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Abstract: We have developed a very useful and cost-effective liquid crystal (LC) alignment layer of
brush-coated TiO2 that is solution-processable for twisted nematic (TN) LC cells. TiO2 was prepared
via the sol-gel method. The TiO2 solution was brush-coated on the substrate, followed by an annealing
process. During the brush-coating process, a retracting force is generated on the deposited TiO
solutions along the coating direction. The annealing process hardens the TiO2 and generates shearing
stress arising from the retracting force along the brush-coating direction. The shearing stress created
highly oriented nano/microstructure and uniformly aligned LCs with a stable pretilt angle of 0.6◦.
TN mode LC cells based on brush-coated TiO2 exhibited a performance of 12.5 ms of response and a
threshold voltage of 1.8 V. Our brush-coated TiO2 incorporates two steps of the film deposition and
alignment process into one step.
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1. Introduction

Surface engineering has contributed greatly to the development of modern technology.
In particular, surface nano/micropatterning is an important technique that can improve the performance
of functional devices over flat surfaces, such as optical [1–3], mechanical [4,5], electrical [5], and biological
response [6–9], as well as increase semiconductor integration. For example, nano/microstructures,
with wavy and quasi-periodicity enhance the optical properties of optics applications, including solar
cells and organic light-emitting diodes [1–3]. In addition, because the nano/microfabrication enhances
the mechanical endurance, it can make rollable and flexible electronic devices [4,5]. Moreover, surface
nano/microstructures with complex geometries control the surface energy and provide desirable
functionalities, such as antimicrobial properties, biocompatibility, and environmental responsiveness
of the surface [6–9].

In addition, the solution coating process is also an important technique for enhancing the
performance of functional devices, because it is directly connected to the quality of the film, such as
orientation and crystallization, which affects the performance of the devices. [10,11]. Various solution
processes, including spin-coating [12], dip-coating [13], blade coating [14], and brush-coating [15,16],
have been developed for advanced performance of the devices. For example, the desirable performance
of optics and electronics devices can be achieved by producing high-quality polymer films or
quantum dot deposition by adopting various solution coating techniques [17–19]. Among the several
solution coating techniques, brush-coating allows controllable liquid transfer by shearing the solution
and successfully orienting the materials, which can obtain a higher performance of opto-electrical
devices [15,16]. Therefore, the brush-coating can be useful when the materials require an oriented
nano/microstructure.
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Liquid crystal (LC)-based devices are very suitable for adopting brush-coatings because they
require an oriented structure. LC devices can be successfully operated under the condition of
uniform LC alignment, which is the core technology for uniform and high quality electro-optical
performance [20]. Various alignment techniques, including the rubbing process [21], ultraviolet
photo-alignment technique [22], nanoimprint lithography [23], and ion beam irradiation [24], have been
developed for uniform LC alignment. Although these methods have several advantages, such as high
quality and desirable performance, these techniques suffer from limitations, such as the generation of
contaminant debris and the limitation of a large-area process with high cost. Thus, a need to develop
alignment technique for advanced LC devices arises.

Herein, we incorporated the film deposition process and alignment techniques within one step by
adopting a brush-coating. As mentioned previously, LC device fabrication should be accompanied
by an alignment technique after the alignment layer deposition. Since brush-coating can deposit
a film with an oriented structure, the fabrication process of the LC device can be reduced to one
step, with high throughput and cost effectiveness. We propose that the brush-coating can direct the
orientation of the surface by shearing stress and construct the nano/microstructure on the surface,
which can align uniformly the LC molecules. Titanium oxide (TiO2) was used as the alignment layer
that was prepared by a sol-gel process. TiO2 has been investigated for photocatalysis on optical devices
with low cost, nontoxicity, and high chemical stability [25,26]. The LC alignment state was observed
by cross-polarized optical microscopy (POM) with a pre-tilt angle. Atomic force microscopy (AFM)
was used to verify the effect of the brush-coating on aligning the LC molecules as compared with the
spin-coating process not accompanied by an alignment technique. X-ray photoelectron spectroscopy
(XPS) was used to confirm the chemical structure of TiO2. Finally, the electro-optical (EO) property of a
twisted nematic (TN) cell was measured with the response time (RT) and voltage–transmittance (V–T).

2. Materials and Methods

The TiO2 film was prepared using a brush-coating process on indium tin oxide (ITO)-coated glass
substrates (Samsung Corning 1737: standard 32 × 22 × 1.1 mm3, sheet resistance: 10 Ω sq−1). Prior to
deposition, the TiO2 solution was prepared by a sol-gel process, and the ITO-coated glass substrates
were cleaned by ultrasonication in acetone, methanol, and deionized water for 10 min and dried with
N2 gas. Titanium (IV) isopropoxide (Ti[OCH(CH3)2]4 (Mw = 284.22 g/mol) was used as the titanium
precursor and was dissolved in 2-methoxyethanol (2 ME). Acetic acid was dropped into a solution
as a stabilizer. The solutions were stirred at 45 ◦C for 1 h at 600 rpm and were allowed to age for
1 day. Figure 1 illustrates the brush-coating process with the solution as an ink, which is prepared by a
sol-gel process. The prepared solution was brush-coated onto ITO-coated glass substrates, followed by
pre-baking on a hot plate at 100 ◦C for 10 min. The samples were then annealed in a furnace at 160 ◦C
for 1 h. LC cells with an anti-parallel configuration were fabricated with a cell gap of 60 µm to confirm
the LC alignment properties using polarized optical microscopy (POM) (BXP51, Olympus, Japan)
images and pre-tilt angles. TN cells were also fabricated to measure the electro-optical properties
of RT and V–T with a 5 µm-wide cell gap. To assemble the TN cell using a brush-coating process,
TiO2 was brush-coated perpendicularly on the bottom and the upper ITO-coated glass substrates,
which indicated that the brush-coating direction of one substrate was perpendicular to that of the other
substrate. The empty cells were filled with positive nematic LCs (MJ001929; ne = 1.5859, no = 1.4872,
and 4ε = 8.2; Merck) via capillary action in the isotropic phase. POM was used to verify the LC
alignment state, and the pre-tilt angles were measured using a modified crystal rotation method
(TBA 107, Autronic). The EO characteristics of V–T and RT were measured using an LCD evaluation
system (LCMS-200, Sesim). Atomic force microscopy (AFM; XE-100, Park System, Korea) was used to
measure the surface properties of the TiO2 film compared with the brush-coating and spin-coating.
The optical transmittance was measured in the range 250–800 nm at room temperature of 25 ◦C using
an ultraviolet—visible (UV–Vis) spectrophotometer (V-650, JASCO Corporation, Japan).
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Figure 1. Schematic of the fabrication procedure for brush-coating process using TiO2 solution obtained
from sol-gel method as an alignment layer for liquid crystal device.

3. Results & Discussion

Chemical analysis was conducted to verify that TiO2 was properly deposited by brush-coating.
The XPS spectra of the TiOx samples are presented in Figure 2. The Ti and O elements were confirmed
in the wide-scan XPS spectrum, as shown in Figure 2a. The bonding energy around 460 eV represents
the Ti 2p peak and that around 532 eV indicates the O 1s peak. All binding energies were referenced
to the C1s signal at 284.6 eV. The XPS spectra of Ti 2p were deconvoluted using a Gaussian filter.
The spectra consist of Ti 2p3/2 and Ti 2p1/2 spin-orbit doublets with peaks located at 458.9 eV and
464.5 eV, respectively. In addition, the spin-orbit parameter of 5.8 eV was typically attributed to the Ti4+

oxidation state as the TiO2 lattice. These peaks are consistent with the pure TiO2 spectrum [27]. The O 1s
spectra consisted of two components with oxygen in TiO2 lattices centered at 530 eV, and oxygen
vacancies centered at 532 eV. The portion of oxygen in the lattice of 77% is much higher than the
oxygen vacancies of 23%, which is similar to the pure TiO2 composition [28]. These results indicate
that the brush-coating forms TiO2 film properly and show a stoichiometric structure. Figure 3 shows
the three-dimensional and surface AFM topographies of the TiO2 along the deposition process of
spin-coated TiO2 (Figure 3a) and brush-coated TiO2 (Figure 3b). The spin-coated TiO2 presents an
entirely flat surface with a small number of large particles, which might be the debris and cannot
determine the surface anisotropy. A root mean square (RMS) of 2.267 nm was obtained for the
spin-coated TiO2 (Table 1). The spin-coating process spun the TiO2 solution at high speeds and
generated a centrifugal force on the surface, which induced a smooth surface without anisotropy on
the surface. By contrast, the brush-coated TiO2 shows a uniform but relatively rough surface with a
slightly larger RMS roughness of 6.318 nm than that of the spin-coating process (Table 1). In addition,
it shows a nano/micropattern along the direction of the brush-coating (the black arrow in the AFM
images). During the brush-coating, receding a brush along the direction of the coating induces the
retracting force on the deposited bulk of the solution, which is attributed to the controllable liquid
transfer. The subsequent annealing process solidifies the solutions into the film with shearing stress
arising from the retracting forces. Therefore, receding a brush generates a shearing stress on the sol
state of TiO2, and the oriented TiO2 nano/mico structure can be obtained after the annealing process.
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Figure 3. 3-D Atomic force microscopy images and surface morphologies for (a) spin-coated TiO2 and
(b) brush-coated TiO2. (c) Schematic of brush-coating induced TiO2 alignment by brush retraction.

Table 1. Surface roughness of spin-coated and brush-coated TiO2.

Title Surface Roughness (nm)

Spin-coated TiO2 2.267
Brush-coated TiO2 6.318

The quality of LC devices is determined by the LC alignment property. Figure 4 shows
photomicrographs of the anti-parallel LC cells based on the TiO2 films fabricated by the brush-coating
and spin-coating process without any alignment techniques. A black POM image was observed on
the LC cell with the brush-coating process. The black image indicates that the LC molecules were
uniformly aligned in one direction without any dislocation. Because the LC cell is placed between
the intersectional polarizers, the polarized light from the bottom directly propagates through stably
aligned LC molecules without scattering and blocks the upper crossed polarizer. Because the LCs
are characterized by their collective behavior with fluidity, due to the van der Waals forces among
LC molecules, they are accompanied by elastic distortion, which can be controlled by the boundary
conditions, especially surface anisotropy such as microgrooves. Brush-coating creates highly oriented
nano/microstructure along the direction of brush-coating due to brush retraction [15]. The anisotropic
surface pattern created by the brush-coating induces geometric restrictions at the boundary condition
of the interface between the LCs and TiO2 surface and controls the directional behavior of the LCs
along the direction of the brush-coating. Stably oriented LCs at the interface maintain their direction
and propagate their directional characteristics through the bulk state of LCs by collective behavior.
On the other hand, the LC cells based on the spin-coated TiO2 showed uneven transmittance of the
POM images. The spin-coated TiO2 cannot provide the director on the LC matrix. Thus, the LCs are
randomly distributed on the spin-coated TiO2 without any anisotropy on the surface. Because the LCs
were not uniformly aligned on the spin-coated TiO2, the light from the bottom was scattered during
the propagation through the randomly distributed LC matrix and uneven transmittance of the POM
images was shown.

The pretilt angles of the LC cells were measured using the crystal rotation method. The crystal
rotation method measures the transmittance by rotating the LC cell latitudinally by 70◦, as shown
in Figure 5. The blue line shows the simulated curves, and the red line shows the experimental
curves measured by the LC cell. Two identical curves indicate the uniform alignment of LCs.
The calculated pretilt angle by the crystal rotation method using phase retardation was measured to be
0.6◦. The homogeneous LC alignment was observed on the brush-coated TiO2.
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Figure 5. Transmittance versus incident angle for the LC cell based on the brush-coated TiO2 measured
by crystal rotation method.

Figure 6 shows the EO characteristics of RT and VT of TN cells on the brush-coated TiO2 films
measured to examine the LC applications. The light from the backlight was transmitted through the
TN cells without voltage bias (0 V) due to the LC matrix twisted along the brush direction, and it
propagates along the twisted configuration of the LCs (transmittance of 100%). By contrast, the light
is completely blocked (transmittance of 0%) under an applied voltage (5 V) because the positive
LCs were upright along the electric fields. The RT characteristics of TN cells on brush-coated TiO2

films were measured to be 3.7 ms of rise time (from 0 V to 5 V) and 9.1 ms of fall time (from 5 V to
0 V). The threshold voltage, which is the applied voltage at 90% transmission, was measured to be
1.8 V, which is similar to that of a conventional TN cell with a rubbed PI of approximately 2.0 V [29].
The TN cell based on the brush-coated TiO2 is well-operated and the TiO2 prepared by brush-coating
is appropriate for the LC devices, even though it reduces the additional process for alignment.
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4. Conclusions

Herein, we successfully demonstrated the use of brush-coated TiO2 as an alignment layer for LC
devices. The brush-coating is a very useful and cost-effective process because it incorporates the two
steps of deposition of the alignment layer and alignment process to obtain anisotropic characteristics
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on the surface in one step. The brush-coating creates a stoichiometric structure of TiO2, which was
confirmed by XPS analysis. From the surface morphology analysis using AFM, the brush-coating
creates a highly oriented nano/microstructure along the direction of the brush-coating due to shear
stress arising from the brush retraction. Since the LCs are characterized by fluid-elastic properties,
due to their collective behavior, the oriented nano/microstructure induces the surface anisotropy and
geometric restriction on LCs; stably oriented LCs can be obtained by brush-coating, which confirms
the evaluation of alignment properties using POM analysis. By contrast, the spin-coated TiO2 cannot
provide the director on the surface; the LCs were not aligned in the uni-direction. The pre-tilt angle
of the brush-coated TiO2 film was measured to confirm the uniform and homogenous LC alignment
state. The LC cell in TN mode showed a successful operation of 12.5 ms of response time (4.2 ms of
rise time and 8.3 ms of fall time) and of threshold voltage of 1.8 V. Compared with TN mode LC cell
based on conventional rubbed PI, we can confirm that significant performance of TN mode based on
brush-coated TiO2 was obtained with reducing one step process. Our brush-coated TiO2 has great
potential and is useful for the fabrication of LC devices.
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