
crystals

Article

On the Size Effect of Strain Rate Sensitivity and
Activation Volume for Face-Centered Cubic Materials:
A Scaling Law

Xiazi Xiao 1, Hao Liu 2 and Long Yu 3,*
1 Department of Mechanics, School of Civil Engineering, Central South University, Changsha 410075, China;

xxz2017@csu.edu.cn
2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082,

China; haoliu@hnu.edu.cn
3 State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering

Science, College of Engineering, Peking University, Beijing 100871, China
* Correspondence: yulong123@pku.edu.cn; Tel.: +86-13126976377

Received: 7 September 2020; Accepted: 2 October 2020; Published: 3 October 2020
����������
�������

Abstract: In a recent experimental study of indentation creep, the strain rate sensitivity (SRS) and
activation volume v∗ have been noticed to be dependent on the indentation depth or loading force for
face-centered cubic materials. Although several possible interpretations have been proposed, the
fundamental mechanism is still not well addressed. In this work, a scaling law is proposed for the
indentation depth or loading force-dependent SRS. Moreover, v∗ is indicated to scale with hardness
H by the relation ∂ ln(v∗/b3)/∂ ln H = −2 with the Burgers vector b. We show that this size effect
of SRS and activation volume can mainly be ascribed to the evolution of geometrically necessary
dislocations during the creep process. By comparing the theoretical results with different sets of
reported experimental data, the proposed law is verified and a good agreement is achieved.

Keywords: indentation creep; size effect; strain rate sensitivity; activation volume; geometrically
necessary dislocations

1. Introduction

Over recent decades, instrumented indentation tests have been recognized as an effective tool
for probing the thermally activated deformation of metallic materials [1–3]. Typical experimental
methods for the study of indentation creep contain the constant load and hold (CLH) test [4], constant
strain rate (CSR) test [5], constant loading rate (CLR) test [6], strain rate jump (SRJ) test [7], etc. Being
different from the conventional creep tests, the strain rate sensitivity (SRS) and activation volume
(the two critical rate sensitive parameters) measured by these creep tests have been noticed to exhibit
an obvious size effect [2,7–9]. The comprehension of these size-dependent parameters is critically
essential for the interpretation of the fundamental creep deformation mechanisms [1,10–12].

So far, there exist two types of size effect as informed from the tests of indentation creep, including
the interface-dominant creep size effect [7,9,11,13–16] and indentation depth- or force-related creep
size effect [2,8,17–23]. For the former, previous literature has indicated that both the SRS and activation
volume are affected by the intrinsic microstructures like grain and twin boundaries at the micro- or
nano-scale [24,25]. For face-centered cubic (FCC) materials, enhanced SRS with decreasing grain size has
been observed for nanocrystalline gold [14], copper [13] and nickel [11]. As for nano-twinned materials,
a similar scaling relation has also been noticed for the dependence of SRS on the twin thickness [26,27].
It is, therefore, realized that there exists an intrinsic length scale for the SRS and activation volume,
which is determined by the grain size and twin width of nanostructured materials [7,9,11,13–15] or the
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film thickness of nanocrystalline films [28–30]. In order to interpret the thermally activated mechanisms
for this length scale, Asaro and Suresh [26] proposed an analytical model by considering the emission
of partial dislocations from grain and twin boundaries. Following this idea, a non-homogeneous
nucleation model was later developed that can rationalize the size-dependent SRS and activation
volume for nanocrystals and nano-twinned materials [31].

Besides the influence of intrinsic microstructures, there exists another form of size effect when
addressing the indentation creep of single crystals and polycrystals with large grain size, i.e., the
SRS decreases or the activation volume increases with increasing indentation depth or loading force,
and this phenomenon has been widely observed in the CLH [19,21,22,32,33], CSR [8,23,34,35] and
SRJ [36–38] test. For example, the size effect of indentation creep has been studied for polycrystalline
pure aluminum through CLH tests at room temperature, which exhibits an obvious decreasing tendency
of the SRS with increasing loading force even after the correction of thermal drift effects [22]. Similarly,
the SRS of both annealed and 80% cold-worked 70/30 brass has been noticed to decrease with increasing
indentation depth when performed under CSR tests [35]. Moreover, when applying SRJ tests on
sintered silver nanoparticles, the SRS decreases from 0.04 to 0.024 with the increase in indentation depth
from 1100 nm to 1700 nm [37]. Therefore, it is anticipated that there exist some different mechanisms
for the depth- or force-related creep size effect of single or polycrystals, when compared with the
interface-dominant creep size effect of nanocrystals or nano-twinned polycrystals.

In recent years, several possible explanations have been proposed for addressing the depth-
or force-related creep size effect, including the consideration of the free surface effect [21],
thermal drift [2,19] and the evolution of geometrically necessary dislocations (GNDs) [2,8,39,40].
Sadeghilaridjani et al. [21] attribute this creep size effect to the high diffusion and mobility of
dislocations near the sample surface, which result in a comparatively high SRS at shallow indents.
However, even when the indentation depth extends 100 nm so that the influence of the free surface
can be ignored, the size effect can still be observed in brass [35] and Al alloys [23]. Another possible
explanation is considered to be the influence of thermal drift [2,19]. It is believed that the measurement
error could exceed 100% when the indentation displacement rate gets close to the thermal drift rate [2].
However, even if the thermal drift is artificially inhibited or corrected during the indentation creep tests,
the creep size effect still exists, especially at shallow indentation depths [23]. Actually, it is interesting
to note that the depth- or force-related creep size effect seems to follow a similar evolution tendency
as the hardness–force (or depth) relation of polycrystalline aluminum and alpha brass [8]. For the
latter, it is with the well-known indentation size effect that the hardness decreases with increasing
indentation depth due to the influence of GNDs [41]. Consequently, the fundamental mechanisms
addressing the creep size effect are believed to originate from the thermally activated interaction
between GNDs, which could become comparatively difficult as the density of GNDs becomes high at
shallow indents [8,39,40].

In this work, we intend to propose a mechanistic model scaling the depth- or loading
force-dependent SRS and activation volume of FCC materials, as corresponding theoretical analyses
addressing this creep size effect have been seldomly reported in the literature. The outline of this paper
is given as follows: in Section 2, the theoretical model is proposed in detail for the creep size effect.
In Section 3, the experimental data of alpha brass, aluminum and austenitic steel are considered to
verify the rationality and accuracy of the model results. Finally, we close with a brief conclusion in
Section 4.

2. Theoretical Model for the Creep Size Effect

To begin with, the creep process under indentation tests is considered to be accommodated with
the evolution of dislocation microstructures beneath the indenter tip. At the onset of creep deformation,
dislocation loops with Burgers vectors normal to the surface plane are generated to address the
geometrical shape change at the contact surface [41]. Then, the existing GNDs are forced to move
radially from the inner creep region (close to the indenter tip) to the boundary between the creep and
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elastic regions. For simplicity, we assume that the creep deformation can be discretized into numbers
of sequential activation events. During each activation event, the indenter tip moves downwards by a
distance of b, and forces the i-th dislocation loop (1 ≤ i ≤ N with N being the number of dislocation
loops) to sweep a distance of s. Here, b is the magnitude of the Burgers vector and s is the spacing
between dislocation loops [41], as illustrated in Figure 1.
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Figure 1. Schematic of indentation creep with the evolution of geometrically necessary dislocations
(GNDs), which are performed by a conical indentation. When tanθ =

√
π/24.5 = 0.358 (θ is the

angle between the indenter and sample), the model is also applicable to the Berkovich indentation
following the self-similar principle [41]. The creep process is discretized into the expansion of circular
dislocation loops. During each creep activation, the indenter tip moves forward by a length of b, and a
new dislocation loop is generated from the indenter tip that forces existing dislocation loops to creep
radially with a distance of s. Thereinto, b and s are, respectively, the magnitude of the Burgers vector
and the spacing between individual dislocation loops.

2.1. Size Effect of the Activation Volume

Considering that the total length of GNDs is λ = πha/b [41] and the number of dislocation loops
equals N = h/b, the average length of the dislocation segment within the creep region yields

l∗G =
λ
N

= πa = πh cotθ (1)

where a and h are, respectively, the contact radius and indentation depth. θ is the angle between the
indenter and sample. In addition, the activation distance between each dislocation loop becomes

d∗G = s =
ba
h

(2)
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When one further considers the obstacle-determined dislocation plasticity [24,42], the activation
volume determined by GNDs can then be expressed as

v∗G = bl∗Gd∗G = πb2 cot2 θh =
3πb

2
1
ρG

(3)

where ρG = 3 tan2 θ/(2bh) is the depth-dependent GND density, as defined by Nix and Gao [41].
Equation (3) indicates that v∗G increases proportionally with h but varies inversely with ρG. A similar
evolution tendency has already been observed for swaged and annealed copper where the activation
volume increases almost linearly with h [18]. Given that the activation distance is a constant, as indicated
by Equation (2), the variation of v∗G is then realized to be determined by the evolution of l∗G.

As the creep process goes on, the density of GNDs gradually decreases due to the expansion of
the creep region with increasing indentation depth. Although the transition of pre-existing statistically
stored dislocations (SSDs) to GNDs might be possible by the cross-slip mechanism [43], its influence
on the decrease in GND density may not be obvious, as the dominant type of dislocation is the edge
dislocation for FCC materials considered in this work. Then, the thermal activation of SSDs tends to
dominate the creep deformation. For crystalline materials with large grain size, the average segment
length and activation distance of SSDs can be, respectively, estimated as l∗S ∼ k/

√
ρS and d∗S ∼ 1/

√
ρS

with ρS being the density of SSDs [24]. Then, to be consistent with Equation (3), the activation volume
related to SSDs could be taken as

v∗S = bl∗Sd∗S =
3πb

2
1
ρS

(4)

where ρS = 3 tan2 θ/(2bh∗) and k = 3π/2. Thereinto, h∗ is a characteristic length related to the bulk
hardness [41]. It is indicated by Equation (4) that v∗S is independent of h but characterizes the intrinsic
creeping properties of materials without size effect.

When simultaneously addressing the contribution of GNDs and SSDs, one may consider the
relation 1/v∗ = 1/v∗G + 1/v∗S [27], and then the general expression of the activation volume yields

v∗ =
3πb

2
1

ρS + ρG
(5)

which can be reduced to Equation (3) when there exists an obvious indentation size effect (i.e., ρG >> ρS),
or be degraded into Equation (4) when ρG → 0 at deep indents. Given the expressions of ρG and ρS as
mentioned above, the activation volume can be recast as

v∗ =
πb2h∗H2

0

tan2 θ

1
H2 (6)

and
ln(

v∗

b3 ) = ln k2 − 2 ln H (7)

where H = H0
√

1 + h∗/h is the depth-dependent indentation hardness [41], and k2 = πh∗H2
0/(b tan2 θ)

is a constant related to the bulk hardness H0 and characteristic length h∗ [44]. As indicated by
Equation (7), ln(v∗/b3) scales linearly with ln H, which is consistent with the experimental observations
for most FCC materials, like aluminum, silver and nickel [40]. In addition, the decrease in v∗ with
increasing H can be ascribed to the accumulation of dislocations at shallow indents that leads to a
small activation area swept out by gliding dislocations during the thermal activation event [30].

2.2. Size Effect of the Strain Rate Sensitivity

Next, following the Taylor relation, the shear strength of FCC materials is determined by the
dislocation density, i.e.,

τ = µbα
√
ρS + ρG (8)
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where µ is the shear modulus and α is the dislocation strength coefficient. The lattice friction τ0 is
ignored in the expression of τ as it is usually very small for FCC materials [45]. By further considering
the von Mises flow rule [46] and Tabor’s factor [47], the hardness can be given as

H = 3
√

3τ = 3
√

3µbα
√
ρS + ρG (9)

Submitting Equations (5) and (9) into the definition of SRS, it yields

m =
3
√

3kBT
v∗H

=
2kBT

3πµαb2

√
ρS + ρG (10)

where kB and T are the Boltzmann constant and testing temperature, respectively. Recalling the
expressions of ρS and ρG as mentioned above, one can further have

m =
2kBT

3πµαb2

√
3 tan2 θ

2bh∗
+

3 tan2 θ
2bh

= m0

√
1 +

h∗

h
(11)

where m0 = kBT tanθ/(πµαb2)
√

2/(3bh∗) is the SRS without size effect for bulk materials that depends
on the density of SSDs through h∗. Equations (10) and (11) indicate that both GNDs and SSDs contribute
to the SRS measured by indentation creep tests. However, the variation of SRS with respect to the
indentation depth is determined by the contribution of GNDs.

When one further takes the relation between the loading force P and h2 in a proportional form [48],
i.e., P = Kh2 and P∗ = K(h∗)2, where K is a proportionality factor and P∗ is the characteristic loading
force corresponding to h∗, then the expression of Equation (11) can be recast as

m = m0

√
1 +

√
P∗

P
(12)

It is interesting to note that Equations (11) and (12) offer a characteristic form for the depth
dependence or loading force dependence of the SRS so that the square of the SRS scales linearly
with the reciprocal of the indentation depth or of the square root of the loading force. When the
raw experimental data of polycrystals are drawn in this way, a straight line is anticipated so that the
intercept informs the value of m0 and the slope yields h∗ or P∗. In order to verify this proposed scaling
law, four different sets of experimental data are considered in the following, including annealed and
work-hardened alpha brass [8,49], annealed aluminum [8] under CLH tests, austenitic steel [38] under
SRJ tests and annealed alpha brass [35] under CSR tests.

3. Comparison between Theoretical Results and Experimental Data

We firstly present the m−P relationships of work-hardened mechanically polished alpha brass [49]
and annealed aluminum [8], which are compared between the experimental data (black dots) and
theoretical results (red lines), as illustrated in Figure 2. The creep tests are performed at room
temperature with the loading force ranging from 10−4 to 100 N, and the type of indenter is a Berkovich
indenter [8,49]. The theoretical results are predicted by Equation (12) with m0 and P∗ calibrated by
comparison with the converted experimental data (see the inset of Figure 2). The model parameters
are listed in Table 1. An excellent agreement is observed where the SRS decreases with the increase
in P until m0 is reached. This decreasing tendency is ascribed to the variation of creep mechanisms,
which range from the dislocation–dislocation interaction to the dislocation–solute interaction, as the
former becomes dominant at a high stress level [50]. Moreover, the fitted values of m0, i.e., 0.016 and
0.007, for alpha brass and aluminum are, respectively, close to the literature values of 0.018 obtained by
CSR tests for copper [19] and 0.01 obtained by CLH tests for aluminum [40].
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Table 1. Model parameters for work-hardened alpha brass [49], annealed aluminum [8], austenitic
steels [38] and annealed alpha brass [35].

Parameter Work-Hardened
Alpha Brass

Annealed
Aluminum Parameter Austenitic

Steels
Annealed

Alpha Brass

m0 0.016 0.007 m0 0.006 0.0023

P∗ (N) 2.94 × 10 −4 0.039 h∗ (nm) 2023 6097

The proposed m − P relation can also be expressed in a similar form as the classic Nix–Gao
model [41] so that the SRS decreases with increasing indentation depth. In order to verify the m− h
relation, as indicated by Equation (8), the experimental data of austenitic steel (SRJ test) [38] and
annealed alpha brass (CSR test) [35] are considered. A Berkovich indenter is applied for these creep
tests. In Figure 3, the comparison between theoretical results and experimental data is illustrated so
that a reasonable agreement is observed for both materials. In this case, m0 = 0.006 for austenitic steel
is close to 0.0066 for 310 stainless steel [51] and m0 = 0.0023 matches well with 0.002 obtained from [49]
for annealed alpha brass. However, one may note that the experimentally measured value of m for the
alpha brass gradually deviates from the theoretically predicted line. This is believed to originate from
the effect of thermal drift during the indentation creep tests. According to the analysis of [2], the SRS

without thermal drift correction m can be approximated as m ≡ m(1 + λ/
.
h)

2
with λ as the thermal

drift rate (of the order of ±10−2 nm·s−1) and
.
h as the penetration rate. With increasing indentation

depth,
.
h decreases from an initial high value down to the absolute value of λ. Therefore, it is rational

to observe that m < m with the increase in h when λ < 0, as indicated in Figure 3b.
Besides the characteristic m − h and m − P relationships as proposed above, the normalized

activation volume with respect to the indentation hardness also follows a scaling law, as expressed in
Equation (7). To verify this conclusion, the experimental data of copper obtained from [30,52], as well
as the data of alpha brass and aluminum taken from [8], are plotted in Figure 4. Correspondingly,
the scaling relation is illustrated by solid lines with the slope ∂ ln(v∗/b3)/∂ ln H = −2. It seems that
the creep data follow this scaling law well, and similar linear relationships between ln(v∗/b3) and
ln H have also been noticed in the experimental data of some other FCC materials, but with the slope
ranging from −1 to −3 [40]. This discrepancy may originate from ignoring the effect of strain hardening
induced by the dislocation–dislocation interaction, and might also come from the influence induced by
thermal drift through v∗ = kBT/(mτ), as the simulation work of [19] has captured an obvious variation
of SRS with increasing thermal drift rate.
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Figure 3. Strain rate sensitivity m-indentation depth h relationships compared between the experimental
data (black dots) and theoretical results (red lines) of (a) austenitic steel [38] and (b) annealed alpha
brass [35]. The inset figure illustrates the calibration of model parameters by comparison with
experimental data.
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4. Conclusions

To sum up, a scaling law is proposed in this work to address the indentation depth- or loading

force-dependent SRS for FCC materials, i.e., m = m0
√

1 + h∗/h or m = m0

√
1 +
√

P∗/P. In addition,
the activation volume is found to scale with the hardness by the relation ∂ ln(v∗/b3)/∂ ln H = −2.
The model is deduced by the consideration of a dislocation-dominant mechanism so that the mutual
interaction of GNDs at shallow indents plays a critical role in determining this scaling law. Moreover,
the proposed law has been verified by comparison with different sets of experimental data.
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