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Abstract: A 1:1 salt of carvedilol (CVD), an anti-hypertensive drug, with DL-mandelic acid (DL-MA)
was crystallized from ethanol and the structure was characterized by X-ray single-crystal diffraction,
revealing salt formation by transfer of an acidic proton from the COOH group of MA to the aliphatic
(acyclic) secondary amino NH group of CVD. The crystal structure is triclinic, with a P-1 space group
and unit cell parameters a = 9.8416(5) Å, b = 11.4689(5) Å, c = 14.0746(7) Å, α = 108.595(8), β = 95.182(7),
γ = 107.323(8), V = 1406.95(15) Å3, and Z = 2. The asymmetric unit contained one protonated CVD
and one MA anion, linked via an N+–H···O¯ strong hydrogen bond and a ratio of 1:1. As previously
reported, the thermal, spectroscopic, and powder X-ray diffraction properties of the salt of CVD with
DL-MA (CVD_DL-MA) differed from CVD alone. The intrinsic dissolution rate of CVD_DL-MA was
about 10.7 times faster than CVD alone in a pH 6.8 buffer.
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1. Introduction

In recent years, the use of crystal engineering to prepare multi-component crystals of
pharmaceutically important drug molecules [1–8], agrochemicals [9], pigments [10,11], and explosive
materials [12–14] has been widely investigated owing to potential applications in the modification
of the physicochemical properties, such as solubility, stability, and bioavailability. Among them,
pharmaceutical drug molecules are extremely significant as more than 40% of marketed drug
molecules suffer solubility issues [15–17]. Constant and continuous efforts directed toward the
development of various techniques to improve solubility of the active pharmaceutical ingredient
(API) include particle size reduction [18–20], solid dispersion with excipient [21,22], complexation
with cyclodextrin [23], polymorph screening, as well as the preparation of multi-component crystals,
with generally safe coformers approved by the FDA. In recent years, related research has been
widely spread in literature [24–29]. Multi-component crystals of API enhance physicochemical
properties such as solubility, bioavailability, and stability, and are becoming very popular
due to how they neither replace nor modify the parent API component. Carvedilol (CVD),
(±)-1-(carbazol-4-yloxy)-3-[[2-(omethoxyphenoxy) ethyl] amino]-2-propanol, is widely using in the
treatment of hypertension, or mild to severe heart failure [30–32]. CVD belongs to the Biopharmaceutics
Classification System (BCS) class II and has low solubility and high permeability [33]. CVD is
a remarkable potential drug to improve solubility and bioavailability, with several approaches
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attempted in the present literature [34–40]. Furthermore, CVD is known to exhibit polymorphism, with
three polymorphic forms reported in the literature [41]. Salt and cocrystal preparation remain potential
methods to improve solubility; however, salt formation is considered to be superior for improving
aqueous solubility [42,43]. Syntheses of various pharmaceutical salts of CVD, with pharmaceutically
acceptable organic acids and physicochemical properties, have been reported in literature, indicating
a 1.78-fold increase in the solubility of fumaric acid salt [40]. Interestingly, reports have indicated that the
solvent depended two polymorphic forms of the mandelate salt with CVD, demonstrating a monotropic
relation between them based on thermal analysis and a slurry experiment [40]. Furthermore, these
polymorphs were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry
(DSC), thermogravimetric (TG) analysis, Fourier-transform infrared spectroscopy (FT-IR), and scanning
electron microscopy [40]. However, no report has investigated the X-ray single-crystal structure
of either of the polymorphic forms of this salt. Our ongoing research is focused on improving the
physicochemical properties of pharmaceutical drug molecules by inducing multi-component crystals,
such as cocrystals, salt, and its solvates [44–48]. Moreover, we aim to establish new crystalline solid
forms of the API. In this report, we discuss our efforts to improve the solubility of CVD by preparing its
crystalline salts with DL-mandelic acid (DL-MA) (Figure 1), and we evaluate the X-ray single-crystal
structure of stable Form I of the DL-mandelate salt of CVD (CVD_DL-MA), crystal structural analysis,
and its physiochemical characteristics.
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Figure 1. Structures of racemic carvedilol (CVD) ((a), one enantiomer shown for clarity)) and
DL-mandelic acid (DL-MA) (b).

2. Materials and Methods

2.1. Materials

CVD (Form II) and DL-MA were purchased from Tokyo Chemical Industry Co. Ltd. (Tokyo,
Japan). All other analytical-grade solvents and reagents were commercially obtained and used without
further purification.

2.2. Preparation of CVD Salts

The physical mixture of CVD and DL-MA (molar ratio = 1:1) was dissolved in ethanol and the
ethanol was completely removed using a rotary evaporator. Next, the residual substance was dissolved
in ethanol, and the resulting solution was maintained at ambient temperature for one week, yielding
a colorless block-shaped crystal.

2.3. Single-Crystal X-Ray Diffraction

The single-crystal X-ray diffraction data were collected at 123 K for CVD_DL-MA.
The measurements were carried out in ω-scan mode with an R-AXIS RAPID II (Rigaku, Tokyo,
Japan) using the Cu-Kα X-ray obtained from rotating the anode source with a graphite monochromator.
The integrated and scaled data were empirically corrected for absorption effects using ABSCOR [49].
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The initial structure was solved using the direct method with SIR 2004 and refined on Fo2 with SHELXL
2014 [50,51]. All non-hydrogen atoms were refined anisotropically. The hydrogen atom attached to
the oxygen O5, and the nitrogen N1 atom, were located using the differential Fourier map. All other
hydrogen atom positions were calculated geometrically and included in the calculation using the
riding atom model. All the hydrogen atoms were refined isotropically. The molecular graphics were
produced using Mercury 3.7 software [52]. CCDC 1972926 contains the supplementary crystallographic
data for the CVD_DL-MA, and can be obtained free of charge from the Cambridge Crystallographic
Data Centre via https://www.ccdc.cam.ac.uk/structures/.

2.4. Powder X-Ray Diffraction (PXRD)

PXRD patterns were collected using a Rigaku SmartLab diffractometer (Rigaku, Tokyo, Japan)
equipped with a Cu-Kα source, parallel beam optics, and a one-dimensional semiconductor array
detector (Rigaku D/tex ultra, Rigaku, Tokyo, Japan). The corresponding PXRD patterns were collected
in reflection mode for 2θ = 5–40◦ at 25 ◦C, with a step of 0.01◦ and a scan speed of 20◦ min−1 (Cu-Kα
source, 45 kV, 200 mA).

2.5. Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Measurements

DSC and TG measurements were carried out with Thermo plus EVO2-DSC 8230 and Thermo
plus EVO2-TG8120 TG-DTA, respectively (Rigaku Co., Tokyo, Japan). The DSC sample (3 mg) was
placed in an aluminum crimped pan, and the TG sample (10 mg) was placed into an aluminum open
pan, and they were measured at a speed of 5 ◦C/min from 25 to 250 ◦C under nitrogen gas (flow rate =

50 mL/min). Al2O3 was used as a reference.

2.6. Fourier-Transform Infrared Spectroscopy (FT-IR)

The infrared spectra of samples were obtained using FT-IR (FT-IR-4200 spectrometer, JASCO
Co., Tokyo, Japan) with an attenuated total reflection (ATR) unit (ATR-PRO670H-S, JASCO Co.).
The spectrum recorded represents an average of 64 scans obtained with a resolution of 4 cm−1 at room
temperature. The spectra were collected in the wavenumber range from 4000–400 cm−1. The internal
reflectance element used in this study was a diamond trapezoid with 45◦ entrance and exit faces.

2.7. Solubility Tests

2.7.1. Equilibrium Solubility Experiments

Equilibrium solubility experiments were carried out using the flask shaking method. Before the
solubility test, all samples were sieved using standard mesh sieves (mesh size 150 µm) to provide
powders with similar particle size distribution. Each 100 mg of CVD, DL-MA, and CVD_DL-MA
(about 100 mg) mixture were added to 3 mL phosphate buffer, pH 6.8 (JP 17), and mechanically shaken
(120 times/min, Personal Lt-10f, Taitec corporation, Saitama, Japan) for 24 h at 37 ◦C. The supernatant
was filtered (pore size: 0.45 µm) and the CVD concertation was determined by HPLC. The results are
expressed as the mean ± standard deviation (SD) of at least three independent experiments.

2.7.2. Intrinsic Dissolution Experiment

The dissolution studies were carried out using the paddle method with a dissolution tester
(NTR-3000, TOYAMA SANGYO CO., LTD., Osaka, Japan), and the paddle rotating speed was 100 rpm.
Prior to the dissolution test, CVD and CVD_DL-MA were sieved using standard mesh sieves (mesh
size 150 µm) and then the excess from the samples was added to a vessel filled with 500 mL PBS (pH
6.8) at 37 ◦C. Samples (9 mL) were withdrawn and filtered (0.45 µm) for analysis at specified time
points, and assessed for CVD content by the HPLC method. Results are expressed as the mean ±
standard deviation (SD) of at least three independent experiments.

https://www.ccdc.cam.ac.uk/structures/
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2.8. High-Performance Liquid Chromatography (HPLC) Conditions

The HPLC comprises a PU-plus intelligent HPLC pump, a UV-intelligent UV/VIS detector,
a CO-2060 plus intelligent column oven, an AS-2055 plus intelligent sampler, and a ChromNAV
chromatography data system Ver. 1.08 (all from JASCO, Tokyo, Japan). The analytical column, a J-Pak
Vario XBP C8-T (250 × 4.6 mm i.d., particle size 5 µm, from JASCO) was used at 55 ◦C. The mobile
phase consisted of 0.05 M of phosphate buffer (pH 5.0) and acetonitrile (70:30, v/v) at a flow rate
of 1.2 mL/min. The injection volume was 10 µL. The column eluate was monitored using a visible
wavelength of 240 nm.

3. Results and Discussion

3.1. Crystal Structure

CVD was presented as a flexible molecule, with the central aliphatic chain attached to one terminal
by carbazol-4-yloxy and other by the 2-methoxyphenoxy moiety as seen in Figure 1. As CVD has
hydrogen acceptor and donor sites, the probability of forming a multi-component crystal was higher.
From the crystal engineering point of view, CVD could be a potential candidate for exploring various
conformations in its different crystalline forms, such as polymorph, salt, cocrystal, and solvates. In the
present study, the API was CVD, and DL-MA was the coformer. The salt formation was as expected
based on the basic rule of three, the ∆pKa difference between the CVD (pka 7.8) and DL-MA (pka 3.41)
was more than three, and its experimental validation in the formation and characterization of salt has
been reported [40]. However, the single-crystal structure was not determined. The X-ray single-crystal
structure determination and the study of non-covalent interaction within is important, as this reflects
the physical properties, and the structural information generated encourages further modification in
achieving the desired properties. The X-ray single-crystal structure confirmed the formation of salt
with approximately similar C–O bond lengths (1.247(2), 1.266(2) Å) of the (COO−) carboxylate group
of DL-MA. These similarities in the bond length of C–O confirmed the transfer of an acidic proton
from DL-MA to the aliphatic (acyclic) secondary amino group of CVD. CVD_DL-MA crystalized
in the triclinic P-1 space group contains one molecule of each in the asymmetric unit and is linked
by strong N+–H···O− hydrogen bonds, revealing the molecular salt in the 1:1 molar ratio (Figure 2).
The crystallographic information and geometrical parameters for the hydrogen bonding interaction
are summarized in Tables 1 and 2.
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Table 1. Crystallographic data table for the CVD_DL-MA salt.

Parameters CVD_DL-MA

Empirical formula C32 H34 N2 O7
Formula weight 558.61

Temperature 123(2) K
Wavelength 1.54187 Å

Crystal system Triclinic
Space group P −1

Unit cell dimensions a = 9.8416(5) Å, α = 108.595(8)◦

b = 11.4689(5) Å, β = 95.182(7)◦

c = 14.0746(7) Å, γ = 107.323(8)◦

Volume 1406.95(15) Å3

Z 2
Density (calculated) 1.319 Mg/m3

Absorption coefficient 0.764 mm−1

F(000) 592
Crystal size 0.210 × 0.150 × 0.100 mm3

Theta range for data collection 3.385◦ to 68.184◦

Index ranges −11<=h<=11, −13<=k<=13, −16<=l<=16
Reflections collected 16381

Independent reflections 5033 [R(int) = 0.0359]
Completeness to theta = 67.687◦ 97.9%

Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.926 and 0.605

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5033/0/380
Goodness-of-fit on F2 1.056

Final R indices [I>2sigma(I)] R1 = 0.0468, wR2 = 0.1252
R indices (all data) R1 = 0.0626, wR2 = 0.1352

Extinction coefficient n/a
Largest diff. peak and hole 0.356 and −0.227 e.Å−3

Table 2. Geometrical parameters of the hydrogen bond interaction in salt CVD_DL-MA.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (◦) Symmetry codes

N1-H1AA···O5 0.99(3) 1.87(3) 2.848(2) 169(2) −x, −y, −z
N2-H2A···O7 0.91 1.80 2.699(2) 168 1 − x,1 − y,1 − z
N2-H2B···O7 0.91 1. 91 2.741(2) 151 x, y, z
O2-H2B···O6 0.84 1.89 2.7164(18) 168 1 − x,1 − y,1 − z

C24-H24A···O2 0.98 2.66 3.418(3) 134 x, 1 + y, z
O5-5HA···Cg2 0.90(3) 2.74(3) 3.1361(19) 108(2) x, 1 + y, z

C8-H8···O6 0.95 2.65 3.383(2) 134 −1 + x, −1 + y, z
C9-H9···O2 0.95 2.68 3.597 163 −x, −y, 1 − z

C27-H27···Cg4 0.95 2.85 3.763(2) 163 −x, 1 − y, 1 − z
C13-H13A···Cg4 0.99 2.86 3.603(2) 133 1 − x, 1 − y, 1 − z
C15-H15A···Cg8 0.99 2.69 3.403 129 x, y, z

Cg2 centroid of the ring (C1-C2-C3-C4-C5-C12) of carbazol-4-yloxy moiety, Cg4 centroid of the
ring (C18-C19-C20-C21-C22-C23) of 2-methoxyphenoxy moiety of CVD and Cg8 centroid of the ring
(C25-C26-C27-C28-C29-C30) of MA.

3.2. Crystal Structural Analysis and Its Correlation with Physicochemical Properties

Single-crystal XRD showed the CVD_DL-MA salt crystalized in the triclinic P-1 space group
containing one molecule of each in the asymmetric unit, suggesting the molecular salt had a 1:1
molar ratio. The proton was transferred from the COOH group of DL-MA to the aliphatic (acyclic)
secondary NH group of CVDs. The conformation of protonated CVD in CVD_DL-MA salt is shown
in Figure 2. In the crystal structure of salt, two inversion-symmetry related protonated CVD molecules
form dimeric units, bridged by D-MA and L-MA’s anions, by using the strong N+–H···O¯ hydrogen
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bonds in R2
4(8) ring motif that involve two acceptor and four donor atoms. In this association, the O7

oxygen atom of both D and L-MA’s anion is bifurcated and involved in N+–H···O¯ hydrogen bonding,
namely N2–H2A···O7, N2–H2B···O7, with two inversion-symmetry related protonated CVD molecules.
Similarly, another oxygen O6 atom of both D and L-MA anions was involved in O–H···O¯ hydrogen
bonding with a hydroxyl group O2–H2B of protonated CVD molecules, namely a O2–H2B···O6 in
R4

4(18) ring motif involving four donors and four acceptors (Figure 3). Further, this dimeric association
also supported by weak C–H··· π contact, namely C13-H13A···Cg4 and C15-H15A···Cg8 interactions.
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by N2–H2A···O7, N2–H2B···O7 strong hydrogen bonds, which result in the R2

4(8) ring motif (inner
ring), and by O2–H2D···O6, N2–H2B···O7 strong hydrogen bonds, which result in the R4

4(18) ring motif
(outer ring) in the crystal structure of the salt. Blue dot indicates the inversion center and dotted lines
indicate the non-covalent interaction (hydrogen atoms not involved in the hydrogen bonding were
removed for clarity).

Furthermore, such dimeric units linked via N1–H1AA···O5 hydrogen bonding to the adjacent
dimeric units formed a 1D chain, as shown in Figure 4. In this association, the O5 oxygen atom of the
mandelate anion formed short and linear hydrogen bonds with N1–H1AA hydrogen atom of the cyclic
secondary amino group of carbazol-4-yloxy moiety in protonated CVD.

The neighboring 1D-dimeric chains were assembled into a 2D layer through weak C–H···O and
off-centered O–H···π interactions, generating layer packing along the b-axis. In this view, H24A methyl
hydrogen of protonated CVD formed weak hydrogen bonds, namely C24–H24A···O2, with O2 oxygen
of the protonated CVD molecules with similar configuration from the neighboring 1D-dimeric chains
along the b-axis, and was further supported by weak O–H···π interaction (O5–5HA···Cg2) between
hydroxyl group O–H5A of the mandelate anion with the π cloud of aromatic ring (C1-C2-C3-C4-C5-C12)
of carbazol-4-yloxy moiety of protonated CVD, as shown in Figure 5.
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Figure 5. Packing of 1D-dimeric chain via weak C–H···O (C24–H24A···O2) and O–H···π (O5–5HA···Cg2)
interaction along b-axis. Blue dotted lines indicate an association of neighboring chains.

Neighboring 1D-dimeric chains assembled along the c-axis by weak C–H···O hydrogen bonding
interaction. In this arrangement, the O2 oxygen atom of protonated CVD formed dimeric hydrogen
bonds (C9–H9···O2) with the H9 hydrogen atom of carbazol-4-yloxy moiety of protonated CVD
molecules, with the opposite configuration from neighboring chain along the c-axis, and further
supported by C–H···O¯ interaction between the O–6 oxygen atom of the MA anion with the H8
hydrogen atom of carbazol-4-yloxy moiety of protonated CVD (C8–H8···O6), with the resulting packing
shown in Figure 6.

Packing of neighboring 1D-dimeric chain along the a-axis by weak C–H··· π contact, namely
C27–H27···Cg4 interaction between C27–H27 hydrogen of MA anion and π cloud of an aromatic ring
(C18-C19-C20-C21-C22-C23) of 2-methoxyphenoxy moiety protonated CVD, shown in Figure 7.



Crystals 2020, 10, 53 8 of 14
Crystals 2020, 10, x FOR PEER REVIEW 8 of 14 

 

 

Figure 6. Packing of 1D-dimeric chain, via weak C8–H8∙∙∙O6 and dimeric C9–H9∙∙∙O2 hydrogen 

bonding interaction along the c-axis. Blue dotted lines indicate the association of neighboring chains. 

Packing of neighboring 1D-dimeric chain along the a-axis by weak C–H∙∙∙ π contact, namely 

C27–H27∙∙∙Cg4 interaction between C27–H27 hydrogen of MA anion and π cloud of an aromatic ring 

(C18-C19-C20-C21-C22-C23) of 2-methoxyphenoxy moiety protonated CVD, shown in Figure 7. 

 

Figure 7. Packing of 1D-dimeric chain via weak C–H∙∙∙ π (C27–H27∙∙∙Cg4) interaction along a-axis. 

3.3. PXRD Measurements 

Figure 6. Packing of 1D-dimeric chain, via weak C8–H8···O6 and dimeric C9–H9···O2 hydrogen bonding
interaction along the c-axis. Blue dotted lines indicate the association of neighboring chains.

Crystals 2020, 10, x FOR PEER REVIEW 8 of 14 

 

 

Figure 6. Packing of 1D-dimeric chain, via weak C8–H8∙∙∙O6 and dimeric C9–H9∙∙∙O2 hydrogen 

bonding interaction along the c-axis. Blue dotted lines indicate the association of neighboring chains. 

Packing of neighboring 1D-dimeric chain along the a-axis by weak C–H∙∙∙ π contact, namely 

C27–H27∙∙∙Cg4 interaction between C27–H27 hydrogen of MA anion and π cloud of an aromatic ring 

(C18-C19-C20-C21-C22-C23) of 2-methoxyphenoxy moiety protonated CVD, shown in Figure 7. 

 

Figure 7. Packing of 1D-dimeric chain via weak C–H∙∙∙ π (C27–H27∙∙∙Cg4) interaction along a-axis. 

3.3. PXRD Measurements 

Figure 7. Packing of 1D-dimeric chain via weak C–H··· π (C27–H27···Cg4) interaction along a-axis.

3.3. PXRD Measurements

PXRD profiles were used for the confirmation of the newly formed crystalline phase in the solid
state, as well as to determine the purity of the generated form by comparing it with the simulated
pattern from the X-ray single-crystal structure (Figure 8). Every crystalline phase of a compound
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displayed its own characteristic PXRD pattern. PXRD profiles of the CVD, DL-MA, and CVD_DL-MA
(experimental and simulated) were recorded, and they confirmed the formation of a 1:1 salt of CVD
and DL-MA. Furthermore, the overlay of the experimental PXRD pattern of these crystals matched the
simulated PXRD pattern obtained from the single-crystal X-ray data, confirming the homogeneity of
the sample and ruling out the possibility of the involvement of another phase (Form I). This form is
considered as Form I, according to reported results from the previous result [40].
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3.4. FT-IR Spectrum

FT-IR is a powerful tool for detecting molecular complexes since the vibrational changes serve
as probes for intermolecular interactions in solid materials. A comparison of the FT-IR spectra of the
obtained CVD_DL-MA, CVD, and DL-MA (Figure 9) showed numerous changes, confirming that
new multi-component crystals were generated. FT-IR analysis was also used to differentiate the salt
formation compared to other multi-component crystals (cocrystals), as distinguished by the proton
location between the acid and the base [53–55]. In the formation of a salt species, typical carboxylate
anions which have a carbonyl stretching band were demonstrated: a strong asymmetrical band below
1600 cm−1, and the appearance of a shoulder between 1505 cm−1 and 1610 cm−1 where the ionized
carboxyl group can be observed [56], not present in the spectra of the individual components. On the
other hand, when the frequency of the carbonyl group in carboxylic acid shifted to the higher energy
(approximate frequency range of 1700–1730 cm−1), a cocrystal species formed [57]. Examination of the
FT-IR spectrum indicated a proton transfer from the salt form to CVD, confirming the salt formation
between CVD and DL-MA.
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Figure 9. FT-IR spectra of DL-MA, CVD, and CVD_DL-MA.

3.5. Thermal Properties

The thermal properties of the salt were evaluated by DSC and TG measurements. DSC revealed
a single sharp endotherm at 169.4 ◦C, corresponding to melting. This suggested the non-involvement
of any phase change before the melting point. TG data revealed that no weight loss before melting
confirmed the absence of any solvent or hydrate in the crystal lattice (Figure 10).
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Figure 10. DSC and TG profiles of CVD_DL-MA.

Finally, PXRD, FT-IR, DSC, and TG data of CVD_DL-MA demonstrated good agreement with
previously reported data for a Form I [40] stable polymorph. Hence, it was confirmed that the obtained
salt was stable Form I.

3.6. Dissolution Studies

The equilibrium solubility of CVD and CVD_DL-MA were 1.2 ± 0.13 and 1.6 ± 0.03 µg/mL,
respectively. The equilibrium solubility of the salt was almost 1.3 times as that of CVD alone. Thus,



Crystals 2020, 10, 53 11 of 14

this work should be emphasized as an example that salt formation can improve the solubility of drugs.
Furthermore, this result will be more valuable if it is accompanied by a kinetic aspect, represented by
the dissolution rate. As shown in Figure 11, the intrinsic dissolution rate of the CVD_DL-MA was
approximately 10.7 times faster than that of CVD alone. Overall, dissolution testing indicated higher
CVD in salt samples, emphasizing the importance of the solid state of the investigated formulations, as
well as the presence of an excipient that potentially creates a favorable pH environment for the drug
upon dissolution as seen for the CVD_DL-MA.
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4. Conclusions

The X-ray structural analysis of the CVD_DL-MA salt revealed the presence of a strong association
between the CVD and DL-MA. Protonated CVD formed a dimeric unit bridged with DL-MA anions by
strong N+–H···O¯, O–H···O¯ hydrogen bonds. Furthermore, such dimeric units were linked through
N–H···O hydrogen bonding to form a 1D-dimeric chain. Neighboring 1D-dimeric chain assembled
along the a, b, and c-axis by weak non-covalent interaction. Thermal and powder XRD studies confirmed
that the CVD_DL-MA salt was stable Form I. The intrinsic dissolution rate of the CVD_DL-MA was
approximately 10.7 times faster than that of CVD alone.
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