

Supplementary Materials Degradation-Induced Actuation in Oxidation-Responsive Liquid Crystal Elastomers

Mahjabeen Javed, Seelay Tasmim, Mustafa K. Abdelrahman, Cedric P. Ambulo and Taylor H. Ware *

Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080 USA

* Correspondence: taylor.ware@utdallas.edu

Figure S1. Uniaxial strip after being in an oxidative media for 5 days.

Figure S2. Dynamic mechanical analysis (DMA) replicates for samples after degradation in 20% H₂O₂ for 1, 2, and 7 day(s) (n = 3).

Figure S3. DMA replicates for samples after degradation in 3% H₂O₂ for 1, 2, and 7 day(s) (n = 3).

Figure S4. Effects of degradation on the viscoelastic properties of LCEs in control and hydrolytic solutions. **(a)** Storage Modulus (E') as a function of temperature for films exposed to PBS for 0, 1, 2 and 7 days. **(b)** Respective curve of tan delta as a function of temperature. **(c)** Storage Modulus (E') as a function of temperature for films exposed to NaOH solution for 0, 1, 2 and 7 days. **(d)** Respective curve of tan delta as a function of temperature. **(e)** Mass Change (%) vs. Time (Days) plotted to evaluate mass changes in specimens 1-mm thick.