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Abstract: This study focuses on the relationship between the complexity of pore structure and
capillary water absorption of concrete, as well as the connection behavior of concrete in specific
directions. In this paper, the water absorption of concrete with different binders was tested during the
curing process, and the pore structure of concrete was investigated by mercury intrusion porosimetry
(MIP). The results show that the water absorption of concrete with mineral admixtures is lower,
mainly due to the existence of reasonable pore structure. The effect of slag on concrete modification is
more remarkable comparing with fly ash. In addition, the analysis shows that the pore with different
diameters has different fractal characteristics. The connectivity probability and water absorption
of unidirectional chaotic pore are linearly correlated with the pore diameter of 50–550 nm, and the
correlation coefficient reaches a very significant level, and detailed analysis was undertaken to
interpret these results based on fractal theory.
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1. Introduction

As one of the most commonly used building materials, concrete is inevitably subjected to various
destructive factors, which stem from the production process or use environment of concrete. In addition,
water is the most common substance accompanied by concrete, which always affects the durability of
concrete [1,2]. Harmful ions dissolved in water (e.g., chloride ions, sulfate ions, or magnesium ions) are
transported among the complex and disordered pores [3]. Both theoretical and experimental results
show that the capillary suction of unsaturated concrete absorbs chloride ions in water and accelerates
the corrosion of reinforced concrete under the condition of wetting and drying alternation.

Additionally, sulfate attack also depends on the moisture entering concrete during the process of
water transport [4–6]. Water penetrating in and out actually exists in all the processes of deterioration
resulting from the freeze-thaw cycle, and the damage extent of concrete shows an ultra-superposition
effect under the alternation of wetting and drying [7]. Obviously, water absorption behavior plays an
important role in durability of concrete.

The rate at which water is absorbed into concrete by capillary suction can provide useful
information relating to the pore structure, the permeation characteristics, and the durability of concrete
surface zone [8,9]. Meanwhile, the pore structure of concrete is of great significance to the durability
of the material, and the complexity of pore structure has a significant impact on the permeability.
The pore size of concrete varies from nanometer scales to micrometer scales, and the pore morphology
shown by scanning electron microscopy (SEM) is rather complex and disordered [10].
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Fractal theory, as a rising nonlinear science, may solve the problem of evaluating the complexity
or roughness of self-similar or approximate self-similar objects effectively. The mathematical beauty of
fractal is that it forms the infinite complexity with relatively simple equations and different information
captured by test equipment and different definitions of fractal dimension (including the Hausdorff
dimension, the box-counting dimension, etc.) [11,12]. Fractal theory has been applied to the study
of concrete, and some valuable results have been obtained, especially in pore research, pore fractal
dimension. It has a close relationship with the transport performance (chloride diffusion coefficient,
depth of carbonation, etc.) as a parameter of the complex transport channel [13,14], which can be
used as an index of pore structure damage [15,16]. If it is assumed that the pore can move by itself,
the connecting behavior between the pore is a revolution from complexity to simplicity, so it can be
inferred that the fractal dimension of the pore and the possibility of the connection correspond to each
other. Microstructure parameters measured by MIP and X-ray CT images with different voxel sizes
were compared [17].

Fractal theory can better characterize the connectivity of pores. At present, there are few studies
on quantitative analysis of pore connectivity by fractal theory. In this study, concrete specimens
with different pore structures were prepared by adding different mineral admixtures. In order to
obtain the relationship between the complexity of pore structure and the absorption capillary water in
specific directions, a series of tests were carried out on the properties of concrete specimens, and the
experimental results were compared and discussed by processing data obtained from the test of water
absorption and MIP. Finally, fractal theory is used to analyze the relationship of the pore connectivity
and water absorption.

2. Materials and Mixture Proportions

The 32.5. R ordinary Portland cement was used which is produced by Shenyang Jidong Cement
Company, China. The physical properties of cement are shown in Table 1. Additionally, the chemical
compositions of fly ash and slag are shown in Table 2. There are three specimens in each group. If the
deviation of the test results of three specimens in each group is within 5%, the test results are considered
to be valid, and the average value of the test results of the three specimens is taken as the final test
results. All experimental results in this paper are based on this method.

Table 1. Physical properties of cement.

80 um
Sieve

Reside/%

Setting Time/Min
Soundness

Tensile Strength/MPa Compressive
Strength/MPa

Initial Final 3d 28d 3d 28d

1.4 160 220 Qualified 3.3 7.0 16.5 38.1

Table 2. Chemical composition of fly ash and slag (%).

Chemical
Composition SiO2 Al2O3 CaO MgO Fe2O3 SO3

Slag 31.73 13.84 40.76 7.87 2.01 1.52
Fly ash 55.01 28.5 2.39 2.19 8.05 –

Low air-induced water-reducing agent was used which is produced by Shenyang Dongling
concrete admixture company, China. It is a polycarboxylate superplasticizer with solid content of 20%.
The mix proportions are shown in Table 3. The compressive strength test specimens were made of
100 mm × 100 mm × 100 mm. After curing for 24 h, the specimens were demolded and transported to
the curing room for 7 and 28 days for testing. The workability and compressive strength of concrete
are shown in Table 4.
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Table 3. Mix proportions of concrete (kg/m3).

Binder Types Water Cement Sand Slag Fly Ash Coarse
Aggregate

Water
Reducing

Agent

OPC 215 420 660 - - 1264 4.5
OPC with slag 180 340 798 100 - 1264 4.5

OPC with fly ash 180 380 798 - 70 1264 4.5
OPC with slag and fly ash 180 340 798 65 35 1264 4.5

Table 4. Workability and compressive strength of concrete.

Binder Types Slump/mm Compressive Strength/MPa

OPC 225 35.9
OPC with slag 200 41.5

OPC with fly ash 250 39.1
OPC with compound admixture 230 44.7

3. Water Absorption Test of Concrete

Duplicate specimens (40 mm × 40 mm × 160 mm) of mortar were used to determine the water
absorption values of concrete at 7 and 28 days. The specimens were dried at 105 ◦C to constant, and the
initial weight of all specimens was recorded. Then the surface of the specimens was coated with
epoxy resin, except for an exposed surface. The cured specimens were immersed in water at 20 ± 2 ◦C,
and the water head was maintained at 2.3 cm. Then the weight of the text specimens was recorded at a
specified time interval, which can be set longer as the program continues. The schematic diagram of
the water absorption test is shown in Figure 1.

Figure 1. Schematic diagram of water absorption test.

Due to the strong barrier effect of epoxy resin, only one bottom surface can directly contact with
water, which ensures the one-way transmission path of water. We all realize that only when the pores
in concrete are connected with each other, the liquid will transfer freely and rapidly between the pores.
Therefore, the volume of the permeable pore equals to the volume of the cumulative water absorption
and the connecting porosity in one direction, which can be obtained by Equation (1).

θ = m f /(ρ f ·V) (1)

where θ is connecting porosity, mf is mass of fluid, ρf is density of water, and V is total volume of the
tested specimen.
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In addition, concrete is a kind of porous material, assuming that the capillary of concrete is
multidimensional random parallel distribution, and the pore structure is cylindrical. The flow increment
of concrete could be expressed as Equation (2) [18].

W(t) = nπr2ρ

√
t
rγ cosθ

2η
= s
√

t (2)

where W(t) is flow increment, n is mass of pores, r is pore size, ρ is density of water, t is time, γ is surface
tension of water, θ is contact angle of water, η is viscosity of water, s is coefficient of capillary absorption.

According to the characteristics of data collection and Equation (2), generalized least squares
method could be used to calculate the capillary absorption rate of concrete. Figures 2 and 3 show the
experimental imbibition data (expressed as cumulative absorbed volume/unit inflow area vs. t1/2).

Figure 2. Relationship between water absorption and square root of time (7 days cured concrete).

Figure 3. Relationship between water absorption and square root of time (28 days cured concrete).

As the curing time prolongs, the water absorption of all samples decreases (as shown in Figure 4).
Comparison sample has the highest water absorption, followed by fly ash. Slag sample and double
mixing sample have the best water absorption resistance.
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Figure 4. Water absorption of concrete.

The results show that the water absorption of concrete can be effectively reduced by adding two
mineral additives (fly ash and slag), and the water absorption reduction effect of slag powder is more
remarkable than that of fly ash.

4. Pore Fractal Dimension

4.1. MIP Test

After 28 days of standard curing, the concrete particles with the particle size of 3–5 mm were
screened out by small hammer. The hydration reaction in the concrete particles was terminated by
anhydrous ethanol. The treated samples were put into the oven and dried continuously at 105 ± 2 ◦C
for 6 h to remove the excess moisture. The samples were put into the dilatometer and tested by mercury
intrusion method.

In addition, samples were placed in an oven at 105 ◦C for 6 h to remove residual water or
alcohol. Finally, the micropore structure was investigated using mercury intrusion porosimetry (MIP).
The mercury injection test results of the four kinds of concrete after curing 28 d are shown in Figures 5
and 6.

Figure 5. MIP curves of relationship between pressure and cumulative intrusion.
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Figure 6. Pore size distribution of cement mortar.

Besides, connecting porosity as a one-dimension value of concrete, the proportion of the connecting
porosity (θ) in total porosity (θT) of concrete can be seen as the connectivity probability among pores
on a specific rotation direction. The schematic drawing of the pores distributing in concrete is shown
in Figure 7.

Figure 7. Schematic drawing of the different connectivity probability.

It can be seen that the pore is intricately distributed in concrete, and their connection behavior
occurs naturally and randomly. The permeability of porous concrete in different states under the
same pore conditions is obviously different. Porosity has a direct physical meaning (void volume
ratio), tortuosity is either an indirect or inferred measure of how the flow rate is affected (by twists
and turns) within the porous medium. Highly interconnected connectivity as mentioned in the paper,
is low tortuosity.

Therefore, the ratio (θ/θT) can be used to describe the connectivity trend in pore formation process.
According to the data collected by MIP, the pore size distributions and connectivity probability (θ/θT)
are shown in Table 5.



Crystals 2020, 10, 892 7 of 13

Table 5. Pore size distribution and connectivity probability of concrete.

Binder Types
Porosity/% Total

Porosity/%
Connectivity
Probability/%>103 nm 103–102 nm 102–10 nm <10 nm

OPC 14.34 46.40 37.14 2.12 21.54 56.22
OPC with slag 33.82 13.82 49.20 3.17 14.78 37.01

OPC with fly ash 22.20 24.20 48.69 4.91 16.13 46.00
OPC with
compound
admixture

26.42 16.07 52.79 4.72 13.48 43.47

4.2. Calculation of Pore Fractal Dimension

Based on the fractal theory and the related micropore model, the deep information in concrete can
be revealed. The Menger sponge model (shown in Figure 8) is an optimal fractal structure, which can be
used to simulate the complex state of pore distribution in concrete [19]. The fractal model is established
to simulate the fractal pores of materials. The cube with side length R is divided into equal-sized
small cubes. We selected a rule, removed some of these small cubes, and the remaining small cubes
were N(m). With this operation, the size of the remaining cubes decreases and the number increases.
The remaining infinitely small cubes form the matrix of the material, while the small cube spaces with
different orders are removed to form the pores of different orders in the material. After k operations,
the remaining cube size is rk = R/mk. The following equations can be obtained:

Nk = (rk/R)−D (3)

where D is dimension of pore volume, and the structure volume can be deduced as follows:

Vk ∝ rk
3−D (4)

Figure 8. Menger sponge model.

According to Equation (4) and the relation between pressure and pore size, the dV and dr are
taken as logarithmic, respectively, to draw the curve, the fractal dimension of porous volume can be
determined by the slope of the curve. Lgr and LgV are the logarithm to r and the logarithm to V,
respectively. The relationship between Lgr and LgV are shown in Figures 9–12.
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Figure 9. Relationship between Lgr and LgV of comparing concrete.

Figure 10. Relationship between Lgr and LgV of slag concrete.

Figure 11. Relationship between Lgr and LgV of fly ash concrete.
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Figure 12. Relationship between Lgr and LgV of OPC with compound admixture.

The above figure shows that there are inflection points near the aperture of 50 and 550 nm,
so the relationship between Lgr and LgV cannot be described as a straight line, but two straight lines.
In fact, when trying to establish a relationship between fractal values and macroscopic properties,
the polytrope of fractal dimension should be taken into consideration among different size scope,
because it turns out to be different fractal properties with different size scope of an object, then the
fractal dimension of pores in concrete should be achieved segmentally by the relationship according
to Equation (4), and the pore fractal volume dimension obtained through the calculation of mercury
intrusion data are shown in Table 6.

Table 6. Fractal dimension of pores and correlation coefficients.

d1 (<50 nm) d2 (50~550 nm) d3 (>550 nm) d

OPC
D 2.9188 2.2584 2.8394 2.6651
R 0.9432 0.9933 0.9947 0.9677

OPC with slag D 2.8525 2.7553 2.7269 2.7693
R 0.9632 0.8289 0.9762 0.9856

OPC with fly ash D 2.8367 2.5721 2.8042 2.7327
R 0.9722 0.9822 0.9954 0.9843

OPC with compound
admixture

D 2.8118 2.6849 2.7244 2.7308
R 0.9730 0.9473 0.9919 0.9939

5. Results and Discussion

The investigations performed in this study showed that alterations of mineral admixture can
seriously affect the water absorption of concrete as is shown in Figure 13. Alterations of mineral
admixture are not limited to macroscopic effect but act in the microstructure evolution of concrete.
Mineral admixtures could refine the pore structures indeed, which is quantified as fractal dimension in
this paper. Additionally, thinking about pore volume distribution from the perspective of the ideal
fractal model, higher pore volume dimension means more complex pores distributed in concrete,
under the same porosity conditions. The more complex the pore is, the longer the transmission
path of water is, and also the transportation time which makes it a lower water absorption value of
concrete [20]. Due to these assumptions, total pore fractal dimension should have a good agreement
with water absorption value. The relation between water absorption values and total pore dimension
is as shown below:
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Figure 13. Relationship between water absorption values and total pore dimension (28 days
cured concrete).

However, this is not an ideal case. As shown in Figure 13, there is no good correlation between the
total pore volume size and the water absorption value (correlation coefficient is 0.78). Especially when
the fractal dimension is 2.7308 and 2.7327, the water absorption rate is higher with the increase of
the fractal dimension. It is concluded that the fractal dimension of total pore volume does contain
all the information of the complex state of pores. In Figures 9–12, there are inflection points in the
relationship curve between Lgr and LgV. Therefore, the total pore fractal dimension cannot accurately
reflect the complex state of the pore. Therefore, the key factor to establish the objective relationship
between pore complexity and water absorption value is to select the appropriate section of pore size,
accurately characterize its complexity by pore fractal dimension, and explain the most possible pore
size of concrete. The relationship of water absorption value and fractal dimension of 50~550 nm is
shown in Figures 14 and 15.

Figure 14. Relationship of water absorption value and fractal dimension of 50~550 nm (7 days
cured concrete).
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Figure 15. Relationship of water absorption value and fractal dimension of 50~550 nm (28 days
cured concrete).

The fractal dimension of the comparing sample is obviously higher than that of the other samples
with a most probable aperture near 671 nm. From another point of view, it is concluded that the
fractal dimension of pore size of the comparing sample is the lowest between 50 and 550 nm, so there
is another most possible pore size between 50 and 550 nm. From the mercury injection data, it can
be seen the results of this analysis. Therefore, due to the inherent defects of MIP (high pressure,
solid particle breakage, etc.), all samples have the maximum possible pore size between 50 and 550 nm.
Compared with other sections, the middle section of pore diameter can always accurately describe
the complex state of the pore, so that the fractal dimension of the pore between 50 and 550 nm has
a good linear relationship with the water absorption value. The correlation coefficients of concrete
cured on 7 and 28 d are greater than 0.95. Although the samples were tested at 28 days, there was
a significant correlation between the absorption value of 7 days and the fractal volume dimension.
The results show that the pore volume fractal dimension of 50–550 nm can be used to evaluate the
water absorption of concrete. Furthermore, the pores with small fractal dimension correspond to low
complexity of pores, which indicates that the pore tends to be simplified. Therefore, with the increase
of pore fractal dimension, the probability of pore connectivity decreases. The relationship between
connectivity probability of pores and pore volume dimension of 50~550 nm is shown in Figure 16.

Figure 16. Relationship between connectivity probability of pores and pore volume dimension of
50~550 nm.
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As shown in the figure above, the fractal dimension of pores in concrete is closely related
to the probability of pore connectivity, and the correlation coefficient can reach 0.935. The above
correlation can be explained by the quantification of pore fractal dimension between 50 and 550 nm,
which quantifies the complexity of internal pores in concrete. The discovery of the relationship between
fractal dimension and probability of pores distribution plays an important role in studying the internal
possibility of concrete with the theory of chaos and fractal.

6. Conclusions

(1) The pore structure of different regions shows different fractal characteristics. Fractal theory can
analyze and evaluate the pore structure characteristics of concrete, especially when evaluating
the permeability of concrete, the complexity of pore structure can be described in detail
and quantitatively.

(2) With the extension of curing time, the water absorption value of all samples will decrease.
Adding two mineral additives (fly ash and slag) can effectively reduce the water absorption of
concrete, and the water absorption reduction effect of slag powder is more significant than that of
fly ash.

(3) Compared with the total pore fractal dimension, the pore fractal dimension of 50–550 nm can
accurately describe the complex state of the pore, and the pore fractal dimension of 50–550 nm
has a good linear relationship with the water absorption value.

(4) Pore fractal dimension between 50 and 550 nm has a close correlation with connectivity probability
of pores inside concrete. The fractal theory could be applied for researching the probability of
pore distribution inside concrete. The pore fractal dimension of 50–550 nm is closely related to
the probability of pore connectivity in concrete. Fractal theory can be used to study the internal
probability of concrete.
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