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Abstract: In order to determine the influence of halogen substituent on the self-assembly of the
6,9-diamino-2-ethoxyacridinium cations and 3-halobenzoate anions in the crystals formed from
ethacridine and halobenzoic acids, the series of ethacridinium meta-halobenzoates dihydrates:
ethacridinium 3-chlorobenzoate dihydrate (1), ethacridinium 3-bromobenzoate dihydrate (2),
and ethacridinium 3-iodobenzoate dihydrate (3), were synthesized and structurally characterized.
Single-crystal X-ray diffraction measurements showed that the title compounds crystallized in the
monoclinic P21/c space group and are isostructural. In the crystals of title compounds, the ions and
water molecules interact via N–H· · ·O, O–H· · ·O and C–H· · ·O hydrogen bonds and π–π stacking
interactions to produce blocks. The relationship between the distance X· · ·O between the halogen
atom (X=Cl, Br, I) of meta-halobenzoate anion and the O-atom from the ethoxy group of cation from
neighbouring blocks and crystal packing is observed in the crystals of the title compounds.

Keywords: ethacridine; halobenzoic acids; intermolecular interactions; hydrogen bonds; π–π stacking
interactions; X· · ·O halogen bond; crystal packing

1. Introduction

Drug products consist of pharmaceutical ingredients (APIs) and excipients that improve the
physical properties of the APIs such as the solubility, stability, pharmacodynamic and pharmacokinetic
properties of the product [1–4]. An example of an API is 6,9-diamino-2-ethoxyacridine (ethacridine),
a component of a commonly-used drug known as acrinol (ethacridine lactate monohydrate; trade
name: rivanol). Acrinol is a bacteriostatic antiseptic drug, which is usually used to treat suppurating
infections and infections of the mouth and throat [5,6]. Furthermore, ethacridine lactate monohydrate
is also used illegally as a highly effective abortifacient for second-trimester pregnancy termination [7].

Synthetic studies of the API derivatives provide new ways to improve their physical properties.
In this regard, crystal engineering is of highly importance as it allows the precise design of compounds
with desired properties. The APIs are often crystallized in a multicomponent system to explore their
ability to form a variety of intermolecular interactions, such as: hydrogen bonds (O–H· · ·O, N–H· · ·O,
C–H· · ·O,C–H· · ·π) [8–14], halogen bonds (X· · ·X, X· · ·O/N/S) [15–18], π–π [19–21], lp· · ·π [22,23].
Among them, halogen bonding is a particularly interesting interaction as it is often crucial in the
self-assembly and molecular recognition [24–27]. Halogen bonding is an attractive non-covalent
interaction that occurs between a halogen atom and a Lewis base and its directionality and strength
are often comparable to those of hydrogen bonds. The strength of such interaction increases in the
order of Cl < Br < I.
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A search of the Cambridge Structural Database (CSD version 5.40, update August 2019) shows
that there are only 3 crystal structures containing ethacridine: 6,9-diamino-2-ethoxyacridinium lactate
monohydrate (REFCODE: BIMJUC) [28], and two polymorphs of 6,9-diamino-2-ethoxyacridinium
lactate (REFCODES: COVSUD, COVZOE) [29].

In view of the above, as a continuation of our previous studies concerning multicomponent crystals
formed from acridines and benzoic acids [30–32], here we describe the synthesis and crystal structure
of 6,9-diamino-2-ethoxyacridinium (ethacridinium) meta-halobenzoates dihydrates: ethacridinium
3-chlorobenzoate (1), ethacridinium 3-bromobenzoate (2), and ethacridinium 3-iodobenzoate (3)
(Scheme 1). We report a detailed structural analysis of intermolecular interactions featured in these
crystals, with an emphasis on those that involve halogen atoms.
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2. Materials and Methods

All the chemicals were purchased from Sigma-Aldrich and used without further purification.
Melting points were determined on a Buchi 565 capillary apparatus and were uncorrected.

2.1. Synthesis of Compounds 1–3

(a) 6,9-Diamino-2-ethoxyacridinium 3-chlorobenzoate dihydrate (1)

6,9-Diamino-2-ethoxyacridine-DL-lactate monohydrate (0.05 g, 0.138 mmol) and 3-chlorobenzoic
acid (0.022 g, 0.138 mmol) were dissolved in 25 cm3 of an ethanol/water mixture (2:3 v/v) and boiled
for 40 minutes. The solution was allowed to evaporate for a few days to give yellow crystals of 1
(m.p. = 263.6 ◦C).

(b) 6,9-Diamino-2-ethoxyacridinium 3-bromobenzoate dihydrate (2)

6,9-Diamino-2-ethoxyacridine-DL-lactate monohydrate (0.05 g, 0.138 mmol) and 3-bromobenzoic
acid (0.028 g, 0.138 mmol) were dissolved in 25 cm3 of an ethanol/water mixture (2:3 v/v) and boiled
for 40 minutes. The clear solution was allowed to evaporate for a few days to give yellow crystals of 2
(m.p. = 271.1 ◦C).
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(c) 6,9-Diamino-2-ethoxyacridinium 3-iodobenzoate dihydrate (3)

6,9-Diamino-2-ethoxyacridine-DL-lactate monohydrate (0.05 g, 0.138 mmol) and 3-iodobenzoic
acid (0.034 g, 0.138 mmol) were dissolved in 25 cm3 of an ethanol/water mixture (2:3 v/v) and boiled
for 40 minutes. The solution was allowed to evaporate for a few days to give yellow crystals of 3
(m.p. = 280.8 ◦C)

2.2. X-ray Measurements and Refinements

Good-quality single-crystal specimens of 1–3 were selected for X-ray diffraction experiments at T
= 295(2) K (Table 1). They were mounted with epoxy glue at the tip of glass capillaries. Diffraction
data were collected on an Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer with MoKα

(λ = 0.71073 Å) radiation. In all cases, the lattice parameters were obtained by least-squares fit to the
optimized setting angles of the reflections collected by means of CrysAlis CCD [33]. Data were reduced
using CrysAlis RED software [33] and applying multi-scan absorption corrections (empirical absorption
correction using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm). The
structural resolution procedure was carried out using the SHELX package [34]. The structures were
solved with direct methods that carried out refinements by full-matrix least-squares on F2 using the
SHELXL-2017/1 program [34]. All H-atoms bound to N-atoms were located on a difference Fourier
map and refined using a riding model, with N–H = 0.86 Å and Uiso(H) = 1.2Ueq(C). All H-atoms bound
to aromatic C-atoms were placed geometrically and refined using a riding model with C–H = 0.93 Å
and Uiso(H) = 1.2Ueq(C). All H-atoms from the methyl group were positioned geometrically and
refined using a riding model, with C–H = 0.96 Å and Uiso(H) = 1.5Ueq(C). All H-atoms from the water
molecules were positioned geometrically and refined using a riding model, with O–H = 0.85 Å and
Uiso(H) = 1.5Ueq(O) (DFIX command). All interactions and the Kitaigorodskii type of packing index
were calculated using the PLATON program [35]. The ORTEPII [36], PLUTO-78 [37] and Mercury [38]
programs were used to prepare the molecular graphics.

3. Results and Discussion

Single-crystal X-ray diffraction measurements show that the crystals of 1–3 crystallize in the
monoclinic P21/c space group with one unit of 6,9-diamino-2-ethoxyacridine cation, one unit of
3-halobenzoic acid anion and two water molecules (Figure 1 and Table 1). The title compounds
are isostructural with each other with the percentage of filled space equal to 67.4%, 67.3% and
66.6% for compounds 1–3 respectively (the Kitaigorodskii type of packing index), but they are not
isostructural with either 6,9-diamino-2-ethoxyacridinium lactate monohydrate (triclinic P-1 space
group) or 6,9-diamino-2-ethoxyacridinium lactate (triclinic P-1 or monoclinic C2/c space groups) [28,29].
In the crystals of compounds 1–3, the bond lengths and angles characterizing the geometry of the
ethoxyacridine skeleton [28,29] and 3-halobenzoate acid molecules [30] are typical of these groups of
compounds. The lengths of C–O bonds range from 1.245(5) to 1.256(5), indicating a proton transfer
occurring between the carboxylic group of meta-halobenzoic acid and 6,9-diamino-2-ethoxyacridine.
In the crystals of title compounds, the 6,9-diamino-2-ethoxyacridine cation interact with the
meta-halobenzoate anion through the N(9-amino)–H· · ·O(carboxy) hydrogen bond [d(H15· · ·O28) =

2.15–2.16 Å, and ∠(N15–H15· · ·O28) = 155–156◦]; whereas one water molecule interacts with both
the 6,9-diamino-2-ethoxyacridine cation and the meta-halobenzoate anion via N(acridine)–H· · ·O(water)

[d(H10· · ·O31) = 1.95Å, and ∠(N10–H10· · ·O31) = 176–178◦] and O(water)–H· · ·O(carboxy) [d(H31A· · ·O27)
= 1.85(4)–1.87(4) Å, and ∠(O31–H31A· · ·O27) = 163(4)–167(4)◦] hydrogen bonds respectively, to form a
centrosymmetric, cyclic heterohexamer bis[· · · cation· · ·water· · · anion· · · ] [39] (Table 2, Figure 2). This
heterohexamer is not observed in the crystal structures of 6,9-diamino-2-ethoxyacridinium lactate
monohydrate and 9-diamino-2-ethoxyacridinium lactate [28,29].
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Figure 1. Molecular structures of compounds 1–3 in (a–c), respectively, showing the atom-labelling
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Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres
of arbitrary radius.
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Table 1. Crystal data and structure refinement parameters for compounds 1–3.

Compound 1 2 3

Chemical formula C22H24ClN3O5 C22H24BrN3O5 C22H24IN3O5
Formula weight/g·mol−1 445.89 490.35 537.34

Crystal system monoclinic monoclinic monoclinic
Space group P21/c P21/c P21/c

a/Å 12.941(4) 13.0933(8) 13.4621(7)
b/Å 8.401(4) 8.3893(7) 8.3911(4)
c/Å 20.580(2) 20.565(5) 20.522(3)
α/◦ 90 90 90
β/◦ 101.475(3) 101.242(7) 100.263(5)
γ/◦ 90 90 90

V/Å3 2192.6(5) 2215.6(3) 2281.1(2)
Z 4 4 4

T/K 295(2) 295(2) 295(2)
λMo/Å 0.71073 0.71073 0.71073

ρcalc/g·cm−3 1.351 1.470 1.565
F(000) 936 1008 1080
µ/mm−1 0.213 1.894 1.441
θ range/◦ 3.35-25.00 3.17-25.00 3.35-25.00

Completness θ/% 99.7 99.8 99.8
Reflections collected 15401 14566 15803
Reflections unique 3855 [Rint = 0.0689] 3893 [Rint = 0.0881] 3999 [Rint = 0.0562]

Data/restraints/parameters 3855/6/293 3893/6/293 3999 /6/293
Goodness of fit on F2 1.007 0.984 1.009

Final R1 value (I>2σ(I)) 0.0593 0.0539 0.0409
Final wR2 value (I>2σ(I)) 0.1464 0.1010 0.0771

Final R1 value
(all data) 0.1114 0.1320 0.0779

Final wR2 value
(all data) 0.1821 0.1263 0.0900

CCDC number 1968938 1968940 1968939

These heterohexames feature π–π stacking formed between ethacridinium cations with
centroid· · · centroid distance [d(Cg· · ·Cg)] ranging from 3.583(2) to 3.773(2) Å, and weak
C(acridine)–H· · ·O(carboxy) hydrogen bonds between a C1 atom of ethacridinium cation and an O-atom
from the carboxylate group of meta-halobenzoate anion are also observed. The distances between
donor and acceptor in all the aforementioned interactions are similar, as is the distance between the
mean planes of ethacridine skeletons (3.42–3.43 Å) (Table 2, Figure 2).

An analysis of interactions between the neighbouring heterohexamers indicates that the π–π
stacking interactions, with d(Cg· · ·Cg) distance ranging from 3.583 to 3.771 Å, can be observed
between aromatic rings of ethacridine moieties. As a result, the π–π stacked columns of the
6,9-diamino-2-ethoxyacridinium cation are formed along the crystallographic [0 1 0] direction. The
distance between the mean planes of ethacridine skeletons of adjacent heterohexamers in these
columns is 3.47, 3.44 and 3.42 Å, for compounds 1–3 respectively. The adjacent heterohexamers are
also linked by an O(water)–H· · ·O(water) hydrogen bond between water molecules and through an
O(carboxy)–H· · ·O(water) hydrogen bond between water molecules and meta-halobenzoate anions to
produce blocks along the c-axis (Table 2). As a consequence, we can observe a cyclic synthon [· · · (O
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3 

N(10)–H(10)···O(31) 0.86 1.95 2.807(4) 176 
N(15)–H(15A)···O(28)i 0.86 2.16 2.964(4) 156 
N(15)–H(15B)···O(27) 0.86 2.13 2.948(4) 160 
N(16)–H(16A)···O(30) 0.86 2.19 3.031(5) 166 
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C(1)–H(1)···O(27) 0.93 2.54 3.455(4) 168 
Symmetry code: (i) 1−x, 1/2+y, 1/2−z; (ii) 1−x, 1/2+y ,3/2−z; (iii) 1−x, 1−y, 1−z; (iv) x, 3/2−y, 1/2+z. 

An analysis of interactions between the neighbouring heterohexamers indicates that the π–π 
stacking interactions, with d(Cg···Cg) distance ranging from 3.583 to 3.771 Å, can be observed 
between aromatic rings of ethacridine moieties. As a result, the π–π stacked columns of the 6,9-
diamino-2-ethoxyacridinium cation are formed along the crystallographic [0 1 0] direction. The 
distance between the mean planes of ethacridine skeletons of adjacent heterohexamers in these 
columns is 3.47, 3.44 and 3.42 Å, for compounds 1–3 respectively. The adjacent heterohexamers are 
also linked by an O(water)–H···O(water) hydrogen bond between water molecules and through an O(carboxy)–
H···O(water) hydrogen bond between water molecules and meta-halobenzoate anions to produce blocks 
along the c-axis (Table 2). As a consequence, we can observe a cyclic synthon [···(O     C O)–⋯H–
O–H⋯O–⋯H–O–H⋯O–H⋯] and a hydrogen-bonded supramolecular tape motif (Figure 3) [40–44].  C
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An analysis of interactions between the neighbouring heterohexamers indicates that the π–π 
stacking interactions, with d(Cg···Cg) distance ranging from 3.583 to 3.771 Å, can be observed 
between aromatic rings of ethacridine moieties. As a result, the π–π stacked columns of the 6,9-
diamino-2-ethoxyacridinium cation are formed along the crystallographic [0 1 0] direction. The 
distance between the mean planes of ethacridine skeletons of adjacent heterohexamers in these 
columns is 3.47, 3.44 and 3.42 Å, for compounds 1–3 respectively. The adjacent heterohexamers are 
also linked by an O(water)–H···O(water) hydrogen bond between water molecules and through an O(carboxy)–
H···O(water) hydrogen bond between water molecules and meta-halobenzoate anions to produce blocks 
along the c-axis (Table 2). As a consequence, we can observe a cyclic synthon [···(O     C O)–⋯H–
O–H⋯O–⋯H–O–H⋯O–H⋯] and a hydrogen-bonded supramolecular tape motif (Figure 3) [40–44].  

O)−· · ·H–O–H· · ·O−· · ·H–O–H· · ·O–H· · · ] and a hydrogen-bonded supramolecular tape motif
(Figure 3) [40–44].
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Table 2. Hydrogen bonds geometry for compounds 1–3.

Compound D–H· · ·A d(D–H) [Å] d(H· · ·A) [Å] d(D· · ·A) [Å] ∠D–H· · ·A (◦)

1

N(10)–H(10)· · ·O(31) 0.86 1.95 2.810(3) 178
N(15)–H(15A)· · ·O(28)i 0.86 2.16 2.957(3) 155
N(15) –H(15B)· · ·O(27) 0.86 2.13 2.960(3) 161
N(16)–H(16A)· · ·O(30) 0.86 2.17 3.016(4) 168
O(30)–H(30A)· · ·O(31)ii 0.84(3) 2.01(3) 2.824(4) 163(3)
O(30)–H(30B)· · ·O(28)iii 0.84(3) 2.00(3) 2.835(4) 177(7)
O(31)–H(31A)· · ·O(27)iv 0.84(3) 1.87(3) 2.689(3) 167(4)
O(31)–H(31B)· · ·O(28)iii 0.85(3) 1.94(3) 2.775(3) 169(3)

C(1)–H(1)· · ·O(27) 0.93 2.56 3.471(4) 167
Symmetry code: (i) 1−x,1/2+y,1/2-z; (ii) 1−x, 1/2+y, 3/2−z; (iii) 1−x, 1−y, 1−z; (iv) x, 3/2−y, 1/2+z.

2

N(10)–H(10)· · ·O(31) 0.86 1.95 2.813(4) 177
N(15)–H(15A)· · ·O(28)i 0.86 2.15 2.950(4) 156
N(15)–H(15B)· · ·O(27) 0.86 2.13 2.954(4) 160
N(16)–H(16A)· · ·O(30) 0.86 2.18 3.026(6) 168
O(30)–H(30A)· · ·O(31)ii 0.85(4) 1.98(4) 2.811(6) 167(4)
O(30)–H(30B)· · ·O(28)iii 0.86(3) 1.98(3) 2.835(5) 173(5)
O(31)–H(31A)· · ·O(27)iv 0.85(4) 1.85(4) 2.679(5) 163(5)
O(31)–H(31B)· · ·O(28)iii 0.85(4) 1.93(4) 2.763(5) 169(5)

C(1)–H(1)· · ·O(27) 0.93 2.55 3.465(5) 168
Symmetry code: (i) 1−x, 1/2+y, 1/2−z; (ii) 1−x, 1/2+y, 3/2−z; (iii) 1−x, 1−y, 1−z; (iv) x, 3/2−y,1/2+z.

3

N(10)–H(10)· · ·O(31) 0.86 1.95 2.807(4) 176
N(15)–H(15A)· · ·O(28)i 0.86 2.16 2.964(4) 156
N(15)–H(15B)· · ·O(27) 0.86 2.13 2.948(4) 160
N(16)–H(16A)· · ·O(30) 0.86 2.19 3.031(5) 166
O(30)–H(30A)· · ·O(31)ii 0.84(4) 2.00(4) 2.816(5) 165(4)
O(30)–H(30B)· · ·O(28)iii 0.83(3) 2.00(3) 2.830(5) 172(5)
O(31)–H(31A)· · ·O(27)iv 0.83(4) 1.87(4) 2.684(4) 164(4)
O(31)–H(31B)· · ·O(28)iii 0.83(3) 1.93(3) 2.757(4) 171(3)

C(1)–H(1)· · ·O(27) 0.93 2.54 3.455(4) 168
Symmetry code: (i) 1−x, 1/2+y, 1/2−z; (ii) 1−x, 1/2+y,3/2−z; (iii) 1−x, 1−y, 1−z; (iv) x, 3/2−y, 1/2+z.
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In these blocks, we can also observe the N(6-amino)–H· · ·O(carboxy) hydrogen bond between amino
group substituted on the carbon atom C6 of ethacridinium moiety and the O-atom from the carboxylate
group of anion (Figure 4). The distances between donor and acceptor atoms engaged in these hydrogen
bonds are similar in the crystals of compounds 1–3 (Table 2).
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In the packing of the crystals of title compounds, we can observe that distance between the halogen
atom substituted in the meta- position of the aromatic ring of acid and the O-atom from the ethoxy
group of cation [d(X· · ·O)] from neighbouring blocks decreases with decreasing electronegativity of the
halogen atom, and is d(Cl29· · ·O17) = 3.450(3) Å, d(Br29· · ·O17) = 3.418(3) Å and d(I29· · ·O17) = 3.408(3)
Å (Figure 4). It is longer than the sum of the van der Waals radii of chlorine and oxygen atoms (3.27 Å)
and bromine and oxygen atoms (3.37 Å); however, it is shorter than the sum of the van der Waals radii
of iodine and oxygen atoms (3.50 Å). As a result, the weak X· · ·O halogen bond is observed only in the
crystal of compound 3. At the same time, the distance between adjacent blocks increases with decreasing
d(X· · ·O) distance (the distance between the closest methyl groups from neighbouring blocks (distance
between C19· · ·C19 atoms) is 4.43, 4.52 and 4.77 Å for compounds 1–3, respectively) (Figure 4).

Other relationships are observed in isostructural unsolvated co-crystals formed from acridine
and meta-halobenzoic acids [30]. Due to the fact that in the crystals of these complexes the
solvent molecules are absent, acridine and meta-halobenzoic acids molecules are linked through
O(carboxy)–H· · ·N(acridine) and C(acridine)–H· · ·O(carboxy) hydrogen bonds to form centrosymmetric, cyclic
heterotetramers bis[· · · acridine · · · benzoic acid· · · ] [39]. The neighbouring heterotetramers are linked
via π–π stacking interactions between aromatic rings of acridine moieties, and C(acridine)–H· · ·O(carboxy)

and C(acridine)–H· · ·X hydrogen bonds and produce blocks. The geometrical parameters characterized
the aforementioned interactions (including the distance between the mean planes of adjacent acridine
skeletons of neighbouring heterotetramers equal to ca. 3,56 Å) are similar in all cases. However,
between neighbouring blocks X· · ·O contact occurs between the halogen atom and the O-atom from
the carboxy group of acids, and the d(X· · ·O) distance increases with the decreasing of electronegativity
of the halogen atom [d(Cl· · ·O) = 3.399(3) Å, d(Br· · ·O) = 3.415(3) Å and d(I· · ·O) = 3.468(3) Å], as does
the distance between neighbouring blocks. Simultaneously, the strength of the C(acid)–H· · ·X hydrogen
bond decreases, which also links the neighbouring blocks and the the Kitaigorodskii type of packing
index (with the percentage of filled space equal to 68.0, 67.9 and 67.4% for complexes formed from
3-chloro, 3-bromo and 3-iodobenzoic acid respectively).

4. Conclusions

Considering the above, we can conclude that type of halogen atom substituted in the meta-
position in the benzoate ion influences the crystal packing of the title compounds. The d(X· · ·O)
distance between the halogen atom substituted in the meta- position of the aromatic ring of acid and
the O-atom from the ethoxy group of cation from neighbouring blocks decreases with the decreasing
electronegativity of the halogen atom in the order 1 > 2 > 3, as does the distance between the mean
planes of adjacent acridine skeletons of neighbouring heterohexamers. At the same time, the distance
between adjacent blocks increases in the order 1 < 2 < 3, which explains the decreasing of the
Kitaigorodskii type of packing index of compound 3 by about 1% compared to the other compounds.
The weak X· · ·O halogen bond is observed only in the crystal of compound 3. This confirms the
general tendency that in multicomponent crystals formed from chloro- and bromo-substituted acids,
the molecules/ions of acid are hydrogen-bonded, whereas those formed from iodo-substituted acids
are halogen bonded [17–20,26–29].

Future studies are expected to confirm the conclusions that can be drawn from this research.
In order to determine the influence of other substituents in the benzoic acid molecule, such as -COOH,
-OH, -NH2 and -NO2 on the self-assembly processes, we plan to obtain other multicomponent crystals
formed from ethacridine and other mono- or poly- substituted benzoic acids.

The results of our research may be of practical importance from the crystal engineering point of
view for the design of new pharmaceutical multicomponent crystals formed from ethacridine or other
acridine derivatives.
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