ In0 N2

2

[(
cos2 θ − cos2 θm

)
+ 3N2

4
(
cos4 θ − cos4 θm

)] (52)

so

d =
∫ θm

θ0

√
g (θ)

Z1 (θ, θm)
dθ (53)

We change the variable θ into η by denoting

cos η =
cos θm

cos θ

(
cos η0 =

cos θm

cos θ0

)
(54)

and we get

d =
∫ η0

0

√√√√√ K3 + (K1 − K2)
cos2 θm
cos2 η(

χa
µ0

B2 − 2 f W
a

)
− IN2n0

[
1 + 3

4 N2 cos2 θm

(
1 + 1

cos2 η

)] × dλ√
cos2 η − cos2θm

(55)

For θm → π/2, we get

d =
1
2

√
K3√(

χa
µ0

B2
s −

2 f W
a

)
− IN2n0

ln
1 + sin η0

1− sin η0
(56)

and so
sin η0 = tanh

dF
2
√

K3
(57)

where

F =

√(
χa

µ0
B2

s −
2 f W

a

)
− IN2n0 (58)

Considering Equation (51),

(
dθ

dz

)∣∣∣∣
z=±d

=

√
Z1 (θ0, θm)

g (θ0)
(59)

and using Equation (39), we get

A sin θ0 cos θ0
(
1 + 2ξsin2θ0

)
K3 + (K1 − K2) cos2 θ0

=

√
Z1 (θ0, θm)

g (θ0)
(60)

Using η0 from (47), Equation (53) becomes

A
√

1− cos2θm
cos2η0

[
1 + 2ξ

(
1− cos2θm

cos2η0

)]
1

cos η0√
K3 + (K1 − K2)

cos2 θm
cos2 η0

=
√

G (η0, θm) (61)
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where

G (η0, θm) =

(
1

cos2η0
− 1
){(

χa

µ0
B2 − 2 f W

a

)
− IN2n0

[
1 +

3
4

(
1 +

1
cos2 η

)
cos2 θm

]}
(62)

Using θm → π/2, we get

sin η0 =
A (1 + 2ξ)

F
√

K3
(63)

From Equations (57) and (63), we get

coth
dF

2
√

K3
=

√
K3F

A (1 + 2ξ)
(64)

Thus, from Equation (64), we can evaluate the saturation field Bs using Equations (58) for the
F function.

As magnetic nanoparticles, we used W = 5× 10−9 N/m, a = 10−8 m. The volumetric fraction
was taken as f = 0.1% and the cell thickness was 2d = 200 µm. We chose an electromagnetic energy
density in the range 10−3 –10−4 J/m3. For the studied configuration, the electric field component of
the laser beam was parallel to the glass plate (Figure 1).

The liquid crystals considered as hosts for the magnetic nanoparticles were chosen for their
different magnetic anisotropy values. As can be seen from Table 1, 5CB had positive values for
magnetic anisotropy, while CCN-37 had negative anisotropy.

Table 1. Material parameters for nematic compounds 5CB and CCN-37 estimated from the results
given in [32,37].

Constants 5CB CCN-37

χa 1.46× 10−6 −0.95× 10−7

K1 6.2 pN 4.6 pN
K2 3.9 pN 4.1 pN
K3 8.2 pN 9.3 pN
n0 1.544 1.5
ne 1.736 1.53

5. Results and Discussions

For the 5CB host ferronematic, which has both positive magnetic and dielectric anisotropies,
the obtained plots are given in Figures 2 and 3.
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Figure 2. Critical field for ferromagnetic nanoparticle suspensions in 5CB: (a) the critical field versus
anchoring strength plot and (b) the critical field versus laser intensity.
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Figure 3. Saturation field for ferromagnetic nanoparticle suspensions in 5CB.

As can be seen from Figure 2a,b, there is a large increase of the critical field with the increase of
the laser beam intensity. The Freedericksz transition can be experimentally observed by a laser beam
crossing through the sample. If the laser beam intensity is sufficiently high, its electric component may
induce an electrical Freedericksz transition, opposed to the one induced by the applied magnetic field.
Thus, when the laser intensity is increased, a higher magnetic field is required to obtain the molecular
orientation, so the critical field increases.

In Figure 3 , we observe a slow increase of the saturation field with the laser beam intensity.
This effect can be explained by the high magnetic field values at which this effect appears. Thus,
the laser intensity cannot induce an electric Freedericksz transition which is sufficiently strong to
compensate the magnetic transition produced by the applied field, especially when some of the
molecules are attached on ferromagnetic nanoparticles which are more easily aligned by the field.
A much larger effort is required for the magnetic field to compensate the anchoring strength, so an
increase of the saturation field with the anchoring energy is observed. The distance between Bs lines
is larger for higher values of anchoring strength.

For the CCN-37 nematic, which has a negative magnetic anisotropy, the magnetic field applied
must be parallel to the nematic director. For a twisted alignment, the field must be parallel to the solid
walls and the laser perpendicular to the walls, as shown in Figure 4. Thus, some changes are required
when evaluating the free energy density component related to the interaction between the nematic
molecules and magnetic field. Thus,

fv2 =
χa

2µ0
B2 cos2 θ =

χa

2µ0
B2
(

1− sin2 θ
)
=

χa

2µ0
B2 − χa

2µ0
B2 sin2 θ =

χa

2µ0
B2 +

|χa|
2µ0

B2 sin2 θ (65)

Figure 4. Molecular orientation of ferronematic and laser beam when CCN-37 is used as host.

From this equation, we shall only keep the second term because the first one is constant and has
no influence on Euler–Lagrange equations.
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For the interaction of the nematic molecules with the inserted ferroparticles, the free energy
density becomes

fv4 =
f W
a

(~m~n)2 =
f W
a

cos2 (θ − β) =
f W
a

[
1− sin2 (θ − β)

]
(66)

Using the same procedure and writing the Euler–Lagrange equation for β, we finally obtain

f W
a

(~m~n)2 =
f W
a
− f W

a
sin2 θ (67)

The critical fields and saturation field can be written as a function of E given by Equation (45)
and as a function of F given by Equation (51); where we must replace χa with |χa| and f w/a with
− f w/a.

The plots obtained with these parameters are given in Figure 5. As can be observed from
Figure 6a,b, the critical field decreases with the laser beam intensity because of this “competition”
between the magnetic effect on the nanoparticle and the electric and magnetic effect on liquid crystal
molecules. As with all the previous cases, the saturation field is strongly affected by the anchoring
energy (Figure 5) because complete reorientation is harder to achieve for rigid anchoring.
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Figure 5. Saturation field for the CCN-37 based ferronematic.
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Figure 6. Critical field for the CCN-37 based ferronematic: (a) the critical field versus anchoring
strength plot and (b) the critical field versus laser intensity.

6. Conclusions

The influences of the anchoring forces and laser beam are significant on the critical field and
saturation field in ferronematics and should not be neglected. By choosing the proper combination
of the liquid crystal anisotropy, inserted nanoparticles and surface anchoring, the critical field can be
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considerably decreased. The saturation field can also be adjusted by the light intensity used for LC-cell
commands. Thus, the molecular reorientation can be efficiently controlled, and the efficacy of LCs for
applications such as in LCDs or phase modulators can be improved.
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