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Abstract: In this study, molecular dynamic simulations are employed to investigate the homogeneous
nucleation mechanism of NaCl crystal in solutions. According to the simulations, the dissolved
behaviors of NaCl in water are dependent on ion concentrations. With increasing NaCl concentrations,
the dissolved Na+ and Cl− ions tend to be aggregated in solutions. In combination with our
recent studies, the aggregate of dissolved solutes is mainly ascribed to the hydrophobic interactions.
Different from the two-step mechanism, no barrier is needed to overcome the formation of the
aggregate. In comparison with the classical nucleation theory (CNT), because of the formation of
solute aggregate, this lowers the barrier height of nucleation and affects the nucleation mechanism of
NaCl crystal in water.
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1. Introduction

The nucleation of crystals in liquids is one of the most ubiquitous phenomena in nature. It is
crucial in geology and environmental sciences, where the formation and behavior of crystalline solids
may change with temperature, pressure, and chemical environment. In addition, nucleation plays
an important role in many practical applications, ranging from semiconductors, metals, chemicals,
to pharmaceutics. Therefore, many experimental and theoretical works have been devoted to investigate
the nucleation mechanism in aqueous solutions.

Generally, nucleation is described by the classical nucleation theory (CNT). CNT is based on
the assumption that the free energy necessary to create a nucleus of n particles can be divided into
a favorable term, proportional to the number of particles in the nucleus, and an unfavorable term,
proportional to the dividing surface between the nucleus and the solution. The free energy difference
can be analytically expressed as,

∆GCNT = −∆µ · n + γ · s (1)

where ∆µ is the difference in chemical potential between the crystal and the liquid phase, n is the
number of molecules in the crystal phase, γ is the surface tension, and s is the surface of the nucleus.
Therefore, the critical nucleus (Nc) can be expected in CNT.

Recently, many experimental approaches [1–13] have been employed to investigate the
thermodynamics and kinetics of crystal nucleation in liquids, such as optical microscopy, atomic force
microscopy, cryo-TEM, ultrafast X-ray scattering, et al. These lead to the confirmation of the presence
of the intermediate phase, such as amorphous calcium carbonate (ACC) [3,4], which are relevant to
the solidification pathway of the dissolved solutes. Therefore, a two-step mechanism of nucleation of
crystals in solution was put forth [14–16]. In the first step, amorphous nuclei are formed—their surface
energy is lower than that of crystalline nuclei as a consequence of their disordered interfaces with the
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solution. In the second step, an amorphous-to-crystalline transition takes place in the middle of the
amorphous phase. Compared with direct crystallization from solution, this transition overcomes a
much lower free energy barrier.

In addition, many works [17–25] have also been conducted to investigate the nucleation mechanism
of NaCl from the solutions. Zahn [17] found that ion aggregates were particularly stable when a
Na+ ion was octahedrally coordinated by Cl− ions. In Giberti et al. study [18], they employed
metadynamics simulations to find an intriguing wurtzite-like polymorph, which was suggested to be
an intermediate route from brine to the final rock salt structure. According to Chakraborty and Patey
study [23], this means that a dense but unstructured NaCl nucleus is first formed, and rearranged
into the rock salt structure. Therefore, this is in agreement with a two-step mechanism. In recent
Jiang et al. [24] work, they identify a transition from one- to two-step crystallization mechanism driven
by a spinodal. In addition, some works [26,27] were conducted on the nucleation mechanism of KCl
in water. In Peng et al. study [26], this indicates that there are high density KCl ionic clusters prior
to nucleation.

Nucleation processes are classed as homogeneous and heterogeneous [28]. In fact, nucleation in
liquids occurs heterogeneously more often than not [29,30]. In heterogeneous nucleation, the surface
of some different substance acts as the centre upon which the first atoms, ions, or molecules of the
crystal become properly oriented. Heterogeneous nucleation can customarily be formulated within
the CNT framework, which is related to homogeneous nucleation through the shape factor changing
from 0 to 1 [31]. Therefore, it is important to investigate the mechanism of homogeneous nucleation.
In this study, molecular dynamic simulations are employed to investigate the homogeneous nucleation
mechanism of NaCl crystal in solutions.

2. Molecular Dynamics Simulations

2.1. Simulated Systems

Molecular dynamics (MD) simulations were conducted using the GROMACS (version 5.14) [32,33].
The simulated results were analyzed through Plumed (version 2.4) [34,35]. At 298 K and 0.1 MPa,
the NaCl solubility (Mass Fraction, w) in water is 26.483% [36]. To investigate the nucleation mechanism
of NaCl crystal in solutions, MD simulations are conducted on slightly oversaturated NaCl solutions
(NaCl:H2O = 223:2000). In principle, the nucleation mechanism was closely related to the dissolved
behaviors of NaCl in water. To investigate the structure of NaCl solutions, MD simulations were also
conducted on various NaCl-H2O systems (Table 1).

Table 1. The simulated systems in this work.

No. System NaCl H2O (Mass Fraction, 100w)

1 NaCl-H2O 1 2000 0.16

2 NaCl-H2O 2 2000 0.32

3 NaCl-H2O 3 2000 0.48

4 NaCl-H2O 4 2000 0.65

5 NaCl-H2O 5 2000 0.81

6 NaCl-H2O 10 2000 1.60

7 NaCl-H2O 20 2000 3.15

8 NaCl-H2O 30 2000 4.64

9 NaCl-H2O 40 2000 6.10

10 NaCl-H2O 50 2000 7.51

11 NaCl-H2O 223 2000 26.58
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The SPC/E model was used for water, and the ion parameters were those used in the OPLS force field.
These force fields have been widely applied to investigate the homogeneous nucleation of NaCl [21,23]
and KCl [27] crystals in water. The simulations were carried out in the NPT ensemble. The simulated
temperature was kept at 300 K, employing Nose-Hoover thermostat dynamics. The pressure was
maintained at 1 atm using a Parrinello-Rahman pressure coupling. The simulated box was initially
kept at 42 Å × 42 Å × 42 Å, and NaCl salts were uniformly embedded in the box. Additionally,
periodic boundary conditions were applied in all three directions. The Lennard-Jones interactions
were truncated at 1.0 nm. The particle mesh Ewald method was used to calculate the long range
electrostatics forces. Additionally, each simulation time was 60000 ps with a time step of 2 fs.

2.2. Order Parameters

Generally, the Steinhardt parameters [37] were applied to measure the degree of order in the
system. In this work, both local Q4 (LOCAL Q4) and local Q6 parameters (LOCAL Q6) were calculated
to measure the degree of order during the nucleation of NaCl in the solutions, which were based on
the corresponding fourth (q4) and sixth (q6) order Steinhardt parameters. Regarding the sixth order
Steinhardt parameters, it measured the degree to which the first coordination shell around an atom
was ordered. With reference to atom i, the Steinhardt parameter was calculated as,

q6m(i) =

∑
jσ

(
ri j

)
Y6m

(
ri j

)
∑

jσ
(
ri j

) (2)

where Y6m was one of the sixth order spherical harmonics so m was a number that runs from −6
to +6. The function σ(rij) was a switching function that acted on the distance between atoms i and
j. Additionally, for LOCAL Q6 parameter, it measured the extent to which the orientation of the
atoms in the first coordination sphere of an atom matched the orientation of the central atom. It was
determined as,

si =

∑
jσ

(
ri j

)∑ 6
m = −6q∗6m(i)q6m( j)∑

jσ
(
ri j

) (3)

where q6m(i) and q6m(j) were the sixth order Steinhardt vectors calculated for atom i and atom j, and the
asterisk denoted complex conjugation.

2.3. Metadynamics

To investigate the nucleation mechanism from the solutions, the changes of free energy was
reconstructed through Metadynamics method of Laio and Parrinello [38,39]. Metadynamics belonged
to the family of enhanced sampling techniques in which the probability of visiting high free energy
states was increased by adding to the Hamiltonian an adaptive external potential. The external
repulsive potential was typically written as a series of Gaussian functions that were deposited in the
space of collective variables (CVs) as,

V(S, t) =
∑
kT<t

W(kT) exp

−
d∑

i = 1

(
si − s(0)i (kT)

)2

2σ2
i

 (4)

where W and σ were the height and the width of the added Gaussians, respectively. Because of the
external potentials, the system could freely diffuse above the potential energy surface, completely
sampling the CVs space. At this point, the free energy surface (FES) as a function of the set of CVs was
obtained as the negative of the repulsive bias deposited during the course of the simulation,

V(s) = −F(s) (5)
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3. Discussions

3.1. The Structure of NaCl Solutions

The NaCl RDFs have a first contact maximum at 2.8 Å (CIP, contact ion pairs),
second solvent-separated maximum at 5.1 Å (SSIP, solvent separated ion pairs), and a weak third
maximum at about 7 Å corresponding to an attraction of fully hydrated ions. For dilute NaCl
solutions (NaCl:H2O = 1:2000), the RDFs are dominated by SSIP states (Figure 1). With increasing salt
concentrations, this leads to a rise of the first maximum and a fall of the second in the Na-Cl RDFs
(Figure 1). This is in correspondence with other studies on the structure of NaCl solutions [40,41].
Additionally, the structural changes can also be observed in the experimental measurements of aqueous
LiCl solutions [42–44].
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Figure 1. The calculated gNa-Cl(r) of various NaCl solutions. The inlet shows the dependence of the
ratio of second peak to the first peak of gNa-Cl(r) on the NaCl concentrations.

In principle, radial distribution function gij(r), where r = |ri − rj| stands for the separation between
a particle of component i and of component j, gives the probability of finding two particles at some
distance r, taking account of density and geometric effects. This is related to the potential of mean
force (PMF) between two particles, and can be expressed as,

WPMF(r) = −kBT ln g(r) (6)

Therefore, the changes of gij(r) indicate that the PMF of the separation between the particles is dependent
on the NaCl concentrations.

For dilute NaCl solutions, the Na-Cl RDFs are dominated by SSIP. This means that the ions prefer
to SSIP in dilute NaCl concentrations, and SSIP is thermodynamically stable than CIP. It is contrast
with the PMF between a Na+ and a Cl− ions in water [45], which shows that the first minimum (CIP at
2.8 Å) is lower than the second minimum (SSIP at 5.1 Å). Therefore, this indicates that the CIP and
SSIP configurations may be separated by a high (several kT) effective potential barrier and transitions
between them are rare events. In other words, it seems that there exists “repulsive” force between the
dissolved ions in dilute NaCl solutions. Therefore, it is necessary to study the structure of water, and
the effects of dissolved NaCl on water structure.

Many works have been devoted to investigate the structure of liquid water, which can roughly
be partitioned into two categories: (a) mixture models and (b) continuum models [46]. Based on
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Raman spectroscopic studies on water structure [47–49], when three-dimensional hydrogen-bonded
networks appear, various OH vibrational frequencies correspond to different hydrogen-bonded
networks in the first shell of a water molecule (local hydrogen bonding). This indicates that OH
vibrations are mainly dependent on the local hydrogen bonding of a water molecule, and the effects of
hydrogen bonding beyond the first shell on OH vibrations are weak. Therefore, for ambient water,
a water molecule interacts with neighboring water molecules (in the first shell) through various local
hydrogen-bonded networks.

When NaCl salts are dissolved in water, they dissociate into ions that are hydrated. Because of
the interactions between dissolved ions and water molecules around the ions, the dissolved ions
affect the structure of hydrated water molecules, which may be different from that in bulk water.
The structure and dynamics of water around ions have been studied with neutron and X-ray
diffraction [41,50], X-ray absorption spectroscopy [51], femtosecond time-resolved infrared (fs-IR)
vibrational spectroscopy [52–54], and optical Kerr-effect spectroscopy [55], respectively. These reports
support the notion that the effect of ions on water is largely limited to the first solvation shell. In fact,
this is in agreement with the above discussion on the dependence of OH vibrations on water structure.
The OH vibrations are dependent on local hydrogen bondings, therefore the dissolved ions mainly
affect the structure of water molecules within their first coordination shell.

In principle, when solutes are dissolved into water, the thermodynamic functions may contain
solute–solute, solute–water, and water–water interaction energies, respectively.

∆G = ∆GWater–water + ∆GSolute–water + ∆GSolute–solute (7)

In our Raman spectroscopic studies on NaCl solutions [48], as NaCl is dissolved into water,
this mainly lowers the sub-band around 3220 cm−1, and raises the sub-band around 3430 cm−1.
Therefore, the dissolved NaCl breaks the hydrogen bondings of water, and the hydrogen bonding
strength of NaCl-water is weaker than that of water-water. Therefore, the “repulsive” force between
the Na+ and Cl− ions in dilute NaCl solutions may be closely related to hydrogen bonding of water,
which results in the ions to be occupied by SSIP configurations.

From the simulations, with increasing NaCl concentrations, the dissolved ions tend to form CIP
rather than SSIP. Additionally, as NaCl salts increases, these decrease the separations between Cl− and
Cl− ions, and between Na+ and Na+ ions, especially gCl-Cl(r) (Figure 2). This is in agreement with the
experimental studies on the structure of NaCl and LiCl solutions [40–44]. Therefore, with increasing
NaCl concentrations, the dissolved Na+ and Cl− ions tend to be aggregated. This is in agreement with
other molecular dynamics simulations [56] and experimental studies [57,58] on NaCl solutions.
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In addition, the ion aggregation can also be demonstrated by the dependence of hydrogen
bondings on NaCl concentrations (Figure 3). In this study, the geometrical definition of hydrogen
bonding is utilized to determine the hydrogen bonds in water [59]. If rOO and ∠OOH are less than
3.5 Å and 30◦, a hydrogen bonding is considered to exist between two water molecules. As NaCl
is dissolved into water, this decreases the hydrogen bondings in water. However, with increasing
NaCl concentrations, the effects of NaCl salts on hydrogen bondings become weak. This is due to
the dissolved ions are aggregated in water, which decreases the surface area of ions available for
water molecules.
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Figure 3. The effects of NaCl salts on hydrogen bonding in water. The fitted line is shown in solid.
The inlet shows the changes of hydrogen bonding of NaCl solutions (NaCl:H2O = 10:2000) as the
system approaching the equilibrium.

In this study, the ion aggregated distribution in solutions is termed as the aggregate.
Similar concepts are also used to reflect the aggregation, such as amorphous calcium carbonate
(ACC) or pre-nucleation clusters (PNC) [3–6]. According to the calculated gNa-Cl(r), the ion is regarded
to be engaged into the aggregate as the separation between the Na+ and Cl− being less than the first
minimum (3.5 Å). With increasing NaCl concentrations, this increases the number of ion aggregate
(Figure 4).
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In fact, the solute aggregates have been reported in many experimental methods [1–13], such as
transmission electron microscopy (TEM), atomic force microscopy (AFM), small angle X-ray scattering
and light scattering. They are described to be short-range order and long-range disorder, and formed
via aggregation of solution species comprised of ion complexes or multi-ion clusters, and may exist in
equilibrium with the free monomers. The aggregate is observed not only for organic and colloidal
systems but also for various electrolyte solutions. It is important to investigate the origin of solute
aggregate in solutions.

In the recent work by Marcus [60], the average distance apart of the centers of the ions in a c
M solution of a symmetrical electrolyte is d(nm) = 0.94 [c/M]. Therefore, if the dissolved ions are
homogeneously distributed in water, ion pairing can be expected at highly concentrated (>1 M)
solutions. However, besides the highly concentrated solutions, there is now much evidence indicating
that ion aggregate can be found in lower concentrations (<1 M) [61,62]. Therefore, it is necessary to
investigate the driving force of solute aggregation in aqueous solutions.

The classic Debye-Hückel theory [63], valid only for dilute electrolytes, predicts that the interaction
between two charged surfaces in an electrolyte decays exponentially with the surface separation [64]
with a decay length, called the Debye length. In fact, the screening length characterizes the range
over which the perturbation due to an electrical double layer extends. The screening length is about
10 nm in dilute ~1 mM solutions, it decreases to 0.8 nm in ~150 mM solutions. In general, it can
be expected that the high ion density would result in a short-range screening of an external electric
field. However, based on the surface force measurements, it decays exponentially with the separation
between sheets, beyond a short-range layering regime, namely “underscreening” in concentrated
electrolyte solutions [65–67]. From Israelachvili et al. [68] surface force measurements, it means a decay
length of the force, about 10–13 nm.

In dilute solutions, if the dissolved ions are dominated by the electrostatic interactions between
them, the CIP can be expected rather than SSIP. This is in contrast with the experimental and theoretical
studies [40,41], which mean that the dissolved ions prefer to SSIP in dilute solutions. This indicates
that, as slats are dissolved into water, the cation–anion attraction in the crystal may be overwhelmed
by favorable ion–water interactions. Therefore, the dissolved behaviors of ions may be closely related
to the hydrogen bondings of water. In addition, regarding to “underscreening,” it is based on the
measurements of the force between two interfaces separated by a thin aqueous, which show the
increase in decay length with increasing salt concentration at high salt concentrations. In combination
with the above discussion, it can be derived that the attraction between the interfaces may be related to
the hydrogen bondings of water.

To investigate the changes of hydrogen bonding of water in the formation of ion aggregate, the
hydrogen bonding number is calculated. In this study, the NaCl solutions are initially setup where the
Na+ and Cl− ions are homogeneously distributed in water. As the simulated system approaching the
equilibrated state where the ions are aggregated, this is accompanied with the increase of hydrogen
bonding in water (Figure 3 inlet). Because the strength of water–water hydrogen bonding is stronger
than that of NaCl–water interactions, the driving force of ion aggregation can reasonably be ascribed
to maximize the hydrogen bonding in water, which affects the global distributions of dissolved ions.
Additionally, the local distributions may be affected by electrostatic force between the ions.

According to recent studies on water structure [47–49] and air/water interface [69], the hydration
free energy is derived, which is utilized to investigate the physical origin of hydrophobic effects.
It can be found that hydrophobic effects are ascribed to the structural competition between hydrogen
bondings in bulk water and those in interfacial water [70–72]. With increasing solute concentrations,
it can be divided into initial and hydrophobic solvation processes, which correspond to various
dissolved behaviors of solutes, such as dispersed and accumulated distributions in water. This is in
agreement with the simulations on NaCl solutions.

In general, hydrophobic effects are described as the tendency of non-polar molecules or molecular
surfaces to aggregate in an aqueous solution. From our recent study on the physical origin on
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hydrophobic effects [70], it is attributed to the strength of hydrogen bonding of bulk water is stronger
than that of interfacial water. In fact, hydrophobic effects may be extended to other systems only if
the strength of solute/solvent interface is weaker than that of bulk solvent. Therefore, hydrophobic
interactions can be applied to understand the dissolved behaviors of NaCl salts in water.

As the foreign substances, such as solid particles, are embedded into water, the interfaces appear
between the particles and water. They mainly affect the structure of interfacial water (the topmost
water layer at the interface), which undoubtedly affect the dissolved behaviors of solutes. To maximize
the hydrogen bondings of bulk water, the dissolved solutes tend to be aggregated at the surface of the
substances. Therefore, because of the existence of the foreign substances in the solutions, it is helpful
to form the solute aggregate at the foreign surfaces.

From this work, with increasing NaCl concentrations, the dissolved Na+ and Cl− ions tend to be
aggregated in water. It should be noted that the tendency of ion aggregation may be counterbalanced
by thermal motions. Additionally, based on our recent study on hydrophobic effects [70], it can be
derived that the hydrophobic interactions of ion aggregate may be inversely proportional to the size of
ion aggregate. Therefore, as the size of ion aggregate increases, the strength of hydrophobic interactions
also increases.

3.2. NaCl Nucleation

In this study, MD simulations are conducted on slightly oversaturated NaCl solutions to investigate
the nucleation of NaCl crystal in water. Based on the calculated Na-Cl RDFs, these can be applied to
study the nucleation process of NaCl in the solutions. Compared with the Na-Cl RDFs prior to the
nucleation, the second peak is well split as NaCl crystal appears in the solutions (Figure 5). As NaCl
crystals grow, both the third and fourth peaks can be detected in the RDFs. Additionally, the nucleation
can be found to first take place in the solute aggregate of the solutions. This is in accordance with other
experimental and theoretical studies on the nucleation mechanism [15,16].
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In some works, this nucleation is explained through Ostwald’s Law of Stages or Ostwald’s
Rule [73]. It means that, when several solid phases exist, the formation of the thermodynamically
stable phase can be preceded by metastable intermediates that stepwise transform to the final product.
Namely that, in the case of a compound capable of crystallizing in several forms, it will be the least
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stable form, which is first produced by the spontaneous crystallization, followed successively by
the forms of increasing stability. However, the aggregate is found in not only oversaturated but
also non-saturated solutions, the structure can be described as the short-range order and long-range
disorder. Therefore, it is unreasonable to understand the aggregate through Ostwald’s rule.

Different from the aggregate, the structure of crystal is characterized by the periodic lattice of
elementary unit. In this work, both LQ4 and LQ6 parameters are calculated and utilized to distinguish
the NaCl crystals in the aqueous solutions. As the NaCl crystal nucleates from the solutions, this
increases the order parameter of LQ4 and LQ6 (Figure 6). This is also in correspondence with the
changes of Na-Cl RDFs. Therefore, both LQ4 and LQ6 can be applied to measure the nucleation process
of NaCl crystal in the solutions.
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Figure 6. The changes of local Q6 (a) and Q4 (b) parameter of NaCl solutions (NaCl:H2O = 223:2000)
during the nucleation. As the nucleation of NaCl crystal occurs, the max aggregate of NaCl (Aggc) is
shown (The ion number is 169).

To investigate the changes of free energy in the process of NaCl nucleation, based on LQ4 and LQ6
parameters, the free energy surface (FES) can be determined through the METAD method (Figure 7).
It can be found that only one potential barrier is necessary to overcome so that the nucleation of NaCl
crystal proceeds. Based on the calculated LQ4 and LQ6 of the solutions, the lowest zone of FES is in
correspondence with the formation of ion aggregate in the solutions. Therefore, no barrier is necessary
to overcome in the formation of the aggregate. Because of the ion aggregation, this makes the system
to be more thermodynamically stable. In other words, the dissolved ions tend to be aggregated in
the solutions.
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From the simulations, the nucleation of NaCl crystal first takes place in the ion aggregate.
This indicates that, because of the formation of ion aggregate, it is helpful for forming NaCl crystal
in the solutions. In other words, the ion aggregate may correspond to the nucleation site with the
relatively lower height of nucleation barrier. In combination with the above discussion, it can be
derived that, because of the hydrophobic interactions, this leads to the formation of solute aggregate,
and also lowers the height of nucleation barrier.

Based on this study, it can be found that the formation of the ion aggregate is not considered in
CNT theory. To understand the nucleation mechanism from aqueous solutions, it is necessary to take
into account the hydrophobic interactions. Because the ion aggregation lowers the height of potential
barrier, the CNT can reasonably be revised as (Rev-CNT),

∆GRev = ∆GCNT − ∆GH (8)

where ∆GH means the hydrophobic interactions in the formation of ion aggregate. Different from the
critical nuclei of CNT, the critical aggregate (AggC) can be expected, which corresponds to the largest
aggregate as the nucleation occurs in water.

In combination with our recent studies on hydrophobic interaction [70–72], the ∆GH is the
difference of Gibbs energy as the solutes are transformed from dispersed to accumulated distributions
in water. In this work, the solute is treated as a hydrophobic sphere. After the aggregate is regarded as
an ideal sphere, the ∆GH is expressed as,

∆GH = 8 ·

(
n− n−

1
3
)

r
· ∆GDDAA · rH2O

(
R = n

1
3 · r

)
(9)

where ∆GDDAA is the Gibbs energy of DDAA (tetrahedral) hydrogen bonding, rH2O is the radius of a
H2O molecule, r is the radius of solute, R is the size of solute aggregate, and n is the solute number of
aggregate. From this, it can be derived that the larger the solute number of aggregate (or aggregate size),
the stronger the hydrophobic interactions. Therefore, the nucleation is expected to take place in the
largest aggregate, and the AggC corresponds to the largest aggregate as nucleation occurs in solutions.

From this work, the nucleation of NaCl crystal can be described as the ion dispersed
distribution→ the ion aggregate→ the nucleation (Figure 8). For the driving force of ion aggregate, it
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is due to maximize the hydrogen bonding of water. Regarding to the origin of solute aggregate, it is
closely related to hydrophobic interactions. Different from two-step nucleation, no barrier is necessary
to overcome to form the aggregate. Therefore, only one barrier is needed to overcome in the process of
nucleation. In comparison with CNT, because of the formation of solute aggregate, this lowers the
height of potential barrier of nucleation, and affects the nucleation mechanism of NaCl in water.

Regarding the CNT theory, it does not take into account the effects of hydrophobic interactions
on the dissolved behaviors of solutes in water. Therefore, CNT may be applied to investigate the
nucleation as hydrophobic interactions can be ignored. In combination with this study, this means that
CNT can be utilized to understand the nucleation mechanism as the solutes are dispersed in solutions
(Figure 8).

As the foreign substances are embedded into water, they mainly affect the structure of interfacial
water. From the above, to maximize the hydrogen bondings of bulk water, the dissolved solutes tend
to be aggregated at the surface of the substances. Because of the existence of the foreign surfaces,
it is helpful to form the solute aggregate. Additionally, this reduces the height of the nucleation
barrier, thereby facilitating the phase transition (heterogeneous nucleation). In combination with recent
studies [74], it can be found that heterogeneous nucleation may be closely related to the geometric
characteristics of foreign surface, especially geometric shape. Additionally, it may be also affected by
the molecular polarity of the substance surface. Further study is necessary.
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of NaCl crystal in water. Because of the formation of solute aggregate, this reduces the height of
nucleation barrier.

4. Conclusions

In this work, molecular dynamic simulations are applied to investigate the nucleation mechanism
of NaCl in solutions. From this study, the following conclusions can be derived,

(1) According to the simulations, the dissolved behaviors of NaCl in water are dependent on ion
concentrations. With increasing NaCl concentrations, the dissolved behaviors of Na+ and Cl−

ions are transformed from dispersed to aggregated distributions in water.
(2) In combination with our recent studies on hydrophobic interactions, the solute aggregate is

mainly ascribed to the hydrophobic interactions. Thermodynamically, no barrier is needed to
overcome in the formation of the solute aggregate.
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(3) In comparison with the CNT, because of the formation of ion aggregate in solutions, this lowers
the barrier height of nucleation, and affects the nucleation mechanism (Rev-CNT). Therefore, the
nucleation of crystal can be expected to take place in the largest aggregate (AggC).
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