
crystals

Article

Numerical Model Study of Multiple Dendrite Motion
Behavior in Melt Based on LBM-CA Method

Yu Bai, Yingming Wang, Shijie Zhang, Qi Wang and Ri Li *

Simulation Laboratory, School of Materials Science and Engineering, Hebei University of Technology,
Tianjin 300132, China; 201721803007@stu.hebut.edu.cn (Y.B.); 201731804057@stu.hebut.edu.cn (Y.W.);
201821803012@stu.hebut.edu.cn (S.Z.); 201831804007@stu.hebut.edu.cn (Q.W.)
* Correspondence: sdzllr@163.com

Received: 27 December 2019; Accepted: 25 January 2020; Published: 27 January 2020
����������
�������

Abstract: In this paper, a new method is proposed to solve the solute field of moving grains, and a
Cellular automaton (CA)-Lattice Boltzmann method (LBM)-Semi rebound format(Ladd) coupling
model which can accurately simulate the motion behavior of multiple dendrites is established.
The growth process of microstructure in the solidification process of Al-4.7% Cu alloy ingot was
calculated by Cellular automaton (CA) method, the momentum, heat, and mass transfer processes
were calculated by Lattice Boltzmann method (LBM), and the melt-dendrite sharp interface interaction
was treated by Ladd method. The reliability of the model is verified, and then the growth and
movement of single dendrite and multiple dendrites under the action of gravity field are simulated.
The simulation results show that the growth and movement mode of multiple dendrites are quite
different from that of single dendrite, which is shown in two aspects: (1) the original motion state
of dendrites is changed by the combination of flow field, which slows down the falling speed of
dendrites to a certain extent; (2) the fusion of solute field between dendrites changed the original
growth mode of boundary dendrites and increased their rotation speed.

Keywords: multi-dendrite motion; CA-LBM model; dendritic growth; natural convection; numerical
simulation

1. Introduction

During the solidification process of the alloy, the fine grains formed on the surface of the mold
will fall off, and the solidified dendrite arms will also be remelted and fractured, resulting in a large
number of free equiaxed dendrites in the liquid phase area, which will move under the action of natural
convection and gravity [1]. The movement and falling process of a large number of group grains not
only has an important influence on the formation of positive segregation at the top of ingot, A-type
and V-type segregation [2], but also is the main reason for the formation of triangular cone-shaped
negative segregation at the bottom of large ingot [3,4].Therefore, it is of great significance to add the
calculation of grain movement process into the numerical model of ingot macrosegregation to improve
the prediction accuracy.

At present, the phase field method is mostly used to simulate grain movement in the world.
In 2008, Do-Quang M et al. [5] used the phase field-virtual domain method to simulate the growth and
movement of single dendrite under the action of gravity. In 2012, karagadde and Bhattacharya [6]
used the enthalpy method (EF) to calculate the growth of dendrites, the volume of fluid method
(VOF) to calculate the movement behavior of dendrites, and the immersion boundary method (IBM)
to deal with the solid-liquid interface. The simulation results show that the multi dendrite growth
pattern is significantly different from that of the single dendrite. In 2013, Medvedev et al. [7] used
Phase Field-Lattice Boltzmann method (LBM) coupling model to calculate the dendrite growth and
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movement behavior of aluminum copper alloy under the action of shear flow and pipe flow. In 2015,
Rojas and Takaki [8] used a PF-LBM model to simulate the growth and movement of dendrites under
shear flow, and analyzed the effect of solution flow on the growth and movement of dendrites. In the
same year, Takaki et al. [9] added GPU technology to the program code, which greatly improved the
simulation efficiency and scale, and used the technology to simulate the settlement behavior of single
dendrite in the gravity field. In 2017, Qi et al. [10] proposed a new phase-field model incorporating
dendrite-melt two-phase flow, and modified the boundary layer of growth kinetics equation, so that
it can better reflect the relationship between the growth rate of dendrite tip and the flow direction
of fluid. In 2018, Takaki et al. [11] established a new phase field model to simulate the growth and
movement of multi-dendrite, and coupled this model with lattice Boltzmann to simulate the growth,
movement, collision, and growth behavior after bonding of multi-dendrite.

However, the grid of phase field method is very small and the amount of calculation is huge,
which greatly limits the number of equiaxed dendrites. It is impossible to simulate the solidification
process of ingots with a large number of equiaxed and columnar dendrites [12]. The Cellular automaton
(CA) method has a small amount of calculation and a fast calculation speed, and is undoubtedly more
suitable for calculating multi-dendritic motion behavior. Currently, only the work of Liu et al. [13]
used the CA method to calculate the moving dendrite. He can only simulate the settlement of a single
dendrite, and the dendrite cannot rotate, obviously this is different from the actual situation. This
paper improves the calculation accuracy of the concentration field and simulates the movement of
multiple dendrites.

In addition, the temperature, flow, and solute fields need to be calculated when simulating
dendrite motion in the melt. The LBM method developed in recent years can effectively calculate
the passage process of dendrites in the melt, so it has been widely used. This paper uses the LBM
method to calculate three fields. The dendrite in the melt must interact with the melt during the
movement. This article uses the Ladd method to deal with this effect, because the Ladd method
uniformly processes the solid phase and the liquid phase, so as to avoid the mass and momentum loss
caused by the solid phase node covering the liquid phase node in the process of dendrite movement.
However, the difficulty in dealing with the solid-liquid interaction lies in the calculation of the solute
field. The solute diffusion coefficient of the two phases is quite different, therefore it cannot directly
treat the two phases as a whole to deal with the boundary. Therefore, this paper presents a method to
deal with the solute field of multi grain movement, which realizes the calculation of solute field in the
real sense of dendrite movement.

2. Materials and Methods

In this paper, Al-4.7% Cu alloy is selected as the research object, and the physical parameters are
shown in Table 1.

Table 1. Physical properties of Al-4.7% Cu alloy.

Physical Parameter Symbol Value

Melting temperature Tm (K) 933.3
Liquidus temperature TL (K) 917
Solidus temperature TS (K) 821

Liquidus slope M (m·K/%) −3.44
Thermal diffusivity A (m2

·s−1) 2.7 × 10−7

Fluid viscosity N (m2
·s−1) 1.2 × 10−6

Diffusivity in liquid D (m2
·s−1) 3.0 × 10−9

Partition coefficient k 0.145
Liquid density P (kg·m−3) 2606
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2.1. CA Model

The solute equilibrium model (ZS model) proposed by Zhu [14] is used in this paper. The growth
driving force is the difference between the equilibrium crystallization concentration and the actual
liquid concentration at the interface. The actual liquid concentration CL can be calculated by LBM, and
the equilibrium crystallization concentration Ceq

L can be calculated by the following formula according
to the equilibrium crystallization theory:

Ceq
L = C0 + [TL − Teq

L + ΓK f (φ,θ0)]/m (1)

where C0 is the initial concentration of the alloy; m is the slope of the liquidus; TL is the actual
temperature of the interface; Teq

L is the liquidus temperature at the initial concentration of C0, Γ is
the Gibbs Thomson coefficient; K is the average curvature at the solid/liquid interface, f (φ,θ0) is the
anisotropic function of the interface energy. K can be calculated from the spatial distribution of the
interface solid phase ratio.

K = [(
∂ fS
∂x

)
2

+ (
∂ fS
∂y

)
2

]

−3/2

· [2
∂ fS
∂x

∂ fS
∂y

∂2 fS
∂x∂y

− (
∂ fS
∂x

)
2 ∂2 fS
∂y2 − (

∂ fS
∂y

)
2 ∂2 fS
∂x2 ] (2)

According to the Gibbs-Thomson formula, the interface energy anisotropy function in Equation
(1) can be expressed as:

f (φ,θ0) = Ψ(φ,θ0) +
∂2

∂φ2 Ψ(φ,θ0) = 1− δ cos[4(φ− θ0)] (3)

where δ = 15ε is the anisotropy coefficient (ε is the anisotropic strength of the interface energy),
ψ(φ,θ0) is the anisotropy function of the interface energy, φ is the angle between the normal direction
of the solid-liquid interface and the horizontal direction, and θ0 is the preferred growth direction. The
anisotropy function ψ(φ,θ0) and the growth angle φ can be calculated from Equations (4) and (5).

ψ(φ,θ0) = 1 + ε cos[4(φ− θ0)] (4)

φ =


cos−1[

∂ fS
∂x [(

∂ fS
∂x )

2
+ (

∂ fS
∂y )

2
]
−1/2

]
∂ fS
∂y ≥ 0

2π− cos−1[
∂ fS
∂x [(

∂ fS
∂x )

2
+ (

∂ fS
∂y )

2
]
−1/2

]
∂ fS
∂y < 0

(5)

When CL < Ceq
L , the solid fraction increment ∆ fs in a time step is calculated by the following formula:

∆ fS =
(Ceq

L −CL)

Ceq
L (1− k)

(6)

In order to partially eliminate anisotropy, this paper uses an improved eight-neighbor capture
method proposed by Zhu [15].

2.2. LBM Model

According to Boussinesq’s approximation, the effect of latent heat and solutes on the density
during the solidification process can be expressed by the following formula:

ρ = ρ0[1− βT(T − T0) − βC(C−C0)] (7)

where ρ0, T0, and C0 represent the initial density, temperature, and concentration of the liquid phase,
respectively, and T and C are the temperature and concentration of the liquid phase at the current
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moment. βT and βC are the volume expansion coefficients of temperature and concentration changes,
respectively. The resultant force of the fluid particles is:

F = gρ0[1− βT(T − T0) − βC(C−C0)] + (−ρ0g)
= gρ0[−βT(T − T0) − βC(C−C0)]

(8)

The distribution function of the flow field can be expressed as:

fi(x + ei∆t, t + ∆t) = fi(x, t) +
1
τ f

( f eq
i (x, t) − fi(x, t)) + Fi (9)

where Fi is the component force of the particle under the external force field in the i direction, and its
magnitude is expressed as:

Fi = (1−
1

2τ f
)ωi[3

ei − u
c2 + 9

ei · u
c4

]∆t · F (10)

whereωi is the weight coefficient in each direction, which represents the probability of particles moving
in different directions, which can be expressed as:

ωi =


4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8

(11)

The equilibrium distribution function and relaxation time of the flow field in Equation (9) are
respectively expressed as:

f eq
i (x, t) = ωiρ(1 + 3

ei · u
c2 +

9
2
(ei · u)

2

c4
−

3
2

u · u
c2 ) (12)

τ f = 3ν/(c2∆t) + 0.5 (13)

where ν is the dynamic viscosity of the fluid. The macroscopic density ρ and velocity u are obtained by
adding the distribution function.

ρ =
8∑

i=0

fi (14)

u = (
8∑

i=0

ei fi + F · ∆t/2)/ρ (15)

The distribution functions of temperature field and solute field are similar to those of flow field:

hi(x + ei∆t, t + ∆t) = hi(x, t) +
1
τα

(heq
i (x, t) − hi(x, t)) + Hi (16)

gi(x + ei∆t, t + ∆t) = gi(x, t) +
1
τD

(geq
i (x, t) − gi(x, t)) + Gi (17)

where hi(x, t) and gi(x, t) are the distribution functions of temperature field and solute field at the
position x at time t, respectively, and hi(x, t) and gi(x, t) represent the temperature field and the
equilibrium distribution function of the solute field, respectively defined as:

heq
i (x, t) = ωiT(1 + 3

ei · u
c2 +

9
2
(ei · u)

2

c4
−

3
2

u · u
c2 ) (18)
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geq
i (x, t) = ωiC(1 + 3

ei · u
c2 +

9
2
(ei · u)

2

c4
−

3
2

u · u
c2 ) (19)

The relaxation time τα in the temperature field and the relaxation time τD in the solute field can
be obtained by using the corresponding diffusion coefficients:

τα = 3α/(c2∆t) + 0.5 (20)

τD = 3D/(c2∆t) + 0.5 (21)

where α is a temperature diffusion coefficient, and D is a concentration diffusion coefficient. Macro
temperature and concentration are:

T =
8∑

i=0

hi(x, t); C =
8∑

i=0

gi(r, t) (22)

The source term Hi of the temperature field and the source term Gi of the concentration field can
be expressed as:

Hi = ωi∆T; Gi = ωi∆C (23)

In the formula, ∆T and ∆H respectively represent the latent heat released by the solidification of
the alloy and the excluded solutes.

2.3. Ladd Method to Calculate the Solid-liquid Interface Interaction Force

In Figure 1, xb is the particle boundary point, xl is the liquid phase lattice point of the boundary
node along the c−i direction, xs is the solid phase lattice point of the boundary node along the ci
direction, and ub is the particle velocity. The calculation formulas of xs and xb are:

xs = xl + ∆t · ci (24)

ub = Vb + Wb(xb − xc) (25)

where ∆t is the time step, Vb and Wb are the translational and rotational speeds, respectively, and xc is
the center of mass of the solid particles. The solid-liquid distribution functions at time t are fi(xl, t)
and f−i(xs, t). After ∆t/2 time, the two particles move to the boundary and collide. The distribution
function at this time is:

f
−i(xb, t + ∆t/2) = fi(xl, t) + 2ω−iρ

c−iub

c2
s

(26)

fi(xb, t + ∆t/2) = f
−i(xs, t) + 2ωiρ

ciub

c2
s

(27)
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Figure 1. Sketch map of half step rebound format.

After the ∆t/2 time, the fluid particles bounce to the corresponding lattice points respectively.
At this time, the distribution functions of the liquid phase and solid phase lattice points are:

f
−i(xl, t + ∆t) = f

−i(xb, t + ∆t/2) (28)
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fi(xs, t + ∆t) = fi(xb, t + ∆t/2) (29)

Force exerted by fluid particles on solid particles:

Fi =
∆x2

∆t

[
f−i

(
x f , t + ∆t

)
+ fi

(
x f , t

)
− fi(xs, t + ∆t) − f−i(xs, t)

]
ci (30)

The total force F on the solid particles is:

F =
∆x2

∆t

∑
xb

∑
i

[ f−i(x f , t + ∆t) + fi(x f , t) − fi(xs, t + ∆t) − f−i(xs, t)]ci (31)

The force moment on the solid particles is:

Tt =
∑
xb

Fxb(xb − xc) (32)

According to Newton’s second law, the translation speed and rotation speed of the grains can be
calculated respectively as:

V =
F + G

MS
dtW =

Tt

IS
dt (33)

where MS and IS are mass and moment of inertia, respectively, and G is the combined force of gravity
and buoyancy.

2.4. Processing of Solute Fields at Moving Boundaries

In order to accurately calculate the solute field during movement, a solute extrapolation method
for calculating the solute field at the moving boundary is proposed.

As shown in Figure 2, the white and black grid points are the liquid and solid grid points, the solid
ellipse is the position of the dendrite at the previous moment, the dotted ellipse is the current position.
The gray grid points are the covered liquid nodes because of dendrite movement. The concentration
CL of the covered liquid grid points will be distributed in a certain proportion, which is:

∆C1
L = A ·CL∆C2

L = B ·CL∆C3
L = C ·CL (34)
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∆C1
L,∆C2

L, and ∆C3
L respectively represent the concentration assigned to three lattice points along

the direction of dendrite movement. The distance between the lattice points is the grain movement
distance. A, B, and C are the distribution coefficients and satisfy the following relations:

A + B + C = 1A > B > C (35)
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In this paper, the undetermined coefficient method is used, and the distribution coefficients of
different proportions are used to calculate. Then the results are compared with the experimental
results of Liu’s single dendrite drop. The empirical values of A, B, and C are 0.7, 0.2, and 0.1,
respectively. The assigned concentration will be added to the three lattice points along the direction of
dendrite movement.

Cn
L = Cn

L + ∆Cn
L (36)

3. Verification

First, the accuracy of the Ladd method for processing moving boundaries is evaluated through
the settlement process of circular particles in an infinitely long pipe. Then, the accuracy of the solute
distribution model established in this paper is verified by calculating the solute field conservation of
the single dendrite in the moving state. The LBM model, the dendrite growth of CA model, and the
rationality of the single dendrite movement model have been confirmed in relevant researches [16,17],
so this article will not be described here.

3.1. Settling of a Circular Particle in an Infinitely Long Tube

The circular particle accelerates to settle down in the infinite tube due to gravity. As the speed
increases, the resistance of the ball increases. When the three forces of resistance, gravity, and buoyancy
are balanced, the particle falls at a uniform speed. Glowinski pointed out in the literature [18] that, for
a circular particle settling in an infinitely long pipe, when its physical parameters are determined, the
settling speed is also determined at a steady state.

When the liquid is at a low Reynolds number, the resistance Ff to circular particles moving in an
infinitely long pipeline is directly proportional to the settlement speed [19] and can be expressed as:

F f = 4πKηv (37)

where v is the falling velocity of circular particles, η is the dynamic viscosity of the fluid, K is the
correction factor, and its value reflects the influence of the resistance of the pipe wall facing the particles.
K is expressed as:

K =
1

ln Wi − 0.9157 + 1.7244(Wi)
−2
− 1.7302(Wi)

−4 + 2.4056(Wi)
−6
− 4.5913(Wi)

−8
(38)

where Wi = W/D, W is the width of a long square tube and D is the diameter of the circular particle.
When particles are in a state of three forces equilibrium, the resistance can be obtained as:

F f =
1
4
πD2(ρS − ρL)g (39)

ρS and ρL are solid density and liquid density, and g is gravity acceleration. According to
Equations (37)–(39), the final falling speed of the circular particle can be calculated as:

v =
D2(ρS − ρ f )g

16Kη
(40)

The size of the circular pipe in this paper is 4 cm× 8 cm. The side length of each grid is 0.01 cm, with
a total of 400 × 800 grids. The particle diameter is taken as 0.48 cm, the fluid density is ρL = 1.0 g/cm3

and the solid density is ρS = 1.02 g/cm3, and the fluid viscosity is η = 0.33 g/(cm·s). The relaxation
time τ is taken as 0.8, and the gravity acceleration is g = 980.0 cm/s2. At the initial moment, the
circular particle are placed at points (2 cm, 6 cm), and they are at rest before the calculation starts.

The simulation results are shown in Figure 3. The particle dropped due to gravity, and two
symmetrical vortices formed on both sides of the particle, which is consistent with what Do-Quang [5]
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described in his literature. According to the simulation value of particle settlement speed, it can be seen
that the simulation results in this paper agree well with the theoretical analytical solution. Therefore,
the method used in this paper can be used to calculate the moving boundary problem.
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3.2. Calculation of the Solute Field

Figure 4 shows the morphology of dendrite growth under different solute field treatment methods.
Figure 4a is the solute distribution method and Figure 4b is the solute extrapolation method.

In the first method, the lower end of the dendrite grew faster, because the dendrite covered the
original high-concentration solute domain during the settlement of the dendrite. Through the uniform
distribution of solutes, the solute gradient at the upstream end of the dendrite is reduced, so it has
a faster growth rate. In contrast, dendrite growth using the solute extrapolation method was more
uniform. This article compares the two methods to calculate the average regional concentration at the
time of solidification time of 0.3 s, 0.5 s, 0.7 s. It is found that the solute field of Method 1 changes
greatly, and the average solute concentrations at the corresponding moments are 4.682%, 4.673%,
4.658% (standard is 4.7%), solute field conservation is always 4.7% in Method 2. It can be seen that the
solute field treatment in the second method is more accurate.
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3.3. Multiple Dendrites Rotation

At the initial time, 5 crystal nuclei with preferential growth angles of 0 and a solid phase rate of
0.2 were placed in the middle of the simulation region. When the number of solidification grids is
3000, the dendrites stop growing. At this time, a uniform rotating flow is applied in the simulation
region. It can be seen from the Figure 5 that the dendrite can maintain its original shape even after
being rotated for multiple turns.
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This article gives the formula for calculating the solid phase rate error, as follows:

∆ = ( fSin − fS0)/ fS0 × 100 (41)

where fS0 is the initial solid phase rate of the dendrite, fSin is the solid phase rate after dendrite rotation.
According to Equation (41), it is calculated that the change of the solid phase rate of the equiaxed
crystal is maintained within 0.2% after 10 revolutions. In the calculations of this paper, the amplitude
of dendrite rotation is small (rad <1, rad represents the radian of dendrite rotation), so it can be
considered that the numerical model for calculating dendrite rotation established in this paper has no
great influence on the dendrite morphology.

4. Discussion

This article is based on the following assumptions. The melt is an incompressible Newtonian
fluid. The solid and liquid phases have the same thermal conductivity, and the heat transfer boundary
conditions are adiabatic boundary conditions. Solute diffusion only occurs in the liquid phase, there is
no solute diffusion in the solid phase, and the boundary condition for mass transfer is the non-diffusion
boundary condition [13].

4.1. Single Dendrite Movement

As shown in Figure 6, the dendrite arm at the front end of the dendrite grows faster in the
moving state, and a secondary dendrite arm is generated. The upper dendrite arm has a lower speed
and almost stops growing. The reason is that the dendrite movement compresses the lower solute
boundary layer, the concentration gradient becomes larger, and the temperature gradient becomes
lower; the upper solute boundary layer is stretched, the concentration gradient becomes smaller, and
the temperature gradient increases. Therefore, the growth of the dendrite arms at the upstream side
will be further promoted. As the falling speed increases, this asymmetric growth phenomenon becomes
more and more obvious. In actual solidification, when the dendrite grows asymmetrically, the dendrite
will rotate. From Figure 6c2, it can be seen that compared with pure falling dendrites (Figure 6b2),
the former dendrite arms have prominent tips, asymmetric growth is more obvious, and the latter
dendrites are more uniform, which is consistent with the literature [6].

The solute distribution is also closely related to the flow of the solution around the dendrites. It can
be seen from Figure 7 that the flow direction of the solution is different in the three movement states.
The solution near the stationary dendrite flows upward, and the solution far away from the dendrite
flows downward. For a moving dendrite, due to the high viscosity of the solution, a downward pulling
force will be generated on the surrounding solution during the drop of the dendrite. This causes
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the solution near the dendrite to flow downwards and the solution away from the dendrites to flow
upwards. In addition, for moving dendrites, two vortices will be generated behind it.
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Figure 7. Flow field distribution in the process of dendrite falling; (a) stationary dendrites; (b) falling
dendrites; (c) falling and rotating dendrites.

It can be seen from Figure 8 that the solution flows faster around the moving dendrites. When the
solidification time is 0.5 s, the flow velocity of the solution around the dendrite in the stationary, pure
falling, and rotating falling states is 0.008 mm/s, −0.01 mm/s, −0.009 mm/s. This is because the rotation
of the dendrite makes the contact surface larger between the lower end and the solution, resulting in
an increase in the resistance of dendrites, which reduces the falling speed of the rotating dendrite to a
certain extent.
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Figure 8. Flow velocity in the process of dendrite falling. (a) Stationary dendrites; (b) falling dendrites;
(c) falling and rotating dendrites.

4.2. Multi-Dendrite Movement

As the dendrites grow, the solute boundary layers around the dendrites come into contact and
fuse with each other to form a high-concentration solute domain. The growth of dendrite arms in
this domain is inhibited, and the growth of dendrite arms away from this domain is promoted. The
asymmetry of the dendrite is aggravated, and the rotation speed of the dendrite is increased.

The rotation of dendrites is different from that of single dendrites during solidification. See
Table 2 for the change of preferential dendrite growth angle. The initial preferred growth angle of
No. 4 dendrite is 0.1 rad. The solutes between the dendrites are close to each other and form a
high concentration solute domain, therefore the growth of the right dendrite arm of No. 4 dendrite
is inhibited, and the growth of the left dendrite arm is promoted. This causes the mass on the left
side of the dendrite to be greater than the mass on the right side, so the dendrite is subjected to
a counterclockwise torque. When the solidification time is 0.4 s, the dendrite rotates 0.3 rad in a
counterclockwise direction. For the No. 1 dendrite, the lower part of the simulated domain is less
affected by the solute field. It starts to rotate at 0.2 s and falls to the bottom at 0.5 s. At this time, the
preferred growth direction of the dendrite is −0.5 rad. For the No. 9 dendrite, the dendrite arm at
the lower end of the dendrite extends to the high-concentration domain, and the growth is inhibited.
Therefore, the dendrite is more symmetrical on the left and right, and the torque is less. During
its movement, the dendrite only rotated 0.2 rad. The No. 6 dendrite is located in the center of the
simulation area. The uncertainty of its growth behavior leads to the complexity of its movement
behavior. It can be seen that the dendrite rotates 0.3 rad clockwise when the solidification time is 0.4 s.
At 0.5 s, the dendrite rotates counterclockwise by 0.1 rad, and the dendrite rotates left and right.

Table 2. Preferred growth angle of dendrites at different times.

Dendrite Rotation Angle (rad)

Time (s) No. 1 No. 4 No. 4 No. 9

0 −0.2 0.1 −0.3 −0.6
0.1 −0.2 0.1 −0.3 −0.6
0.2 −0.3 0 −0.4 −0.7
0.3 −0.4 0 −0.6 −0.8
0.4 −0.5 0.3 −0.6 −0.8
0.5 −0.5 0.5 −0.5 −0.8

Multi-dendritic effects are also manifested in interactions between fluids. As shown in Figure 9a,
as the dendrites grow, the fluid vortices begin to merge, forming a strong convection between the
dendrites. This strong convection hinders the vertical drop of the dendrite and has a lateral force
on the dendrite. The dendrite starts to move laterally, and the grains on both sides have a tendency
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of centrifugal movement. And the movement of the grains in the central domain shows a trend of
swinging left and right.
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Figure 10 shows the falling speed of the four dendrites. Each dendrite undergoes a process of
acceleration and deceleration, and their absolute speeds are lower than those of the single dendrites.
It is shown that during the growth of multi-dendritic, due to the interaction between the dendrites,
a part of the gravity is offset and the dendrite’s moving speed is reduced to a certain extent.Crystals 2019, 9, x FOR PEER  13 of 16 
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Figure 10. The falling velocity of dendrite 1, dendrite 4, dendrite 6, dendrite 9.

Compared with the growth of multiple dendrites in the moving state, the growth mode of the
dendrites in the stationary state is much simpler. The growth of the dendrites in the middle of
the simulated domain is suppressed, and the growth of dendrites near the boundary is promoted.
(As shown in Figure 11)
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Figure 11. The evolution and concentration distribution of dendrites without motion. (a) t1 = 200;
(b) t2 = 500; (c) t3 = 800; (d) t4 = 1000.

From the above analysis, the movement behavior of multi-dendrites is related to the melt convection
and solute overlap between the dendrites. In response to this phenomenon, scholars proposed to
apply an external force field (such as an electromagnetic field) to the dendrite to offset gravity, thereby
changing the movement state of the dendrite, and then controlling the solute segregation of the
casting [20,21].

5. Conclusions

In this work, a CA-LBM-Ladd coupling model for calculating multi-dendritic motion was
established, and an extrapolated distribution method for calculating the solute distribution around the
dendrite under the state of dendritic motion in the melt was proposed, which realizes the calculation
of the solute field in the real state of dendrite movement. The CA-LBM-Ladd coupling model was
verified, and then the motion of single and multiple dendrites was simulated using this model. The
simulation results show that: 1) the superposition of the flow fields between the multiple dendrites
causes the movement state to change; 2) the superposition of solute field results in the change of
concentration gradient, changes the growth mode of dendrite, and then changes the movement state.
This is quite different from the growth mode of single dendrite.
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Abbreviations

A detailed list of symbols abbreviations used in this paper is listed and a brief explanation is given.

Symbols Unit Meaning
fs mass% Solid fraction
CL mass% Actual solute concentration at interface
Ceq

L mass% Liquid-phase equilibrium crystallization concentration at the interface
∆ fs mass% Solid fraction increment
k — Equilibrium partition coefficient of solute
C0 mass% Initial concentration of the alloy
TL K Actual temperature of the interface
Teq

L K Equilibrium liquidus temperature
m k/mass% Liquidus slope
Γ m·K Gibbs-Thomson coefficient
K 1/m Average curvature at the solid / liquid interface
ψ — Anisotropic function
ε — Anisotropic strength of interface energy
δ — Anisotropic coefficient
θ0 deg Preferred growth direction
φ deg Growth angle
τ f — Relaxation time of flow field
τα — Relaxation time of temperature field
τD — Relaxation time of concentration field
ν m2/s Fluid viscosity
α m2/s Thermal diffusivity
D m2/s Concentration diffusion coefficient
ρ0 Kg/m3 Initial density of fluid
T0 K Initial temperature
βT K−1 Volume expansion coefficient of temperature change
βC Mass%−1 Volume expansion coefficient of concentration change
ωi — Weight coefficient
ei m/s Discrete velocity
c m/s Lattice velocity
MS Kg Mass
IS Kg·m2 Moment of inertia
g m/s2 Gravitational acceleration
F N The force of fluid on dendrite
Tt N·m Force moment
Fi N The component force of the particle in the i direction
Gi mass% Source term of concentration field
Hi K Source term of temperature field
u m/s Macroscopic velocity
∆T K Undercooling
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