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Abstract: The templated preparation of hollow nanomaterials has received broad attention. However,
many templates are expansive, environmentally-harmful, along with involving a complicated
preparation process. Herein, we present a cost-effective, environmentally friendly and simple
approach for making carbonaceous particles which have been demonstrated as efficient templates for
preparing hollow nanospheres. Natural biomass, such as wheat or corn, is used as the source only,
and thus other chemicals are not needed. The carbonaceous particles possess abundant hydroxyl
and carboxyl groups, enabling them to efficiently adsorb metal ions in solution. The prepared SnO2

hollow spheres were used in a lithium-ion (Li-ion) battery anode, and as the sensing layer of a gas
sensor, respectively. After charge–discharge for 200 times at a rate of 1 C, the anodes exhibit a stable
capacity of 500 mAh g−1, and a Coulombic efficiency as high as 99%. In addition, the gas sensor based
on the SnO2 hollow spheres shows a high sensing performance towards ethanol gas. It is expected
that the presented natural biomass-derived particles and their green preparation method will find
more applications for broad research fields, including energy-storage and sensors.
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1. Introduction

Since the discovery of fullerenes and carbon nanotubes, carbonaceous materials have attracted
considerable attention, owing to their fascinating properties and applications [1–3]. Among them,
particles as an important member of the carbonaceous family have received more and more interest
because of their wide applications in many fields, such as lubricants and catalyst supports [4–6].
In addition, carbonaceous particles can be applied as templates for fabricating a large variety of hollow
and porous spheres, including metal oxides (e.g., ZnO, TiO2, SnO2, CeO2, etc.) which could greatly
enhance their performance in electronic devices [7–12]. Recently, the preparation of carbonaceous
particles, and further exploring their potential applications, have attracted extensive attention [13,14].
Several methods have been investigated, e.g., chemical vapor deposition, a hydrothermal approach,
the carbonization of polymers and pyrolysis [15,16]. Regarding to the environment issues, “green”
approaches have been of great interest. Several efforts focus on using environmentally friendly reagents
and reducing the preparation steps. For instance, Zhang et al. reported a multiscale recombined
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porous Si/C composites, prepared via a simple Ag-assisted chemical etching process [17]. In their
study, chitosan was chosen as the carbon source, which was nontoxic and biodegradable.

Xiao and co-workers showed a convenient and green strategy for the synthesis of highly
luminescent and water-soluble carbon dots, by carbonizing precursors, such as Bovine serum albumin
nanoparticles, in water solution [18]. Interestingly, Hao et al. developed a one-pot green synthesis of
luminescent carbon dots and carbon-coated metal (Au, Pt, Pd) particles by using the vitamin B2 salt as
the carbon source and reducing agent [19]. In addition, Ren et al. in situ fabricated Ru, Fe-containing
zinc–trimesic acid metal organic framework fibers, then they were able to get the RuFe@Fe2O3 particles
confined into mesoporous carbon nanofibers by using one-step pyrolysis [20]. The thermal treatment
and chemicals used for reactions were simplified significantly. Similar green approaches were also
widely studied [21]. In spite of those achievements, high temperature, expensive instruments and
chemicals, and/or toxic reagents are commonly required. Taking the commonly used polymethyl
methacrylate (PMMA) particle template as an example, it is usually prepared through a polymerization
route [22]. Usually, methyl methacrylate is used as the polymer monomer, while an initiator (such
as potassium peroxodisulfate) and an emulgator (sodium dodecyl benzene sulfonate) are also added
into an emulsion system. Under controlled polymerization temperature and stirring speed, PMMA
particles are obtained. As seen, the procedure is high-cost, and multiple, complicated steps with
poisonous chemicals are needed. Currently, it requires a preparation route of template particles, which
is cost-effective, simple and environmentally friendly.

Herein, we present a natural biomass-derived approach that is cost-effective, environmentally
friendly and simple for the preparation of carbonaceous particles. The particles were further used as
templates to prepare hollow metal oxide spheres. In our investigation, natural wheat and corn were
used as our carbon source, respectively, as shown in Figure 1. Compared to the conventional PMMA
templates and their preparation approach indicated above, the presented route is completely “green”,
in which other chemicals are unnecessary during the hydrothermal synthesis. The carbon sources are
low-cost; and the route is simple without complicated procedures and instruments. The carbonaceous
particles were used as sacrificing templates for the fabrication of porous and hollow SnO2, which is a
representative transition metal oxide. The SnO2 spheres-based Li-ion battery anodes exhibit a stable
capacity of 500 mAh g−1 when cycling at a rate of 1 C for 200 times, along with a stable Coulombic
efficiency of about 99%. In addition, the sensor based on the SnO2 possesses a good gas-sensing
performance towards ethanol gas.
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2. Experimental

2.1. Reagents and Solutions

All chemicals used in the study were of analytical grade, and were used without further purification.
The wheat and corn were purchased from the China Oil and Foodstuffs Corporation (COFCO Corp.).
Tin(IV) chloride (SnCl4·5H2O) and chemicals used in sensors and batteries were bought from the
Sinopharm Chemical Reagent Company.

2.2. Preparation of the Carbonaceous Particles

Firstly, wheat or corn was mechanically milled into powders (ca. 500 mesh). Then, 0.1 g of
the wheat powders (or corn powders) were dispersed in 40 mL of distilled water by ultrasonication.
The solution was transferred into a Teflon-sealed autoclave and maintained at 180 ◦C for 6 h. After
the autoclave was cooled down naturally to room temperature, the products were collected by using
centrifugation, and washed several times with distilled water. At last, the products were dried in an
oven at 60 ◦C for further use.

2.3. Preparation of the Hollow SnO2 Spheres

In order to prepare the porous hollow metal oxides by using the synthesized particles, 0.1 g of
the carbonaceous particles were dispersed in 10 mL of ethanol by ultrasonication. Then, 1 mmol
of SnCl4·5H2O was dissolved into the mixture obtained above. After being left statically at room
temperature for 24 h, the precipitate was collected by centrifugation. The samples were put into an
oven for drying at 50 ◦C. At last, the dried powders were annealed in a furnace at 500 ◦C for 1 h to
remove the carbonaceous particles.

2.4. Characterizations

The samples were characterized on a Sirion−200 field emission scanning electron microscopy
(FESEM, FEI, USA), a H-800 transmission electron microscopy (TEM, Hitachi, Japan) and an ESCALab
MK II X-ray photoelectron spectrometer (XPS, Thermo Scientific, USA). The SEM was operated at
an accelerating voltage of 5 kV. All of the samples were dispersed on Si substrates. For the TEM
characterizations, the samples were dispersed in ethanol, then dropped onto Cu grids for further
observation. The accelerating voltage of TEM was 200 kV. During XPS measurements, the binding
energies in the XPS spectrum were calibrated by using that of C 1s (284.6 eV). The Fourier transform
infrared (FTIR) spectrum was recorded on a IR-440 spectrometer (Shimadzu, Japan) from 4000 to
500 cm−1. The samples (powders) were mixed with KBr, then ground and pressed into a small piece
for measurement.

2.5. Energy-Storage Performance Study

The electrochemical properties of the prepared SnO2 hollow spheres were measured by using a
CR2032 coin-cell system. The electrode prepared by mixing SnO2 (80 wt%), carbon black (10 wt%) and
polyvinylidene fluoride binder (10 wt%) dissolved in N-methyl pyrrolidinone to form a slurry, which
was then coated onto a Cu foil and dried in a vacuum at 110 ◦C. The substrates were tailored into circular
pieces with a 14 mm-diameter. The SnO2 anodes were set as working electrodes. A microporous
polypropylene film was employed in the coin cell as the separator. Li foil was used as the counter
electrode. Cells were assembled in a Super 1220/750 glovebox (Mikrouna, Germany) filled with Ar
gas (O2 and H2O < 0.01 ppm). 1 M of LiPF6 in a mixture of EC/DEC (1:1 by volume) was used as
the electrolyte. The tests were conducted through the galvanostatic discharge–charge method on a
CT-4008 battery tester (Shenzhen Neware Technology Co., Ltd, China).
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2.6. Gas Sensor Fabrication and Gas-Sensing Property Measurements

At first, the gas sensors using the obtained SnO2 as the sensing layer were constructed. The SnO2

spheres were dispersed in ethanol by using ultrasonication for 10 min. Then, the slurry was coated
onto the surface of an Al2O3 tube in which there was a Ni–Cr wire used as a heater. The sensors
were dried at 50 ◦C under vacuum. Before each gas-sensing measurement, the sensors were aged
at working conditions for two days, so that a stable and reliable performance could be obtained.
During the gas-sensing tests, ethanol gas at concentrations of 10 ppm, 20 ppm, 30 ppm, 40 ppm,
150 ppm, 200 ppm and 250 ppm were employed as targets, respectively. All gas-sensing measurements
were conducted at the same working temperature of gas sensors (∼200 ◦C) and humidity of 60% RH.
The tests were conducted by using a computer-controlled gas detecting system in which a Keithley
6487 picoameter/voltage sourcemeter was used as both the current recorder and power source.

3. Results and Discussion

The FESEM images of the samples prepared by using wheat and corn are presented in Figure 2a,c,
respectively. The wheat- and corn-derived samples are similar in morphology, which is spherical with
a narrow size distribution from 650 to 800 nm. This is confirmed by the TEM photographs, as shown in
Figure 2b,d. The surface state and functional groups of particles were investigated by using XPS and
FTIR. Taking the wheat-derived carbonaceous particle as an example, in the XPS spectrum (Figure 3a),
the peaks at 284.6 eV, 285.9 eV, 287.1 eV and 288.5 eV are assigned to the carbon atoms bonded to
graphitized carbon, C–OH groups, C–O–C and C=O groups, and O=C–O groups, respectively [23–25].
The surface of the carbonaceous particles is hydrophilic, because of the existence of the C–OH and
O=C–O groups, and thus the products are unnecessary to be further functionalized before their use
as templates to adsorb metal ions. Moreover, aromatization under the hydrothermal condition is
demonstrated. It is further supported by the FTIR spectrum (Figure 3b), in which the carbonyl and
hydroxyl groups were detected. In Figure 3b, the peak at 3413 cm−1 is assigned to the O–H; while the
ones at 1308 cm−1 and 1271 cm−1 correspond to the C–H group. Moreover, the peaks at 1700 cm−1 and
1608 cm−1 are indexed to the C=O and C=C [26,27], respectively, which are in good agreement with
the XPS results shown above.
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prepared from wheat.

On the basis of the study on XPS and FTIR spectra, the formation mechanism of carbonaceous
particles derived from natural biomasses is explained as follows: Firstly, both wheat and corn
are consisting of starch dominantly together, with a few saccharine components. Among various
components in wheat, this starch and maltose are overwhelming, with percentages of ca. 75% and
8%, respectively. Under hydrothermal conditions, starch and saccharine are released into the solution.
The dehydration and aromatization would occur, which are similar to the glucose [28,29], resulting in
the formation of carbonaceous particles. In order to confirm this, pure starch and maltose were also
employed as raw materials. The hydrothermal conditions are the same as those for wheat and corn.
Figure 2e,f show the FESEM images of samples prepared from pure starch and maltose, respectively.
They are close to the ones synthesized from wheat, supporting the suggested mechanism that starch
and saccharine components would contribute to the formation of the carbonaceous particles.

Figure 4 shows the morphology and structure of the SnO2 hollow spheres prepared by using the
wheat-derived carbonaceous particle templates. It should be indicated that those SnO2 spheres are
presented as a demonstrating example. Under the same preparation procedures, similar SnO2 spheres
were also obtained by using the corn-derived carbonaceous particles. In Figure 4a, the samples exhibit
a porous spherical morphology with a diameter of about 300 nm. Compared to the carbonaceous
templates, the size of the hollow spheres is small. It is ascribed to the shrink of the carbonaceous
particles during annealing, which is similar to some other reports [30,31]. The shell of the hollow
spheres is assembled by nanoparticles, as seen from the high-magnification FESEM image (Figure 4b).
The particles are about 20 nm-large without obvious morphology. In the TEM image (Figure 4c),
the samples display a hollow structure with a shell thickness of ca. 20 nm, which is close to the size of the
particles. It indicates that the shell of the spheres is assembled by monolayered nanoparticles. In order
to confirm if there is some carbon residual within the SnO2 spheres, we have used the pure carbonaceous
particles (without adsorbing Sn(IV) ions) for calcination under the same annealing condition as the
SnO2 spheres. After the thermal treatment, no residual in the ceramic boat was observed. Therefore,
it is considered that there is no residual carbon in the SnO2 spheres after calcination.

Figure 5 shows the charge–discharge performance of the SnO2 hollow spheres-based anodes.
In Figure 5a, the plateaus at the discharge and charge curves are ascribed to the lithiation and
delithiation. On the basis of the reaction mechanism of SnO2, an alloying–dealloying mechanism
would be dominated from the second cycle [32]. Cycling at a rate of 1 C (1 C equals to the complete
charge or discharge of theoretical capacity of 782 mAh g−1 in 1 h), the SnO2 anode exhibits a high
first-cycle capacity of about 1200 mAh g−1, which is ascribed to the formation of an unstable solid
electrolyte interphase (SEI) [33,34]. In Figure 5b, during the subsequent cycles, the capacity decreases
gradually. However, from the 30th cycle, the capacity becomes stable, indicating the formation of
a stable SEI. After cycling for 200 times, the capacity remains exceeding 500 mAh g−1, along with a
high Coulombic efficiency of about 99%, indicating a good reversibility. This is ascribed to the hollow
structure which enables the volume-change to be accommodated [35,36].
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Figure 6 displays the gas-sensing responses of the sensor towards ethanol gases. In Figure 6a,
once the ethanol gas was injected into the detecting chamber, the current increased rapidly, indicating a
short response time, which was commonly defined as the time for the sensor to achieve 90% of the total
resistance-change. As seen from the real-time sensing curves, the response times of the sensor are about
8.5 s, 6.5 s, 4.5 s and 5 s for 10 ppm, 20 ppm, 30 ppm and 40 ppm ethanol gases, respectively. The fast
response is attributed to the porous and hollow morphology and the nanospheres assembled by small
nanoparticles. As for the sensing mechanism, this is explained as follows: In air ambient conditions,
the oxygen is adsorbed on SnO2, forming some negative ionic species, like O− and O2−. Because of
that, the electrons in SnO2 would be captured, resulting in a high resistance. When ethanol gas is
injected into the chamber, it will be oxidized by those ionic species on SnO2, releasing the electrons
and exhibiting a low resistance. In contrast, when the fresh gas was introduced to replace the target
ethanol gas, the reversible reactions happened, resulting in the recovery of the current. For instance,
for detecting 20 ppm ethanol, the resistance of the fresh gas sensor was 2.73 × 106 Ω. While the target
gas was injected into the chamber, the resistance decreased, and reached to about 0.21 × 106 Ω at the
equilibrium stage.

In Figure 6b, the gas response is defined as the ratio of the current in pure air (Iair) and in the gas
mixture (Igas) at a constant voltage, which also reflects the change of resistances. In our investigation,
the gas responses are about 7, 13, 22 and 39, when the concentrations of ethanol gases are 10 ppm,
20 ppm, 30 ppm and 40 ppm, respectively. The sensing response is competitive with some other
materials, such as the TiO2/SnO2 nanofibers [37] and micro-/mesoporous SnO2 spheres prepared by
a solvothermal method [38]. It is ascribed to the nanosphere with a hollow and porous structure
which provides a good contact and numerous sensing sites for gas molecules. In addition, during
target gas injecting and releasing, the diffusion kinetics of the hollow spheres is fast, enabling short
response and recovery times. Moreover, it is noted that the response curve is not in a linear profile.
It is ascribed to this that the gas concentrations in the measurements would be not in the linear region
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of the sensing performance. Since that, some relatively higher concentration gases were detected,
as shown in Figure 6c,d. The responses of the sensor towards 200 ppm and 250 ppm gases become
similar, indicating a saturation trend. Furthermore, compared to the sensing responses towards lower
concentrations (10–40 ppm), it indicates that the sensor has a linear sensing range towards ethanol
from about 30 to 150 ppm. It is expected that further investigations on humidity and stability would
also be a benefit for the practical applications of the presented gas sensor.
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4. Conclusions

In summary, we present a cost-effective, environmentally friendly, and simple approach for
preparing carbonaceous particles by using natural biomasses including wheat and corn. The particles
can be easily used as templates for constructing hollow nanomaterials for energy-storage and
gas-sensing applications. The abundant hydroxyl and carboxyl groups on the carbonaceous particles
enable them to be suitable templates for the preparation of hollow nanostructures. The SnO2 hollow
spheres were prepared by using the carbonaceous particles as a demonstrating example. The SnO2

anode-based Li-ion batteries exhibit a stable capacity of 500 mAh g−1, and a Coulombic efficiency as
high as 99% after charge–discharge 200 times at a rate of 1 C. In addition, the SnO2-based gas sensor
shows high response and short responding time towards ethanol. We believe that the presented wheat
or corn-derived method for preparing carbonaceous particles could be potentially extended to many
other natural biomasses. In addition, it is expected that the prepared carbonaceous particles are able to
find more applications for a broad set of research fields.
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