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Abstract: The adsorption of NO, NH3, H2O, and SO2 gaseous molecules on different transition
metal oxides was studied based on density function theory (DFT), and three better-performing
transition metal elements (Fe, Co, and Ce) were selected. Cu–Mn/SAPO-34 catalysts were prepared
by impregnation method and then modified by the selected transition metals (Fe, Co, and Ce);
the SO2 resistance experiments and characterizations including Brunner−Emmet−Teller (BET),
X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), and thermal gravity analysis
(TG)-differential thermal gravity (DTG) before and after SO2 poisoning were conducted. The results
showed that the deactivation of the Cu–Mn/SAPO-34 catalyst is ascribed to the deposition of lots of
ammonium sulfates on the surface, depositing on the active sites and inhibiting the adsorption of NH3.
After the modification of Fe, Co, and Ce oxides, the SO2 resistance of the modified Cu–Mn/SAPO-34
catalyst was significantly enhanced due to the less formation of ammonium sulfates. Among all these
modified Cu–Mn/SAPO-34 catalysts, the Cu–Mn–Ce/SAPO-34 exhibited the highest SO2 resistance
owing to the decreased decomposition temperature and the trapper of ceria for capturing SO2 to form
Ce(SO4)2, further inhibiting the deposition of ammonium sulfates.

Keywords: selective catalytic reduction; DFT; transition metal additives; SO2

1. Introduction

Selective catalytic reduction with NH3 (NH3-SCR) is considered as one of the most efficient
techniques to control NOx emissions [1,2]. V2O5-based catalyst is commonly adopted for its high
activity for NO reduction and low sensitivity towards SO2 poisoning [2]. However, several issues
such as the high reaction temperature (300–400 ◦C), high cost, the toxicity and higher oxidizability of
vanadia, and low N2 selectivity limit its applications [3]. Therefore, significant efforts have been made
to develop low-temperature SCR catalysts, which will be applied in industrial boiler systems to remove
NOx below 250 ◦C, contributing to the low energy consumption and easy retrofit for flue gas cleaning.
Many SCR catalysts containing transition metals (Mn, Cu, Fe, Ce, Co, and V) have been reported to be
effective in low-temperature SCR reaction [4–8]. Among all these transition metals, MnO2 is found to
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be an important oxide component in the SCR reaction, due to the various types of labile oxygen and
high oxygen-storage capacity [9]. CuO is found to be highly resistant to SO2 in the low-temperature
SCR reaction due to the activity of CuSO4 [10]. It is reported that the Mn-Cu/SAPO-34 catalyst displays
remarkable hydrothermal stability and good SCR activity in a broad temperature range [11–13].

It is well accepted that the application of low-temperature SCR catalyst relies not only on the high
SCR activity, but also the superior SO2 resistance due to the fact that the exhaust from the industrial
boiler system contains a good amount of SO2. However, Mn-based catalysts are proven to be sensitive
to SO2 poisoning. Two main deactivation routes are widely reported. Firstly, SO2 can be oxidized to
SO3, which can react with NH3 and H2O to form (NH4)2SO4 and NH4HSO4; the former dries powdery,
which decomposes at 280 ◦C [14], but the latter is a kind of corrosive and sticky substance, which
decomposes at 390 ◦C [15], Secondly, MnOx or CuO may react with SO2 to form stable sulfate species,
which can cut off the redox cycle of the catalyst [16] and hinder the adsorption and activation of NO on
the surface of the catalyst [17]. As such, the development of Mn-based catalysts with superior SO2

resistance has attracted wide concern by many researchers.
The main method to improve SO2 resistance is adding other modification metals/non-metals

to SCR catalyst. Chang et al. [18] reported that the NO conversion over the SnOx–MnO2–CeO2

catalyst exhibited 60% approximately in the presence of SO2 and H2O, which is much higher than
that over MnO2–CeO2. The promotion effect is ascribed to the enhanced Lewis acid by the addition
of SnOx. Gao et al. [19] found that the Ni- or Co-doped MnO2–CeO2 catalyst exhibited higher SO2

resistance owing to the formation of bidentate nitrate rather than monodentate nitrite species, which
is less influenced by SO2, inhibiting the formation of ammonium sulfate and metal sulfate species.
Zhang et al. [20] investigated the promotion effect of F on SCR activity and SO2 resistance over the
CeO2–MoO2/TiO2 catalyst. They concluded that the enhanced SCR performance is attributed to more
generation of Oα species and promoted synergistic interaction among metal oxides by the doping of
fluorine. Another method is to improve the preparation method of the Mn-based catalyst. Yao et al. [21]
found that the MnO2-based catalyst prepared by impregnation method in acetic acid solvent shows
better SCR activity and SO2 resistance than in deionized water, anhydrous ethanol, and oxalic acid,
owing to the evenly dispersed MnOx and enhanced interaction between metal oxides. Yu et al. [22]
investigated the effect of Fe addition into Mn/TiO2 catalyst via sol–gel and impregnation methods and
they reported that the promotion of SO2 resistance is related to the catalyst structure rather than the
catalyst’s components.

In the present work, the Cu–Mn/SAPO-34 zeolite catalysts were prepared by impregnation method.
For promoting the SO2 resistance over Cu–Mn/SAPO-34 catalyst, the proper modification metals with
less affinity toward SO2 and H2O were filter by density functional theory (DFT) using Materials Studio
2016. The promotion effect of the transition metals-doped Cu–Mn/SAPO-34 catalyst on SCR activity
and SO2 resistance was further verified by the experimental study and comprehensive characterizations.
It is expected that the present work will obtain more insights into improving the SO2 resistance to
low-temperature SCR reaction over the Cu–Mn/SAPO-34 catalyst.

2. Results and Discussion

2.1. Calculation of NH3, NO, H2O, or SO2 Adsorption on Different Transition Metal Oxides

The adsorption of NH3, NO, H2O, and SO2 on the surface of various metal oxides was calculated
by Materials Studio 2016 using density functional theory. Firstly, the Fukui function was calculated to
predict the active site (in Figure 1).
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Figure 1. Structure and Fukui’s function of several different gas molecules. 
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Figure 1. Structure and Fukui’s function of several different gas molecules.

The adsorption energies, bond lengths, and angles of NH3, NO, H2O, and SO2 on different
transition metal oxides are shown in Table 1. It can be seen from the calculated results that the bond
lengths of the adsorbed gas molecules have been changed. For the adsorption of NH3 on CuOx (001),
the bond length was decreased from 1.037 Å to 1.022 Å, and the bond length of NO was increased from
1.167 Å to 1.224 Å after adsorption on MnOx (001). The changed length of these bonds will lead to NH3

and NO bonds that are easy to break and more lively to participate in SCR reaction, while the bond of
H2O and SO2 will also be extended to be easy to break and to participate in the reaction, leading to
the deactivation of SCR catalyst due to the SO2 and H2O poisoning. The results show that the bond
lengths of NH3 and NO molecules are relatively longer after adsorption on the oxides of Cu, Mn, Ce,
and Co, and the bond lengths of H2O and SO2 are relatively small. In terms of adsorption energy, the
adsorption capacity of different gas molecules on the same metal oxide adsorbed base is quite different.
For example, the adsorption of NO on MnOx is smaller than that of H2O, which means that NO and
H2O compete on MnOx and H2O is more likely to adsorb on MnOx. The adsorption energy of the
gas molecules on different metal oxides is also different. For example, the adsorption energy of NH3

on CuOx is the highest, while it is the lowest on RuOx, which means that NH3 preferentially adsorb
on CuOx. In order to improve the H2O resistance and SO2 resistance properties of the catalyst, it is
necessary to select proper transition metal oxides that easily adsorb NH3 and NO, and do not easily
adsorb H2O and SO2 as adjuvants. Based on the results calculated from Table 1, the Fe, Co, and Ce
are beneficial for NH3 and H2O adsorption, while the adsorption of H2O and SO2 is less favorable on
these metal oxides. Therefore, the Cu–Mn/SAPO-34 catalysts were further modified by these different
metal oxides to improve the H2O and SO2 resistance properties.

Table 1. Adsorption structure and adsorption energy.

Adsorption
Base

Adsorbents Adsorption
Energy/eV

Bond length/Å Bond Angle/◦

Before
Adsorption

After
Adsorption

Before
Adsorption

After
Adsorption

MnOx(001)

NH3 −2.03875
1.022 1.023 105.293 108.475
1.022 1.023 105.346 108.497
1.023 1.023 105.301 108.309

NO −1.05696 1.167 1.224 180 180

H2O −1.10298
0.97 0.97

103.537 103.3170.971 1

SO2 −2.20810
1.464 1.572

119.807 112.6391.464 1.572
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Table 1. Cont.

Adsorption
Base

Adsorbents Adsorption
Energy/eV

Bond length/Å Bond Angle/◦

Before
Adsorption

After
Adsorption

Before
Adsorption

After
Adsorption

CuOx(001)

NH3 −3.52843
1.022 1.036 105.293 106.817

1.022 1.036 105.346 106.817
1.023 1.037 105.301 106.742

NO −1.76270 1.167 1.201 180 180

H2O −1.11959
0.97 0.988

103.537 106.3120.971 0.979

SO2 −6.13501
1.464 1.614

119.807 107.3361.464 1.614

CeOx(001)

NH3 −3.25139
1.022 1.034 105.293 107.880
1.022 1.034 105.346 107.872
1.023 1.034 105.301 107.791

NO −1.60770 1.167 1.205 180 180

H2O −0.86146
0.97 0.991

103.537 105.9370.971 0.991

SO2 −2.57682
1.464 1.558

119.807 112.7831.464 1.557

FeOx(001)

NH3 −3.16140
1.022 1.033 105.293 108.603
1.022 1.033 105.346 108.636
1.023 1.033 105.301 108.564

NO −1.59895 1.167 1.20 180 180

H2O −1.29654
0.97 0.987

103.537 104.9960.971 1.030

SO2 −2.69020
1.464 1.554

119.807 113.1791.464 1.555

CoOx(001)

NH3 −2.79458
1.022 1.033 105.293 108.971
1.022 1.034 105.346 109.051
1.023 1.034 105.301 108.835

NO −1.59260 1.167 1.208 180 180

H2O −1.02839
0.97 0.993

103.537 104.9110.971 0.994

SO2 −2.37824
1.464 1.629

119.807 113.4531.464 1.630

MoOx(001)

NH3 −1.86400
1.022 1.028 105.293 110.208
1.022 1.028 105.346 110.182
1.023 1.029 105.301 110.251

NO −1.02833 1.167 1.180 180 180

H2O −1.16968
0.97 0.987

103.537 105.7520.971 0.987

SO2 −3.07422
1.464 1.540

119.807 113.4531.464 1.540
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Table 1. Cont.

Adsorption
Base

Adsorbents Adsorption
Energy/eV

Bond length/Å Bond Angle/◦

Before
Adsorption

After
Adsorption

Before
Adsorption

After
Adsorption

CrOx(001)

NH3 −2.75508
1.022 1.027 105.293 107.530
1.022 1.028 105.346 107.433
1.023 1.029 105.301 107.470

NO −1.49119 1.167 1.206 180 180

H2O −1.12858
0.97 0.995

103.537 106.0290.971 0.995

SO2 −3.22779
1.464 1.559

119.807 113.0151.464 1.560

RuOx(001)

NH3 −1.11775
1.022 1.032 105.293 109.292
1.022 1.031 105.346 109.044
1.023 1.032 105.301 109.714

NO −0.87561 1.167 1.200 180 180

H2O −0.10325
0.97 0.971

103.537 103.5370.971 0.970

SO2 −2.65537
1.464 1.549

119.807 112.6691.464 1.553

2.2. Changes of Catalyst Activity after Adding Transition Metals

Figure 2 illustrates the changes of Cu–Mn/SAPO-34 catalyst activity after adding transition metals.
It can be seen from Figure 2 that the Cu–Mn/SAPO-34 exhibits superior low-temperature SCR activity,
which is up to 79% and 88% at 150 ◦C and 180 ◦C, respectively. The addition of transition metals has
a significant promoting effect on the low-temperature SCR activity of the Cu–Mn/SAPO-34 catalyst,
especially by the addition of Ce and Co. However, with the increase of reaction temperature to 270 ◦C,
the activity of partially modified catalysts is lower than the Cu–Mn/SAPO-34 catalyst. Moreover,
the activity of the Co- and Fe-modified Cu–Mn/SAPO-34 catalysts are decreased compared with
that at 240 ◦C. This result demonstrates that the addition of transition metals enhance the oxidation
ability of the catalyst, causing the catalytic oxidation of NH3 to NO (i.e., C–O reaction) at higher
temperatures [23,24]. Among all three transition metals, the Ce-modified Cu–Mn/SAPO-34 exhibits
the highest SCR activity in the wide temperature range between 90 ◦C and 330 ◦C.
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Figure 2. Changes of denitrification activity of Cu–Mn/SAPO-34 catalyst after modification of different
transition metal additives. Reaction conditions: 350 ppm NO, 350 ppm NH3, 3% O2, N2 balance,
500 ppm SO2 (when used), and GHSV = 15,000 h−1.
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2.3. Changes of SO2 Resistance Performance of Catalyst after Adding Different Transition Metal Additive

Figure 3 shows the changes of SO2 resistance performance of Cu–Mn/SAPO-34 catalyst after
modification of different transition metal additives. For the Cu–Mn/SAPO-34 catalyst, the SCR
activity declines immediately with the injection of SO2 into the gas atmosphere. NOx conversion of
Cu–Mn/SAPO-34 catalyst decreases from 96.6% to 67% in the presence of 500 ppm SO2 for 8 h at 240 ◦C,
indicating the severe poisoning effect of SO2 over the Cu–Mn/SAPO-34 catalyst. With the modification
of transition metal additives, the Cu–Mn–Fe/SAPO-34, Cu–Mn–Co/SAPO-34, and Cu–Mn–Ce/SAPO-34
could still provide about 75%, 82%, and 85%, respectively, after the injection of SO2 for 8 h under the
same condition. Based on this result, it can be seen that the addition of Fe, Co, or Ce can all enhance
SO2 resistance of the Cu–Mn/SAPO-34 catalyst significantly. Among them, the modification of Ce
shows the best SO2 resistance performance, which is consistent with the results of Wu [25], Jin [26],
and Liu et al. [27]. This result demonstrates that the modification of Ce on Cu–Mn/SAPO-34 promotes
both the SCR activity and the SO2 resistance performance.
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2.4. Catalyst Characterization

2.4.1. BET Analysis

The specific surface area, pore volume, and pore size of fresh and SO2-poisoned catalysts are
determined by N2 adsorption and are summarized in Table 2. As shown in Table 2, the specific surface
area and pore volume of the catalyst after the addition of the additive decreased, while the pore size
increased. This may be due to the additive covered in the catalyst surface or into the molecular sieve
channel. Among all the modified Cu–Mn/SAPO-34 catalysts, the addition of Ce exhibited the highest
surface area, which may promote the adsorption of NH3 and NO, facilitating the SCR reaction as
shown in Figure 2. After SO2 poisoning for 8 h, the surface area and the pore volume of all the catalysts
decreased and the pore diameters extended. These results suggest that sulfate species deposit on the
surface of the Cu–Mn/SAPO-34 catalyst and mesopores are blocked from forming micro pores after
SO2 poisoning. From a comparison of the relative reduction of surface area before and after poisoning,
it can be seen that the surface area of modified catalysts decreased in the order of Fe-modified (18.6%)
> Co-modified (11.1%) > Ce-modified (7.8%). The decrease of the BET surface area of the catalyst
after SO2 poisoning is mainly due to the deposition of ammonium sulfate and metal sulfites/sulfates
according to the thermal gravity analysis (TG) and XRD analysis (Figures 5 and 6), which lowered
the SCR activity of the modified Cu–Mn/SAPO-34 catalyst. However, the addition of Ce into the
Cu–Mn/SAPO-34 catalyst maintained a relatively large specific surface area and, thus, retained the
highest SO2 resistance ability in the SCR reaction.
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Table 2. BET analysis of the fresh and spent Cu–Mn/SAPO-34 or modified catalyst.

Catalyst BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

BET Relative
Reduction (%)

Fresh catalyst 457 0.23 2.08
27.4Used catalyst 332 0.16 2.15

Fe-modified catalyst (Fresh) 399 0.21 2.03
18.6Fe-modified catalyst (Used) 325 0.14 3.34

Co-modified catalyst (Fresh) 402 0.17 2.22
11.1Co-modified catalyst (Used) 357 0.15 2.35

Ce-modified catalyst (Fresh) 423 0.19 2.14
7.8Ce-modified catalyst (Used) 390 0.16 2.18

2.4.2. Temperature Programmed Desorption of Ammonia (NH3-TPD) Analysis

Another crucial property for the SCR reaction is the surface acidity of the catalysts. NH3-TPD
experiment was performed to characterize the acidity of the catalysts before and after SO2 poisoning
(Figure 4). It can be seen from Figure 4 that the surface acidity of the modified Cu–Mn/SAPO-34
catalysts are slightly increased, as can be deduced by the comparison between the peak areas of
the modified and the original Cu–Mn/SAPO-34 catalyst, which may be due to the increase of the
number of acid sites on the surface of the catalyst. The relative acidity of the original and modified
Cu–Mn/SAPO-34 catalysts after SO2 poisoning was reduced, and the reductions were in the order
of Fe-modified > Co-modified > Ce-modified, which is consistent with the order of the reduction of
surface area as shown in Table 2. The slightly decreased acidity over the SO2-poisoned Co-modified
and Ce-modified Cu–Mn/SAPO-34 catalysts maintain the adsorption amounts of NH3, facilitating the
proceeding of the SCR reaction. The insight into the different behavior of surface acidity over Fe-, Co-,
and Ce-modified Cu–Mn/SAPO-34 catalysts after SO2 poisoning will be further discussed.
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2.4.3. TG-differential thermal gravity (DTG) Analysis

The catalysts after SO2 poisoning were characterized by TG-DTG to determine the sulfate species
and relative contents of different S-containing species. As shown in Figure 5, all the TG curves
presented three major weight losses, and the first one appeared at about 100 ◦C, which was due to
the evaporation of water in the sample [28]. The second one emerged at 200~400 ◦C, which was close
to the decomposition temperatures of (NH4)2SO4 (230 ◦C) and NH4HSO4 (350 ◦C), as reported in
the literature [29,30]. The third loss above 700 ◦C could be ascribed to the thermal decomposition
of the active component sulfites/sulfates. For the Cu–Mn/SAPO-34 catalyst, an obvious weight loss
centered at 356 ◦C was observed, which can be attributed to the decomposition of (NH4)2SO4. A faint
weight loss centered at 821 ◦C was also observed according to the TG spectra, which can be assigned to
the decomposition of metal sulfates on the surface of the catalyst. This result demonstrates that the
main reason for the deactivation of Cu–Mn/SAPO-34 catalyst is the deposition of a good amount of
(NH4)2SO4, depositing on the pore channel and inhibiting the adsorption of the NH3 and NO [22].
After the modification of Fe, Co, and Ce, the decomposition peak attributed to (NH4)SO4 and NH4HSO4

was lower than that of Cu–Mn/SAPO-34 catalyst, indicating that the decomposition of ammonium
sulfates was accelerated. Moreover, the weight loss attributed to the decomposition of (NH4)SO4 and
NH4HSO4 over the Ce-modified Cu–Mn/SAPO-34 was the smallest among all the modified catalyst.
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Figure 5. Thermal gravity analysis (TG)-differential thermal gravity (DTG) diagram of catalyst SO2

poisoning after addition of different transition metal additives (a: Unmodified, b: Ce-modified,
c: Co-modified, d: Fe-modified).

As for the Fe-modified Cu–Mn/SAPO-34 catalyst, the decomposition peak centered at 751 ◦C
was strengthened compared to that of the Cu–Mn/SAPO-34 catalyst. It is reasonable to speculate
that the decomposition peak is attributed to the decomposition of FeSO4 or Fe2(SO4)3 [31]. With the
modification of Ce, the weight loss ascribed to the decomposition of metal sulfates is reduced according
to the TG spectra, while the decomposition peaks centered at 743 ◦C is still observed, indicating that
the modification of Ce prevents the sulfation of MnO2 or CuO2. Therefore, it can be explained that
the main reason for the deactivation of the catalyst by SO2 poisoning at 240 ◦C after Ce modification
is the formation of ammonium sulfate on the surface of the catalyst. Most of the ammonium sulfate
can be decomposed, indicating that the catalyst can be regenerated by heat treatment. Moreover, as
illustrated in Figure 5, in the case of the Cu(2)–Mn(6)–Ce(2)/SAPO-34 catalyst, the decomposition
peak attributed to NH4HSO4 appeared at a much lower temperature (at approximately 289 ◦C)
than that on the Cu(2)–Mn(6)/SAPO-34 catalyst. This finding indicated that the thermal stability of
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NH4HSO4 on the Cu(2)–Mn(6)–Ce(2)/SAPO-34 catalyst was greatly reduced compared to that of the
Cu(2)–Mn(6)/SAPO-34 catalyst.

2.4.4. XRD Analysis

Figure 6 Shows the XRD spectra of Cu–Mn/SAPO-34 and Ce-modified Cu–Mn/SAPO-34 catalysts
before and after SO2 poisoning. After the SO2 poisoning process, several new diffraction peaks were
observed at 11.93◦, 21.08◦, 31.46◦, and 33.11◦ for Cu–Mn/SAPO-34 catalyst, and the anterior two peaks
were due to the formation of NH4HSO4(PDF#25-0034), CuSO4(PDF28-0401), and the latter two were
assigned to (NH4)2SO4(PDF#40-0660) and MnSO4(PDF35-0751). With the introduction of Ce to the
Cu–Mn/SAPO-34 catalyst, the peak attributed to Ce(SO4)2 appeared, while no peak ascribed to MnSO4

and (NH4)2SO4 was observed. It is possible that the addition of Ce reduces the accumulation of
ammonium sulfate on the surface of the catalyst, and the sulfation of Ce effectively protects the active
component Mn from being sulfated, resulting in a significant increase in the resistance to SO2 with the
addition of Ce promoter.
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Figure 6. XRD pattern of 2% Ce-modified catalyst after SO2 poisoning.

2.4.5. SEM and EDX Analysis

In order to observe the changes of the surface morphology and the amount of the surface elements
of the modified catalyst before and after SO2 poisoning, SEM and EDX experiments were conducted
and the results are shown in Figure 7 and Table 3. As illustrated in Figure 7, the surface of fresh catalysts
were smooth and uniform (Figure 7a). After 500 ppm SO2 poisoning for 8 h, a significant agglomeration
and sulfates deposited on the surface could be observed in the Figure 7b. Combined with EDS, XRD
and TG-DTG results, it is reasonable to speculate that this can be attributed to the deposition of a good
amount of ammonium sulfate salts as shown in Figure 7b. While with the modification of Ce, Co,
or Fe, only a few deposited particles and agglomeration could be seen in the Figure 7c–e. The content
of S element on the surface of the Ce-modified catalyst after SO2 poisoning was significantly lower
than that of other catalysts, indicating that the catalyst modified by Ce could reduce the deposition
of ammonium sulfate on the surface of the catalyst. The research of Jin et al. [26] indicated that Ce
can reduce the bond energy between NH4

+ and SO4
−2 or HSO4

−1, reducing the thermal stability of
(NH4)2SO4 and NH4HSO4, which may result in the easier decomposition of ammonium sulfates,
thereby reducing the accumulation of ammonium sulfate on the catalyst surface.
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Figure 7. SEM images of several different catalysts. (a) fresh Cu-Mn/SAPO-34; (b) SO2-poisoned
Cu-Mn/SAPO-34; (c) SO2-poisoned Ce-Cu-Mn/SAPO-34; (d) SO2-poisoned Co-Cu-Mn/SAPO-34; (e)
Fe-Cu-Mn/SAPO-34.

Table 3. Surface elements of several different catalysts.

O Si Al P Cu Mn Ce Co Fe S

Unmodified (Fresh) 62.57 3.51 16.47 13.98 1.11 2.36 – – – –
Unmodified (Spent) 59.54 3.19 16.42 14.76 1.24 3.37 – – – 1.48
Ce-modified (Spent) 57.09 4.33 19.74 10.62 1.46 4.52 1.89 – – 0.35
Co-modified (Spent) 55.63 4.71 18.77 12.31 1.28 4.82 – 1.84 – 0.64
Fe-modified (Spent) 55.94 4.13 16.32 14.49 1.45 4.63 – – 1.91 1.13

Based on the SCR activity tests in the presence of SO2 and characterizations, it can be concluded
that the Cu–Mn/SAPO-34 catalyst, after SO2 poisoning for 8 h, is deposited by ammonium sulfates and
metal sulfates such as MnSO4 and CuSO4 according to the TG-DTG and XRD analysis. However, the
formation of MnSO4 and CuSO4 is not the main reason for the deactivation of the Cu–Mn/SAPO-34 by
SO2 poisoning due to the limited formation of metal sulfates shown in TG-DTG analysis. The good
amount of ammonium sulfates deposited on the active sites reduce the surface area, inhibiting the
adsorption of NH3 as shown in Figure 4a, and deactivating the Cu–Mn/SAPO-34 catalyst. Meanwhile,
for the modified Cu–Mn/SAPO-34 catalyst by Fe, Co, and Ce oxides, the SO2 resistance performance
is enhanced significantly owing to less deposition of ammonium sulfates, which can be observed
intuitively by the SEM-EDX analysis. It can be concluded that the modification of Fe, Co, and Ce
oxides facilitate the decomposition of NH4HSO4. Among all the modified Cu–Mn/SAPO-34 catalysts,
the Ce-modified Cu–Mn/SAPO-34 exhibited the highest SO2 resistance performance. According to
the previous study, the ceria has been found to be highly reactive in the SCR reaction due to the high
oxygen-storage capacity (OSC) and the excellent redox ability by the reversible transition between
Ce4+ and Ce3+ [32]. Thus, the Ce-modified Cu–Mn/SAPO-34 exhibited the highest SCR activity among
all the modified Cu–Mn/SAPO-34 catalysts. Combining with the XRD results, it can be speculated that
the ceria component in the Cu–Mn-Ce/SAPO-34 catalyst acts as a trapper for capturing SO2 to form
Ce(SO4)2, which inhibits the deposition of ammonium sulfates due to the consumption of SO2 [33].
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Moreover, the addition of Ce oxides decreases thermal stability of ammonium sulfates by lowering the
decomposition temperature of ammonium sulfates as shown in TG-DTG analysis [25].

3. Experimental

3.1. Catalyst Preparation

The molecular sieve was modified by impregnation method. A certain amount of zeolite molecular
sieve H-SAPO-34 (n(P2O5):n(SiO2):n(Al2O3) = 1:1:1), provided by Nankai university, was weighed and
dried in a drying oven at 105 ◦C for 30 min. A certain amount of Cu(NO3)2·3H2O powder was mixed
with manganese nitrate solution with the mass fraction of 50% in the beaker of 200 mL, and then 50 mL
of deionized water was added into the immersion liquid. A certain amount of iron nitrate, cobalt
nitrate, or cerium nitrate was added during the mixing process for preparing Fe-, Co-, or Ce-modified
Cu–Mn/SAPO-34. Then, the beaker with a magnetic stirrer inside was immersed in a water bath at
the constant temperature of 40 ◦C. After 12 h of immersion, the solution was thoroughly mixed and
heated until the moisture was completely evaporated. The powder was then put into a dry oven at
about 100 ◦C for 12 h. The dried power was grinded and sieved by the 40 to 60 mesh. The obtained
powders were placed in a tube furnace and calcined at 450 ◦C for 6 h to obtain the catalyst sample for
the experiment. The catalyst sample Cu(2)–Mn(6)/SAPO-34(450) indicated that the mass fraction of
2% Cu and 6% Mn were loaded on the molecular sieve SAPO-34 with the calcination temperature of
450 ◦C.

3.2. Catalytic Activity Measurement

Denifitrication activity measurements using NH3 were carried out in a fixed-bed stainless-steel
tubular flow reactor (inner diameter: 16 mm) (Figure 8). The tube furnace of the reactor can be
heated from the room temperature to 800 ◦C. The gas feeding system was composed of five gas
feeding pipes controlled by the mass flow meter (0~1.5 L) and one liquid feeder micro injection pump
(0.001 µL/min~127 mL/min), equipped with the reactor for adjusting the composition of the feeding
gas. The reaction temperature in the experiments was set to be changed from 90 to 330 ◦C. Then, 2 mL
catalyst was placed on the holder of the reactor, and the feeding gas consisted of 350 ppm NO, 350 ppm
NH3, 3 vol % O2 and N2 as the balance. Further, 500~1500 ppm SO2 was injected into the feeding
gas for investigating the effect of SO2 on the catalyst poisoning. The GHSV was set to be 15,000 h−1.
The gas composition of the reactor inlet and outlet was collected by an air bag and analyzed by the
flue gas analyzer (Testo 350). The NO conversion was obtained from the equation as follows:

η =
Cin

NO −Cout
NO

Cin
NO

× 100% (1)

where η, Cin
NO, and Cout

NO represent the NO conversion, inlet, and outlet NO concentration.
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3.3. Catalyst Characterization

A Micromeritics ASAP 2010 M micropore size analyzer was used to measure the N2 adsorption
isotherms of the samples at liquid N2 temperature (−196 ◦C). Specific surface area, pore volume,
and pore diameter were determined by N2 adsorption using the BET and Barrett-Joyner-Halenda
(BJH) methods.

The XRD measurements were carried out on a Rigaku D/Smartlab (III) system with Cu Ka radiation.
The X-ray source was operated at 40 kV and 40 mA. The diffraction patterns were taken in the 2θ range
of 5~50◦ at a scan speed of 10◦ min−1 and a resolution of 0.02◦. The bulk atomic concentrations were
determined by X-ray energy dispersive spectroscopy (EDS) linked with scanning electron microscopy
(SEM) in SIRON-50 system at a voltage of 150 eV. Thermal gravity analysis (TG) and differential thermal
gravity (DTG) were performed using the Nanjing exhibition electrical and mechanical technology
company produced TGA-101 type, with the instrument accuracy of 0.2 µg, heating rate of 15 ◦C min−1

in a flowing of N2; the temperature rose from room temperature to 900 ◦C.
Temperature programmed desorption of ammonia (NH3-TPD) was carried out on an FINESORB-

3010 instrument provided by Zhejiang Pantech Instrument Company. Approximately 0.05 g of powder
catalyst was firstly pretreated in a stream of He at 20 mL/min while heating up to 300 ◦C. After a hold
time of 30 min, the sample was cooled down to 100 ◦C and saturated with a 20 mL/min gas mixture of
5% NH3 in He for 30 min. At the end of the saturation process, the sample was flushed with pure He
at 50 mL/min until the TCD signal was stabilized. The sample was then heated up to 600 ◦C (ramp
10 ◦C/min) and the mass spectrum signal of NH3 desorbed from the catalyst surface was collected.

3.4. Calculation Details

All calculations are based on DFT, and are performed using Materials Studio 2016 modeling
DMol3. Double-numerical quality basis set with polarization function (DNP) and GGA-PBE was used.
The real space cutoff radius is maintained as 4.7Å. The Brillouin zone is sampled using a (1 × 2 × 1)
Monkhorst-Pack grid, which ensures the convergence of the entire system.

The binding energies (Ead) of the NH3, NO, H2O, or SO2 molecule are calculated for all possible
active acid sites on the surfaces as follows:

Ead = Eadsorbed−substrate − (Eadsorbed + Esubstrate) (2)
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where Eadsorbed-substrate is the energy of the structure after adsorption, Eadsorbed is the energy of the
adsorbent, and Esubstate is the energy of the adsorbed base. Note that a positive value for Ead suggests
stable adsorption, which means that the adsorbent is more easily adsorbed.

4. Conclusions

The SCR activity of Cu–Mn/SAPO-34 catalyst modified by Fe, Co, and Ce oxides in the
absence/presence were tested. Significantly enhanced low-temperature SCR activity and SO2 resistance
were found. Comprehensive characterizations including BET, XRD, TG-DTG, SEM, and EDX were
carried out to investigate the mechanism of the promoting effect of the modification. It can be concluded
that the deactivation of Cu–Mn/SAPO-34 is attributed to the deposition of a good amount of ammonium
sulfates, depositing on the active sites and inhibiting the adsorption of NH3. With the modification of
Fe, Co, and Ce oxides, the SO2 resistance performance is enhanced significantly owing to less deposition
of ammonium sulfates. The decomposition of ammonium sulfates was facilitated by the modification
of Fe, Co, and Ce oxides, which can be observed intuitively by the SEM-EDX analysis. Among all
the modified Cu–Mn/SAPO-34 catalysts, the Ce-modified Cu–Mn/SAPO-34 exhibited the highest SO2

resistance performance, owing to less formation of ammonium sulfates, as the ceria acted as a trapper
for the capturing SO2 to form Ce(SO4)2. Moreover, the addition of ceria decreased decomposition
temperature of ammonium sulfates, further inhibiting the deposition to ammonium sulfates.
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